organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­methyl-N-[(E)-(1H-pyrrol-2-yl)methyl­­idene]aniline

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and cInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 8 August 2010; accepted 9 August 2010; online 11 August 2010)

In the title compound, C13H14N2, the dihedral angle between the aromatic rings is 69.73 (14)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(10) loops. A weak C—H⋯π inter­action also occurs.

Related literature

For background to Schiff bases and for related structures, see: Hussain et al. (2010a[Hussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010a). Acta Cryst. E66, o1888.],b[Hussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010b). Acta Cryst. E66, o1953.]), Sarfraz et al. (2010[Sarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.]); Tariq et al. (2010[Tariq, M. I., Sarfraz, M., Tahir, M. N., Ahmad, S. & Hussain, I. (2010). Acta Cryst. E66, o2078.]): For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2

  • Mr = 198.26

  • Monoclinic, P 21 /c

  • a = 12.8684 (9) Å

  • b = 7.1649 (5) Å

  • c = 12.9517 (9) Å

  • β = 107.613 (3)°

  • V = 1138.18 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.30 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.993

  • 8641 measured reflections

  • 2066 independent reflections

  • 1075 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.142

  • S = 1.01

  • 2066 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C13/N2 pyrrol ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.20 3.017 (3) 158
C9—H9⋯Cg1ii 0.93 2.80 3.606 (3) 145
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of Schiff bases containing 2,3-dimethylaniline (Tariq et al., 2010), (Sarfraz et al., 2010) and (Hussain et al., 2010b) and as a part of this project, we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e., N'-[(E)-(1-methyl-1H-pyrrol-2-yl)methylidene]benzohydrazide (Hussain et al., 2010a) has been published which contain the common 1H-pyrrole-2-carbaldehyde moiety as in (I).

In (I), the 2,3-dimethylanilinic group A (C1—C8/N1) and the 1H-pyrrole-2-carbaldehyde moiety B (C9—C13/N2) are planar with r. m. s. deviations of 0.0197 and 0.0094 Å, respectively. The dihedral angle between A/B is 70.50 (7)°. The molecules form dimers (Fig. 2) due to intermolecular H-bonding of N—H···N type (Table 1) and complete R22(10) ring motif (Bernstein et al., 1995). In stabilization of the molecules C—H···π interactions (Table 1) also play important role.

Related literature top

For background to Schiff bases and for related structures, see: Hussain et al. (2010a,b), Sarfraz et al. (2010); Tariq et al. (2010): For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 2,3-dimethylaniline and 1H-pyrrole-2-carbaldehyde were refluxed in methanol for 45 min resulting in a clear solution. The solution was kept at room temperature which afforded colourless needles of (I) after 48 h.

Refinement top

The coordinates of H-atoms of water molecule were refined. The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

We have reported crystal structures of Schiff bases containing 2,3-dimethylaniline (Tariq et al., 2010), (Sarfraz et al., 2010) and (Hussain et al., 2010b) and as a part of this project, we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e., N'-[(E)-(1-methyl-1H-pyrrol-2-yl)methylidene]benzohydrazide (Hussain et al., 2010a) has been published which contain the common 1H-pyrrole-2-carbaldehyde moiety as in (I).

In (I), the 2,3-dimethylanilinic group A (C1—C8/N1) and the 1H-pyrrole-2-carbaldehyde moiety B (C9—C13/N2) are planar with r. m. s. deviations of 0.0197 and 0.0094 Å, respectively. The dihedral angle between A/B is 70.50 (7)°. The molecules form dimers (Fig. 2) due to intermolecular H-bonding of N—H···N type (Table 1) and complete R22(10) ring motif (Bernstein et al., 1995). In stabilization of the molecules C—H···π interactions (Table 1) also play important role.

For background to Schiff bases and for related structures, see: Hussain et al. (2010a,b), Sarfraz et al. (2010); Tariq et al. (2010): For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form dimers.
2,3-Dimethyl-N-[(E)-(1H-pyrrol-2-yl)methylidene]aniline top
Crystal data top
C13H14N2F(000) = 424
Mr = 198.26Dx = 1.157 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1075 reflections
a = 12.8684 (9) Åθ = 3.2–25.3°
b = 7.1649 (5) ŵ = 0.07 mm1
c = 12.9517 (9) ÅT = 296 K
β = 107.613 (3)°Needle, colourless
V = 1138.18 (14) Å30.30 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2066 independent reflections
Radiation source: fine-focus sealed tube1075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 3.2°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.980, Tmax = 0.993l = 1515
8641 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.0942P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2066 reflectionsΔρmax = 0.15 e Å3
139 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (4)
Crystal data top
C13H14N2V = 1138.18 (14) Å3
Mr = 198.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8684 (9) ŵ = 0.07 mm1
b = 7.1649 (5) ÅT = 296 K
c = 12.9517 (9) Å0.30 × 0.12 × 0.10 mm
β = 107.613 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1075 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.993Rint = 0.065
8641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
2066 reflectionsΔρmin = 0.13 e Å3
139 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39549 (16)0.8356 (3)0.05111 (16)0.0532 (8)
N20.62151 (16)0.9535 (3)0.15496 (16)0.0550 (8)
C10.2837 (2)0.7796 (3)0.01500 (19)0.0499 (9)
C20.25093 (19)0.6419 (4)0.06368 (19)0.0539 (9)
C30.1406 (2)0.5922 (4)0.1006 (2)0.0659 (11)
C40.0680 (2)0.6814 (4)0.0579 (3)0.0787 (11)
C50.1015 (2)0.8157 (4)0.0209 (3)0.0834 (14)
C60.2096 (2)0.8668 (4)0.0569 (2)0.0675 (11)
C70.3339 (2)0.5434 (4)0.1043 (2)0.0766 (11)
C80.0995 (3)0.4408 (5)0.1836 (2)0.1085 (16)
C90.44692 (19)0.8048 (3)0.1505 (2)0.0516 (9)
C100.55763 (19)0.8560 (3)0.20329 (18)0.0495 (9)
C110.6209 (2)0.8162 (3)0.3068 (2)0.0592 (10)
C120.7242 (2)0.8895 (4)0.3205 (2)0.0642 (10)
C130.7225 (2)0.9738 (4)0.2261 (2)0.0635 (10)
H20.600860.995380.089670.0660*
H40.005460.649850.082970.0945*
H50.051370.871910.049760.1003*
H60.232630.959560.109040.0810*
H7A0.398740.618090.089300.1147*
H7B0.304760.524190.181050.1147*
H7C0.351340.424970.068600.1147*
H8A0.131490.323660.154560.1628*
H8B0.119240.469770.247600.1628*
H8C0.021600.432510.201600.1628*
H90.409380.744300.191880.0620*
H110.598560.751630.358700.0711*
H120.783560.882120.382760.0770*
H130.780711.035080.212580.0763*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0534 (13)0.0565 (14)0.0494 (13)0.0073 (10)0.0151 (10)0.0022 (10)
N20.0577 (14)0.0540 (13)0.0507 (12)0.0053 (11)0.0125 (11)0.0011 (11)
C10.0516 (16)0.0490 (15)0.0490 (14)0.0008 (12)0.0153 (12)0.0051 (13)
C20.0564 (17)0.0560 (17)0.0510 (15)0.0043 (13)0.0186 (13)0.0053 (13)
C30.0591 (19)0.072 (2)0.0619 (18)0.0102 (15)0.0113 (15)0.0075 (15)
C40.0465 (17)0.093 (2)0.088 (2)0.0013 (17)0.0074 (16)0.019 (2)
C50.062 (2)0.087 (2)0.107 (3)0.0197 (18)0.0343 (19)0.009 (2)
C60.0686 (19)0.0597 (18)0.0789 (19)0.0044 (15)0.0294 (16)0.0047 (15)
C70.081 (2)0.078 (2)0.0773 (19)0.0120 (16)0.0337 (16)0.0202 (17)
C80.096 (3)0.131 (3)0.091 (2)0.048 (2)0.017 (2)0.027 (2)
C90.0581 (16)0.0438 (16)0.0572 (16)0.0029 (12)0.0238 (13)0.0030 (13)
C100.0542 (15)0.0424 (15)0.0523 (16)0.0024 (12)0.0166 (13)0.0010 (12)
C110.0691 (18)0.0551 (17)0.0535 (16)0.0032 (14)0.0185 (14)0.0019 (13)
C120.0635 (19)0.0616 (18)0.0590 (17)0.0050 (14)0.0056 (14)0.0032 (15)
C130.0525 (17)0.0635 (18)0.0692 (18)0.0074 (14)0.0103 (14)0.0044 (16)
Geometric parameters (Å, º) top
N1—C11.429 (3)C11—C121.390 (4)
N1—C91.276 (3)C12—C131.358 (4)
N2—C101.366 (3)C4—H40.9300
N2—C131.354 (3)C5—H50.9300
N2—H20.8600C6—H60.9300
C1—C21.389 (3)C7—H7A0.9600
C1—C61.381 (4)C7—H7B0.9600
C2—C71.502 (4)C7—H7C0.9600
C2—C31.400 (4)C8—H8A0.9600
C3—C41.378 (4)C8—H8B0.9600
C3—C81.506 (4)C8—H8C0.9600
C4—C51.374 (5)C9—H90.9300
C5—C61.376 (4)C11—H110.9300
C9—C101.429 (4)C12—H120.9300
C10—C111.372 (3)C13—H130.9300
C1—N1—C9116.4 (2)C4—C5—H5120.00
C10—N2—C13109.3 (2)C6—C5—H5120.00
C10—N2—H2125.00C1—C6—H6120.00
C13—N2—H2125.00C5—C6—H6120.00
N1—C1—C2119.5 (2)C2—C7—H7A109.00
N1—C1—C6119.4 (2)C2—C7—H7B109.00
C2—C1—C6121.1 (2)C2—C7—H7C110.00
C1—C2—C3118.9 (2)H7A—C7—H7B109.00
C3—C2—C7121.1 (2)H7A—C7—H7C109.00
C1—C2—C7120.0 (2)H7B—C7—H7C109.00
C2—C3—C8121.9 (3)C3—C8—H8A109.00
C4—C3—C8119.1 (3)C3—C8—H8B109.00
C2—C3—C4119.0 (3)C3—C8—H8C109.00
C3—C4—C5121.6 (3)H8A—C8—H8B109.00
C4—C5—C6119.7 (3)H8A—C8—H8C109.00
C1—C6—C5119.6 (3)H8B—C8—H8C109.00
N1—C9—C10125.2 (2)N1—C9—H9117.00
N2—C10—C11107.0 (2)C10—C9—H9117.00
C9—C10—C11128.7 (2)C10—C11—H11126.00
N2—C10—C9124.3 (2)C12—C11—H11126.00
C10—C11—C12108.0 (2)C11—C12—H12126.00
C11—C12—C13107.4 (2)C13—C12—H12126.00
N2—C13—C12108.4 (2)N2—C13—H13126.00
C3—C4—H4119.00C12—C13—H13126.00
C5—C4—H4119.00
C9—N1—C1—C2116.5 (3)C1—C2—C3—C8178.4 (2)
C9—N1—C1—C665.2 (3)C7—C2—C3—C4177.5 (3)
C1—N1—C9—C10177.7 (2)C7—C2—C3—C81.0 (4)
C13—N2—C10—C9178.2 (2)C2—C3—C4—C50.9 (5)
C13—N2—C10—C110.3 (3)C8—C3—C4—C5177.6 (3)
C10—N2—C13—C120.0 (3)C3—C4—C5—C61.6 (5)
N1—C1—C2—C3178.2 (2)C4—C5—C6—C11.4 (4)
N1—C1—C2—C74.4 (4)N1—C9—C10—N23.4 (4)
C6—C1—C2—C30.1 (4)N1—C9—C10—C11174.7 (2)
C6—C1—C2—C7177.3 (2)N2—C10—C11—C120.4 (3)
N1—C1—C6—C5178.8 (2)C9—C10—C11—C12177.9 (2)
C2—C1—C6—C50.5 (4)C10—C11—C12—C130.5 (3)
C1—C2—C3—C40.1 (4)C11—C12—C13—N20.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C13/N2 pyrrol ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.203.017 (3)158
C9—H9···Cg1ii0.932.803.606 (3)145
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H14N2
Mr198.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.8684 (9), 7.1649 (5), 12.9517 (9)
β (°) 107.613 (3)
V3)1138.18 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8641, 2066, 1075
Rint0.065
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 1.01
No. of reflections2066
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
N1—C11.429 (3)N2—C101.366 (3)
N1—C91.276 (3)N2—C131.354 (3)
C1—N1—C9116.4 (2)N1—C9—C10125.2 (2)
C10—N2—C13109.3 (2)N2—C10—C11107.0 (2)
N1—C1—C2119.5 (2)N2—C10—C9124.3 (2)
N1—C1—C6119.4 (2)N2—C13—C12108.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C13/N2 pyrrol ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.203.017 (3)158
C9—H9···Cg1ii0.932.803.606 (3)145
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010a). Acta Cryst. E66, o1888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010b). Acta Cryst. E66, o1953.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTariq, M. I., Sarfraz, M., Tahir, M. N., Ahmad, S. & Hussain, I. (2010). Acta Cryst. E66, o2078.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds