organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)acetic acid–2-{(E)-[(E)-2-(2-pyridyl­methyl­­idene)hydrazin-1-yl­­idene]meth­yl}pyridine (1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 August 2010; accepted 14 August 2010; online 21 August 2010)

In the crystal of the title 1:1 adduct, C8H7ClO2·C12H10N4, the components are linked by an O—H⋯N hydrogen bond between the carb­oxy­lic acid and one of the pyridine N atoms. In the acid, the carb­oxy­lic acid group is approximately normal to [dihedral angle = 72.9 (2)°] but twisted with respect to the plane through the benzene ring [C—C—C—O torsion angle = 25.4 (5)°]. The base is roughly planar [dihedral angle between rings = 12.66 (15)°; r.m.s. deviation of the 16 non-H atoms = 0.107 Å] and the conformations about both imine bonds are E. The dimeric aggregates are linked into a supra­molecular layer in the ab plane by C—H⋯O inter­actions.

Related literature

For related studies on co-crystal formation, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClO2·C12H10N4

  • Mr = 380.83

  • Orthorhombic, P c a 21

  • a = 11.740 (6) Å

  • b = 4.641 (2) Å

  • c = 33.451 (15) Å

  • V = 1822.6 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 98 K

  • 0.22 × 0.19 × 0.09 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.625, Tmax = 1.000

  • 7554 measured reflections

  • 4091 independent reflections

  • 3661 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.113

  • S = 1.14

  • 4091 reflections

  • 247 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1973 Friedel pairs

  • Flack parameter: 0.09 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.85 (3) 1.89 (3) 2.734 (4) 173 (3)
C9—H9⋯O2 0.95 2.51 3.215 (4) 131
C10—H10⋯O1i 0.95 2.57 3.493 (4) 164
Symmetry code: (i) [x-{\script{1\over 2}}, -y+2, z].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Co-crystallization of carboxylic acids with pyridine-containing bases has led to several structural motifs as well as salts (Broker & Tiekink, 2007; Broker et al., 2008; Arman et al., 2010). In continuation of these studies, the co-crystallization experiment between 2-(4-chlorophenyl)acetic acid and 2-[(1E)-[(E)-2-(pyridin-2-ylmethylidene)hydrazin-1-ylidene] methyl]pyridine in a 1:1 ratio in their methanol solution was investigated. This lead to the isolation of the title 1:1 co-crystal, (I).

The constituents of (I), Fig. 1, are connected by a O–H···N hydrogen bond where the N is a pyridine-N, rather than an imine-N, as usually seen in co-crystals of this type (Broker et al., 2008), Table 1. In the acid, the dihedral angle formed between the carboxylic acid group and the benzene ring is 72.9 (2) ° and the former is twisted with respect to the plane of the benzene ring as seen in the value of the C1–C7–C8–O2 torsion angle of 25.4 (5) °. In the base, the 16 non-hydrogen atoms are almost co-planar with the r.m.s. deviation being 0.107 Å [max. deviations are 0.132 (3) Å for atom C18 and -0.153 (2) Å for the N1 atom]. The greatest twist in the base is found about the C15–C16 bond as seen in the N3–C15–C16–C17 torsion angle of 6.0 (5) °. The pyridine-N atoms are anti with respect to each other and the conformation about each imine bond [N2C14 = 1.276 (4) Å and N3C15 = 1.280 (4) Å] is E, again observations normally seen in related systems (Broker et al., 2008).

In the crystal packing, the dimeric aggregates held together by the O–H···N hydrogen bonds are linked into a supramolecular array in the ab plane via C–H···O contacts, Fig. 2 and Table 1. The resulting layers stack along the c direction, Fig. 3.

Related literature top

For related studies on co-crystal formation, see: Broker & Tiekink (2007); Broker et al. (2008); Arman et al. (2010).

Experimental top

Yellow crystals of (I) were isolated from the 1/1 co-crystallization of 2-[(1E)-[(E)-2-(pyridin-2-ylmethylidene)hydrazin-1-ylidene]methyl]pyridine (Sigma-Aldrich; 0.095 mmol) and 2-(4-chlorophenyl)acetic acid (Sigma-Aldrich; 0.094 mmol) in a methanol solution, m. pt. 370 - 373 K.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H = 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Structure description top

Co-crystallization of carboxylic acids with pyridine-containing bases has led to several structural motifs as well as salts (Broker & Tiekink, 2007; Broker et al., 2008; Arman et al., 2010). In continuation of these studies, the co-crystallization experiment between 2-(4-chlorophenyl)acetic acid and 2-[(1E)-[(E)-2-(pyridin-2-ylmethylidene)hydrazin-1-ylidene] methyl]pyridine in a 1:1 ratio in their methanol solution was investigated. This lead to the isolation of the title 1:1 co-crystal, (I).

The constituents of (I), Fig. 1, are connected by a O–H···N hydrogen bond where the N is a pyridine-N, rather than an imine-N, as usually seen in co-crystals of this type (Broker et al., 2008), Table 1. In the acid, the dihedral angle formed between the carboxylic acid group and the benzene ring is 72.9 (2) ° and the former is twisted with respect to the plane of the benzene ring as seen in the value of the C1–C7–C8–O2 torsion angle of 25.4 (5) °. In the base, the 16 non-hydrogen atoms are almost co-planar with the r.m.s. deviation being 0.107 Å [max. deviations are 0.132 (3) Å for atom C18 and -0.153 (2) Å for the N1 atom]. The greatest twist in the base is found about the C15–C16 bond as seen in the N3–C15–C16–C17 torsion angle of 6.0 (5) °. The pyridine-N atoms are anti with respect to each other and the conformation about each imine bond [N2C14 = 1.276 (4) Å and N3C15 = 1.280 (4) Å] is E, again observations normally seen in related systems (Broker et al., 2008).

In the crystal packing, the dimeric aggregates held together by the O–H···N hydrogen bonds are linked into a supramolecular array in the ab plane via C–H···O contacts, Fig. 2 and Table 1. The resulting layers stack along the c direction, Fig. 3.

For related studies on co-crystal formation, see: Broker & Tiekink (2007); Broker et al. (2008); Arman et al. (2010).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the constituents of co-crystal (I) showing displacement ellipsoids at the 50% probability level. The O–H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Supramolecular layer formation in the ab plane in (I). Dimeric aggregates, connected by an O–H···N hydrogen bond (orange dashed lines) are connected via C–H···O contacts (blue dashed lines). Hydrogen atoms not involved in the aforementioned interactions have been omitted for reasons of clarity.
[Figure 3] Fig. 3. Stacking of layers along the c axis in (I). The O–H···N (orange) and C–H···O (blue) contacts are shown as dashed lines.
2-(4-Chlorophenyl)acetic acid–2-{(E)-[(E)-2-(2-pyridylmethylidene)hydrazin-1- ylidene]methyl}pyridine (1/1) top
Crystal data top
C8H7ClO2·C12H10N4F(000) = 792
Mr = 380.83Dx = 1.388 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4996 reflections
a = 11.740 (6) Åθ = 2.1–40.3°
b = 4.641 (2) ŵ = 0.23 mm1
c = 33.451 (15) ÅT = 98 K
V = 1822.6 (15) Å3Prism, yellow
Z = 40.22 × 0.19 × 0.09 mm
Data collection top
Rigaku Saturn724
diffractometer
4091 independent reflections
Radiation source: sealed tube3661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 415
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 46
Tmin = 0.625, Tmax = 1.000l = 4342
7554 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0265P)2 + 0.6335P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
4091 reflectionsΔρmax = 0.28 e Å3
247 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 1973 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (8)
Crystal data top
C8H7ClO2·C12H10N4V = 1822.6 (15) Å3
Mr = 380.83Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.740 (6) ŵ = 0.23 mm1
b = 4.641 (2) ÅT = 98 K
c = 33.451 (15) Å0.22 × 0.19 × 0.09 mm
Data collection top
Rigaku Saturn724
diffractometer
4091 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3661 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 1.000Rint = 0.046
7554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113Δρmax = 0.28 e Å3
S = 1.14Δρmin = 0.24 e Å3
4091 reflectionsAbsolute structure: Flack (1983), 1973 Friedel pairs
247 parametersAbsolute structure parameter: 0.09 (8)
2 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54028 (7)1.20255 (16)0.67877 (3)0.03461 (19)
O10.2462 (2)0.4385 (5)0.86536 (7)0.0339 (6)
H1o0.201 (3)0.542 (7)0.8788 (10)0.051*
O20.2010 (2)0.7655 (5)0.81878 (7)0.0349 (6)
N10.0916 (2)0.7320 (5)0.91096 (8)0.0273 (6)
N20.0996 (2)0.3341 (5)1.00194 (8)0.0256 (6)
N30.1807 (2)0.1275 (5)1.01538 (8)0.0249 (6)
N40.1708 (2)0.3295 (6)1.10056 (8)0.0278 (6)
C10.3916 (3)0.5966 (7)0.77127 (10)0.0273 (7)
C20.4965 (3)0.7262 (7)0.77713 (10)0.0311 (7)
H20.53800.68640.80090.037*
C30.5427 (3)0.9140 (7)0.74890 (10)0.0308 (7)
H30.61461.00220.75330.037*
C40.4823 (3)0.9690 (6)0.71456 (10)0.0261 (7)
C50.3768 (3)0.8454 (7)0.70749 (10)0.0291 (7)
H50.33540.88720.68380.035*
C60.3332 (3)0.6583 (7)0.73615 (10)0.0297 (7)
H60.26130.57010.73160.036*
C70.3417 (3)0.4012 (7)0.80335 (10)0.0319 (8)
H7A0.30440.23410.79040.038*
H7B0.40400.32720.82040.038*
C80.2559 (3)0.5567 (7)0.82911 (10)0.0276 (7)
C90.0329 (3)0.9348 (7)0.89091 (10)0.0284 (7)
H90.05930.99340.86530.034*
C100.0646 (3)1.0608 (7)0.90619 (10)0.0302 (7)
H100.10381.20450.89140.036*
C110.1048 (3)0.9744 (7)0.94373 (10)0.0263 (7)
H110.17211.05640.95470.032*
C120.0443 (3)0.7666 (6)0.96461 (10)0.0255 (6)
H120.06960.70240.99010.031*
C130.0548 (3)0.6533 (6)0.94746 (10)0.0245 (6)
C140.1254 (3)0.4354 (6)0.96765 (9)0.0252 (7)
H140.19240.36800.95470.030*
C150.1501 (3)0.0090 (6)1.04822 (9)0.0250 (7)
H150.07990.06421.06010.030*
C160.2202 (3)0.2089 (6)1.06803 (9)0.0220 (6)
C170.3292 (3)0.2836 (6)1.05470 (10)0.0265 (7)
H170.36090.19661.03150.032*
C180.3902 (3)0.4885 (7)1.07626 (10)0.0287 (7)
H180.46480.54161.06820.034*
C190.3413 (3)0.6131 (7)1.10929 (10)0.0306 (7)
H190.38150.75371.12440.037*
C200.2316 (3)0.5292 (7)1.12030 (10)0.0299 (7)
H200.19800.61821.14300.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0384 (4)0.0313 (4)0.0342 (4)0.0011 (3)0.0090 (4)0.0029 (4)
O10.0357 (14)0.0361 (13)0.0299 (14)0.0045 (10)0.0061 (10)0.0038 (10)
O20.0357 (14)0.0371 (13)0.0320 (14)0.0084 (11)0.0047 (11)0.0067 (11)
N10.0269 (14)0.0267 (13)0.0281 (14)0.0008 (11)0.0003 (11)0.0001 (12)
N20.0238 (13)0.0274 (13)0.0255 (14)0.0036 (10)0.0027 (11)0.0004 (11)
N30.0215 (13)0.0276 (13)0.0256 (14)0.0015 (11)0.0025 (10)0.0002 (11)
N40.0273 (14)0.0276 (14)0.0285 (15)0.0005 (12)0.0004 (12)0.0022 (11)
C10.0304 (17)0.0263 (16)0.0254 (16)0.0081 (13)0.0056 (13)0.0002 (13)
C20.0298 (17)0.0371 (18)0.0263 (17)0.0060 (14)0.0028 (13)0.0000 (14)
C30.0238 (16)0.0304 (16)0.038 (2)0.0023 (13)0.0010 (14)0.0014 (15)
C40.0313 (16)0.0210 (14)0.0259 (16)0.0018 (13)0.0058 (14)0.0032 (12)
C50.0296 (17)0.0312 (16)0.0266 (17)0.0036 (13)0.0031 (13)0.0024 (14)
C60.0268 (16)0.0287 (16)0.0337 (19)0.0007 (13)0.0005 (14)0.0039 (14)
C70.0338 (18)0.0256 (16)0.036 (2)0.0058 (14)0.0059 (15)0.0021 (14)
C80.0264 (16)0.0275 (16)0.0288 (17)0.0079 (13)0.0023 (14)0.0020 (14)
C90.0296 (17)0.0298 (17)0.0256 (17)0.0004 (13)0.0025 (13)0.0038 (14)
C100.0327 (17)0.0265 (15)0.0313 (19)0.0019 (14)0.0106 (15)0.0006 (14)
C110.0220 (16)0.0257 (15)0.0314 (17)0.0007 (12)0.0035 (13)0.0005 (14)
C120.0244 (15)0.0250 (15)0.0270 (16)0.0056 (12)0.0015 (13)0.0003 (13)
C130.0235 (15)0.0226 (14)0.0273 (17)0.0033 (12)0.0025 (13)0.0032 (12)
C140.0212 (15)0.0249 (16)0.0294 (17)0.0006 (12)0.0001 (13)0.0020 (13)
C150.0244 (16)0.0244 (15)0.0263 (16)0.0006 (12)0.0038 (13)0.0026 (12)
C160.0243 (15)0.0193 (13)0.0223 (15)0.0027 (12)0.0019 (12)0.0013 (12)
C170.0253 (17)0.0273 (16)0.0269 (17)0.0021 (13)0.0002 (13)0.0018 (14)
C180.0193 (15)0.0299 (16)0.037 (2)0.0005 (13)0.0029 (13)0.0037 (14)
C190.0378 (18)0.0256 (16)0.0283 (18)0.0004 (14)0.0123 (14)0.0019 (14)
C200.0383 (19)0.0292 (16)0.0222 (16)0.0014 (14)0.0031 (14)0.0020 (13)
Geometric parameters (Å, º) top
Cl1—C41.753 (3)C7—H7A0.9900
O1—C81.336 (4)C7—H7B0.9900
O1—H1o0.85 (3)C9—C101.383 (5)
O2—C81.214 (4)C9—H90.9500
N1—C131.346 (4)C10—C111.400 (5)
N1—C91.346 (4)C10—H100.9500
N2—C141.276 (4)C11—C121.387 (4)
N2—N31.424 (3)C11—H110.9500
N3—C151.280 (4)C12—C131.399 (4)
N4—C201.343 (4)C12—H120.9500
N4—C161.354 (4)C13—C141.472 (4)
C1—C21.385 (5)C14—H140.9500
C1—C61.391 (5)C15—C161.463 (4)
C1—C71.522 (4)C15—H150.9500
C2—C31.394 (5)C16—C171.399 (4)
C2—H20.9500C17—C181.391 (4)
C3—C41.373 (5)C17—H170.9500
C3—H30.9500C18—C191.373 (5)
C4—C51.386 (4)C18—H180.9500
C5—C61.391 (5)C19—C201.396 (5)
C5—H50.9500C19—H190.9500
C6—H60.9500C20—H200.9500
C7—C81.509 (4)
C8—O1—H1o108 (3)C10—C9—H9118.8
C13—N1—C9118.5 (3)C9—C10—C11119.3 (3)
C14—N2—N3111.9 (3)C9—C10—H10120.4
C15—N3—N2111.9 (3)C11—C10—H10120.4
C20—N4—C16116.9 (3)C12—C11—C10118.6 (3)
C2—C1—C6118.0 (3)C12—C11—H11120.7
C2—C1—C7120.1 (3)C10—C11—H11120.7
C6—C1—C7121.9 (3)C11—C12—C13118.7 (3)
C1—C2—C3121.4 (3)C11—C12—H12120.6
C1—C2—H2119.3C13—C12—H12120.6
C3—C2—H2119.3N1—C13—C12122.5 (3)
C4—C3—C2118.8 (3)N1—C13—C14115.0 (3)
C4—C3—H3120.6C12—C13—C14122.5 (3)
C2—C3—H3120.6N2—C14—C13122.1 (3)
C3—C4—C5121.8 (3)N2—C14—H14118.9
C3—C4—Cl1119.1 (2)C13—C14—H14118.9
C5—C4—Cl1119.1 (3)N3—C15—C16121.9 (3)
C4—C5—C6118.0 (3)N3—C15—H15119.1
C4—C5—H5121.0C16—C15—H15119.1
C6—C5—H5121.0N4—C16—C17123.1 (3)
C1—C6—C5122.0 (3)N4—C16—C15114.1 (3)
C1—C6—H6119.0C17—C16—C15122.8 (3)
C5—C6—H6119.0C18—C17—C16118.3 (3)
C8—C7—C1112.0 (3)C18—C17—H17120.8
C8—C7—H7A109.2C16—C17—H17120.8
C1—C7—H7A109.2C19—C18—C17119.4 (3)
C8—C7—H7B109.2C19—C18—H18120.3
C1—C7—H7B109.2C17—C18—H18120.3
H7A—C7—H7B107.9C18—C19—C20118.7 (3)
O2—C8—O1122.7 (3)C18—C19—H19120.6
O2—C8—C7125.0 (3)C20—C19—H19120.6
O1—C8—C7112.3 (3)N4—C20—C19123.6 (3)
N1—C9—C10122.4 (3)N4—C20—H20118.2
N1—C9—H9118.8C19—C20—H20118.2
C14—N2—N3—C15174.8 (3)C9—N1—C13—C122.4 (5)
C6—C1—C2—C30.2 (5)C9—N1—C13—C14178.6 (3)
C7—C1—C2—C3177.8 (3)C11—C12—C13—N12.1 (5)
C1—C2—C3—C40.3 (5)C11—C12—C13—C14179.0 (3)
C2—C3—C4—C50.6 (5)N3—N2—C14—C13179.8 (2)
C2—C3—C4—Cl1179.5 (2)N1—C13—C14—N2178.1 (3)
C3—C4—C5—C60.9 (5)C12—C13—C14—N20.9 (5)
Cl1—C4—C5—C6179.3 (2)N2—N3—C15—C16179.6 (3)
C2—C1—C6—C50.4 (5)C20—N4—C16—C170.0 (4)
C7—C1—C6—C5177.5 (3)C20—N4—C16—C15179.3 (3)
C4—C5—C6—C10.7 (5)N3—C15—C16—N4174.6 (3)
C2—C1—C7—C898.4 (4)N3—C15—C16—C176.0 (5)
C6—C1—C7—C879.5 (4)N4—C16—C17—C180.9 (5)
C1—C7—C8—O225.4 (5)C15—C16—C17—C18178.4 (3)
C1—C7—C8—O1154.6 (3)C16—C17—C18—C190.9 (5)
C13—N1—C9—C101.1 (5)C17—C18—C19—C200.1 (5)
N1—C9—C10—C110.5 (5)C16—N4—C20—C190.8 (5)
C9—C10—C11—C120.8 (5)C18—C19—C20—N40.8 (5)
C10—C11—C12—C130.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (3)1.89 (3)2.734 (4)173 (3)
C9—H9···O20.952.513.215 (4)131
C10—H10···O1i0.952.573.493 (4)164
Symmetry code: (i) x1/2, y+2, z.

Experimental details

Crystal data
Chemical formulaC8H7ClO2·C12H10N4
Mr380.83
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)98
a, b, c (Å)11.740 (6), 4.641 (2), 33.451 (15)
V3)1822.6 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.22 × 0.19 × 0.09
Data collection
DiffractometerRigaku Saturn724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.625, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7554, 4091, 3661
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.113, 1.14
No. of reflections4091
No. of parameters247
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.24
Absolute structureFlack (1983), 1973 Friedel pairs
Absolute structure parameter0.09 (8)

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (3)1.89 (3)2.734 (4)173 (3)
C9—H9···O20.952.513.215 (4)131
C10—H10···O1i0.952.573.493 (4)164
Symmetry code: (i) x1/2, y+2, z.
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds