organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-[(E)-(3,4-dimeth­­oxy­phen­yl)methyl­­idene]aniline

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and cInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 14 August 2010; accepted 15 August 2010; online 18 August 2010)

The asymmetric unit of the title compound, C15H14ClNO2, contains two mol­ecules with significantly different conformations: the dihedral angles between the 4-chloro­aniline and 3,4-dimeth­oxy­phenyl (excluding C atoms) moieties are 19.68 (7) and 45.54 (4)°. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions.

Related literature

For related structures, see: Dehno Khalaji et al. (2009[Dehno Khalaji, A., Asghari, J., Fejfarová, K. & Dušek, M. (2009). Acta Cryst. E65, o253.]); Shang & Tan (2007[Shang, Z.-H. & Tan, S. (2007). Acta Cryst. E63, o2960-o2961.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClNO2

  • Mr = 275.72

  • Monoclinic, P 21 /c

  • a = 12.4227 (4) Å

  • b = 7.3638 (2) Å

  • c = 30.4583 (13) Å

  • β = 96.080 (2)°

  • V = 2770.60 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.35 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.950

  • 20975 measured reflections

  • 5007 independent reflections

  • 3456 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.05

  • 5007 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C8–C13 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O3i 0.96 2.52 3.468 (3) 170
C6—H6⋯Cg3ii 0.93 2.85 3.602 (2) 139
C18—H18⋯Cg1 0.93 2.89 3.588 (2) 133
C21—H21⋯Cg3iii 0.93 2.88 3.549 (2) 130
C29—H29CCg2 0.96 2.88 3.782 (2) 157
C30—H30CCg1iv 0.96 2.76 3.613 (2) 148
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The crystal structures of (II) i.e, 4-chloro-N-(3,4,5-trimethoxybenzylidene)aniline (Dehno Khalaji et al., 2009) and (III) i.e, 4-[(4-chlorophenyl)iminomethyl]-2-methoxyphenol (Shang & Tan, 2007) have been published which are related to the title compound (I, Fig. 1)

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the 4-chloroanilinic group A (C1—C6/N1/CL1) and group B (C7—C13/O1/O2) of 3,4-dimethoxyphenyl are planar with r.m.s. deviation of 0.0081 and 0.0146 Å, respectively. The dihedral angle between A/B is 45.54 (4)°. The C-atoms C14 and C15 of 3,4-dimethoxyphenyl are at a distance of -0.0058 (35) and 0.1132 (34) Å, respectively from the parent group B. In the second molecule, the 4-chloroanilinic group C (C16—C21/N2/CL2) and group D (C22—C28/O3/O4) of 3,4-dimethoxyphenyl are planar with r.m.s. deviation of 0.0094 and 0.0063 Å, respectively. The dihedral angle between C/D is 19.68 (7)°. The C-atoms C29 and C30 of 3,4-dimethoxyphenyl are at a distance of -0.2256 (33) and -0.2205 (31) Å, respectively from the parent group D. This shows that both molecules differ at large from each other. The molecules are stabilized through C—H···O type of H-bonding and π···π interactions (Table 1).

Related literature top

For related structures, see: Dehno Khalaji et al. (2009); Shang & Tan (2007).

Experimental top

Equimolar quantities of 4-chloroaniline and 3,4-dimethoxybenzaldehyde were refluxed in methanol for 30 min. The solution was kept at room temperature which afforded orange light yellow prisms of (I) after 48 h.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Structure description top

The crystal structures of (II) i.e, 4-chloro-N-(3,4,5-trimethoxybenzylidene)aniline (Dehno Khalaji et al., 2009) and (III) i.e, 4-[(4-chlorophenyl)iminomethyl]-2-methoxyphenol (Shang & Tan, 2007) have been published which are related to the title compound (I, Fig. 1)

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the 4-chloroanilinic group A (C1—C6/N1/CL1) and group B (C7—C13/O1/O2) of 3,4-dimethoxyphenyl are planar with r.m.s. deviation of 0.0081 and 0.0146 Å, respectively. The dihedral angle between A/B is 45.54 (4)°. The C-atoms C14 and C15 of 3,4-dimethoxyphenyl are at a distance of -0.0058 (35) and 0.1132 (34) Å, respectively from the parent group B. In the second molecule, the 4-chloroanilinic group C (C16—C21/N2/CL2) and group D (C22—C28/O3/O4) of 3,4-dimethoxyphenyl are planar with r.m.s. deviation of 0.0094 and 0.0063 Å, respectively. The dihedral angle between C/D is 19.68 (7)°. The C-atoms C29 and C30 of 3,4-dimethoxyphenyl are at a distance of -0.2256 (33) and -0.2205 (31) Å, respectively from the parent group D. This shows that both molecules differ at large from each other. The molecules are stabilized through C—H···O type of H-bonding and π···π interactions (Table 1).

For related structures, see: Dehno Khalaji et al. (2009); Shang & Tan (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
4-Chloro-N-[(E)-(3,4-dimethoxyphenyl)methylidene]aniline top
Crystal data top
C15H14ClNO2F(000) = 1152
Mr = 275.72Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3456 reflections
a = 12.4227 (4) Åθ = 1.7–25.3°
b = 7.3638 (2) ŵ = 0.27 mm1
c = 30.4583 (13) ÅT = 296 K
β = 96.080 (2)°Prism, light yellow
V = 2770.60 (17) Å30.35 × 0.22 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5007 independent reflections
Radiation source: fine-focus sealed tube3456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 1.7°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.932, Tmax = 0.950l = 3629
20975 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0465P)2 + 1.0036P]
where P = (Fo2 + 2Fc2)/3
5007 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H14ClNO2V = 2770.60 (17) Å3
Mr = 275.72Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.4227 (4) ŵ = 0.27 mm1
b = 7.3638 (2) ÅT = 296 K
c = 30.4583 (13) Å0.35 × 0.22 × 0.20 mm
β = 96.080 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5007 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3456 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.950Rint = 0.026
20975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
5007 reflectionsΔρmin = 0.30 e Å3
347 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47381 (6)0.59742 (12)0.19551 (3)0.1029 (3)
O10.34541 (11)0.7300 (2)0.00839 (5)0.0666 (6)
O20.15540 (11)0.7756 (2)0.03006 (4)0.0622 (5)
N10.10335 (14)0.6680 (2)0.09001 (5)0.0531 (6)
C10.18906 (15)0.6522 (3)0.11683 (6)0.0480 (6)
C20.27949 (16)0.5526 (3)0.10049 (7)0.0534 (7)
C30.36655 (17)0.5352 (3)0.12478 (7)0.0582 (8)
C40.36430 (18)0.6199 (3)0.16498 (8)0.0597 (8)
C50.27691 (19)0.7213 (3)0.18141 (7)0.0641 (8)
C60.18948 (17)0.7378 (3)0.15726 (7)0.0572 (8)
C70.00599 (17)0.6629 (3)0.10774 (7)0.0547 (7)
C80.08663 (16)0.6815 (3)0.08263 (7)0.0505 (7)
C90.07247 (15)0.7174 (3)0.03730 (6)0.0481 (7)
C100.15987 (16)0.7355 (3)0.01380 (6)0.0477 (6)
C110.26563 (16)0.7137 (3)0.03515 (7)0.0505 (7)
C120.27930 (17)0.6779 (3)0.07967 (7)0.0595 (8)
C130.19067 (17)0.6630 (3)0.10334 (7)0.0606 (8)
C140.45431 (17)0.7121 (4)0.02793 (9)0.0797 (10)
C150.05181 (18)0.8106 (4)0.05280 (7)0.0704 (9)
Cl20.28854 (6)0.13333 (12)0.26687 (2)0.0916 (3)
O30.34354 (11)0.2151 (2)0.04035 (5)0.0685 (6)
O40.53216 (11)0.1383 (2)0.07674 (5)0.0614 (5)
N20.08863 (14)0.1523 (2)0.16357 (6)0.0538 (6)
C160.00252 (16)0.1438 (3)0.19048 (6)0.0474 (7)
C170.09141 (16)0.2363 (3)0.17535 (7)0.0526 (7)
C180.18002 (17)0.2347 (3)0.19879 (7)0.0575 (7)
C190.17623 (17)0.1391 (3)0.23760 (7)0.0535 (7)
C200.08492 (18)0.0463 (3)0.25324 (7)0.0614 (8)
C210.00371 (17)0.0481 (3)0.22977 (7)0.0572 (7)
C220.18473 (17)0.1189 (3)0.17922 (7)0.0597 (8)
C230.27594 (16)0.1226 (3)0.15321 (7)0.0547 (7)
C240.26207 (16)0.1687 (3)0.10854 (7)0.0511 (7)
C250.34811 (16)0.1725 (3)0.08394 (7)0.0502 (7)
C260.45269 (15)0.1286 (3)0.10403 (7)0.0515 (7)
C270.46640 (17)0.0814 (3)0.14774 (8)0.0654 (8)
C280.37878 (18)0.0795 (4)0.17212 (8)0.0700 (9)
C290.23950 (17)0.2317 (3)0.01634 (7)0.0672 (8)
C300.63635 (16)0.0663 (3)0.09192 (8)0.0675 (9)
H20.281360.497220.072970.0640*
H30.426380.466510.113970.0699*
H50.276410.778640.208630.0769*
H60.130160.807290.168280.0686*
H70.006530.646370.138130.0656*
H90.002910.729050.022960.0577*
H120.348700.663620.094000.0714*
H130.201120.640220.133530.0727*
H14A0.467540.797540.051690.1193*
H14B0.502940.735650.006110.1193*
H14C0.465810.591020.039140.1193*
H15A0.009310.701520.054030.1056*
H15B0.059860.850910.082250.1056*
H15C0.016160.903210.037500.1056*
H170.094470.300330.148930.0631*
H180.242290.298170.188400.0690*
H200.082710.017790.279630.0737*
H210.065540.015930.240410.0687*
H220.197760.090420.209060.0716*
H240.193280.197230.095260.0614*
H270.534810.050600.161040.0785*
H280.389220.048690.201870.0840*
H29A0.198690.122890.019820.1007*
H29B0.247290.249970.014370.1007*
H29C0.202240.333500.027360.1007*
H30A0.666410.133000.117410.1012*
H30B0.683300.076890.068960.1012*
H30C0.629310.059230.099600.1012*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0819 (5)0.1266 (7)0.1086 (6)0.0040 (4)0.0499 (4)0.0131 (5)
O10.0419 (8)0.0932 (12)0.0652 (10)0.0014 (8)0.0074 (7)0.0011 (9)
O20.0502 (8)0.0884 (11)0.0482 (8)0.0024 (8)0.0058 (7)0.0031 (8)
N10.0510 (10)0.0576 (10)0.0509 (10)0.0004 (8)0.0067 (8)0.0022 (8)
C10.0490 (11)0.0469 (11)0.0480 (11)0.0033 (9)0.0048 (9)0.0062 (9)
C20.0576 (13)0.0507 (12)0.0512 (12)0.0006 (10)0.0028 (10)0.0015 (10)
C30.0496 (12)0.0575 (13)0.0664 (14)0.0020 (10)0.0005 (10)0.0109 (11)
C40.0568 (13)0.0607 (14)0.0640 (14)0.0086 (11)0.0179 (11)0.0117 (11)
C50.0749 (16)0.0635 (14)0.0554 (13)0.0048 (12)0.0139 (12)0.0054 (11)
C60.0574 (13)0.0566 (13)0.0572 (13)0.0035 (10)0.0045 (10)0.0052 (10)
C70.0574 (13)0.0604 (13)0.0464 (11)0.0015 (10)0.0059 (10)0.0051 (10)
C80.0492 (12)0.0535 (12)0.0487 (11)0.0007 (9)0.0043 (9)0.0026 (9)
C90.0419 (11)0.0496 (12)0.0518 (12)0.0011 (9)0.0001 (9)0.0002 (9)
C100.0482 (11)0.0469 (11)0.0472 (11)0.0005 (9)0.0015 (9)0.0022 (9)
C110.0450 (11)0.0514 (12)0.0548 (12)0.0009 (9)0.0043 (9)0.0033 (10)
C120.0438 (11)0.0724 (15)0.0601 (14)0.0015 (10)0.0049 (10)0.0011 (11)
C130.0588 (13)0.0740 (15)0.0478 (12)0.0017 (11)0.0000 (10)0.0064 (11)
C140.0445 (13)0.113 (2)0.0814 (17)0.0016 (13)0.0054 (12)0.0137 (16)
C150.0656 (15)0.0966 (18)0.0477 (12)0.0126 (13)0.0000 (11)0.0030 (12)
Cl20.0734 (4)0.1239 (6)0.0828 (5)0.0051 (4)0.0329 (3)0.0075 (4)
O30.0441 (8)0.1016 (12)0.0596 (9)0.0077 (8)0.0045 (7)0.0180 (9)
O40.0406 (8)0.0748 (10)0.0686 (10)0.0043 (7)0.0045 (7)0.0094 (8)
N20.0529 (10)0.0587 (11)0.0503 (10)0.0024 (8)0.0072 (8)0.0034 (8)
C160.0516 (12)0.0447 (11)0.0452 (11)0.0001 (9)0.0023 (9)0.0007 (9)
C170.0593 (13)0.0538 (12)0.0432 (11)0.0071 (10)0.0019 (9)0.0047 (9)
C180.0528 (12)0.0617 (13)0.0562 (13)0.0120 (10)0.0030 (10)0.0051 (11)
C190.0538 (12)0.0565 (12)0.0509 (12)0.0000 (10)0.0094 (10)0.0085 (10)
C200.0689 (15)0.0616 (14)0.0543 (13)0.0024 (11)0.0092 (11)0.0119 (11)
C210.0549 (12)0.0573 (13)0.0586 (13)0.0091 (10)0.0021 (10)0.0126 (11)
C220.0588 (14)0.0723 (15)0.0474 (12)0.0005 (11)0.0035 (10)0.0030 (11)
C230.0500 (12)0.0606 (13)0.0531 (12)0.0010 (10)0.0031 (10)0.0013 (10)
C240.0425 (11)0.0537 (12)0.0564 (12)0.0045 (9)0.0016 (9)0.0031 (10)
C250.0471 (11)0.0496 (12)0.0531 (12)0.0015 (9)0.0011 (9)0.0050 (10)
C260.0423 (11)0.0512 (12)0.0600 (13)0.0006 (9)0.0005 (9)0.0018 (10)
C270.0440 (12)0.0853 (17)0.0642 (14)0.0044 (11)0.0073 (10)0.0105 (12)
C280.0580 (14)0.0963 (18)0.0538 (13)0.0041 (12)0.0028 (11)0.0113 (13)
C290.0576 (13)0.0810 (16)0.0606 (14)0.0047 (12)0.0046 (11)0.0085 (12)
C300.0416 (12)0.0733 (15)0.0867 (17)0.0067 (10)0.0029 (11)0.0070 (13)
Geometric parameters (Å, º) top
Cl1—C41.735 (2)C13—H130.9300
Cl2—C191.734 (2)C14—H14A0.9600
O1—C111.354 (2)C14—H14B0.9600
O1—C141.425 (3)C14—H14C0.9600
O2—C151.419 (3)C15—H15A0.9600
O2—C101.364 (2)C15—H15B0.9600
O3—C251.360 (3)C15—H15C0.9600
O3—C291.421 (3)C16—C171.387 (3)
O4—C301.430 (3)C16—C211.388 (3)
O4—C261.358 (2)C17—C181.374 (3)
N1—C71.272 (3)C18—C191.372 (3)
N1—C11.414 (2)C19—C201.366 (3)
N2—C221.262 (3)C20—C211.375 (3)
N2—C161.416 (3)C22—C231.450 (3)
C1—C61.384 (3)C23—C241.395 (3)
C1—C21.389 (3)C23—C281.382 (3)
C2—C31.380 (3)C24—C251.369 (3)
C3—C41.372 (3)C25—C261.414 (3)
C4—C51.368 (3)C26—C271.369 (3)
C5—C61.380 (3)C27—C281.381 (3)
C7—C81.454 (3)C17—H170.9300
C8—C91.398 (3)C18—H180.9300
C8—C131.384 (3)C20—H200.9300
C9—C101.369 (3)C21—H210.9300
C10—C111.412 (3)C22—H220.9300
C11—C121.374 (3)C24—H240.9300
C12—C131.383 (3)C27—H270.9300
C2—H20.9300C28—H280.9300
C3—H30.9300C29—H29A0.9600
C5—H50.9300C29—H29B0.9600
C6—H60.9300C29—H29C0.9600
C7—H70.9300C30—H30A0.9600
C9—H90.9300C30—H30B0.9600
C12—H120.9300C30—H30C0.9600
C11—O1—C14117.62 (17)H15A—C15—H15B109.00
C10—O2—C15117.28 (15)O2—C15—H15A109.00
C25—O3—C29117.64 (16)O2—C15—H15B109.00
C26—O4—C30118.33 (17)N2—C16—C17116.51 (17)
C1—N1—C7119.52 (17)N2—C16—C21125.58 (19)
C16—N2—C22121.01 (18)C17—C16—C21117.89 (19)
N1—C1—C6123.42 (18)C16—C17—C18121.0 (2)
N1—C1—C2117.81 (17)C17—C18—C19119.7 (2)
C2—C1—C6118.70 (18)Cl2—C19—C18119.96 (17)
C1—C2—C3120.48 (19)Cl2—C19—C20119.48 (17)
C2—C3—C4119.6 (2)C18—C19—C20120.6 (2)
C3—C4—C5121.0 (2)C19—C20—C21119.7 (2)
Cl1—C4—C3119.47 (17)C16—C21—C20121.2 (2)
Cl1—C4—C5119.53 (18)N2—C22—C23123.6 (2)
C4—C5—C6119.5 (2)C22—C23—C24120.96 (18)
C1—C6—C5120.8 (2)C22—C23—C28120.6 (2)
N1—C7—C8122.94 (19)C24—C23—C28118.41 (19)
C7—C8—C9120.89 (18)C23—C24—C25121.05 (19)
C7—C8—C13120.26 (19)O3—C25—C24125.80 (19)
C9—C8—C13118.85 (19)O3—C25—C26114.64 (17)
C8—C9—C10120.72 (18)C24—C25—C26119.57 (19)
O2—C10—C11114.53 (17)O4—C26—C25114.67 (18)
O2—C10—C9125.53 (18)O4—C26—C27125.80 (18)
C9—C10—C11119.93 (17)C25—C26—C27119.54 (19)
O1—C11—C10114.68 (18)C26—C27—C28120.1 (2)
O1—C11—C12126.11 (19)C23—C28—C27121.3 (2)
C10—C11—C12119.21 (19)C16—C17—H17119.00
C11—C12—C13120.5 (2)C18—C17—H17119.00
C8—C13—C12120.8 (2)C17—C18—H18120.00
C1—C2—H2120.00C19—C18—H18120.00
C3—C2—H2120.00C19—C20—H20120.00
C2—C3—H3120.00C21—C20—H20120.00
C4—C3—H3120.00C16—C21—H21119.00
C4—C5—H5120.00C20—C21—H21119.00
C6—C5—H5120.00N2—C22—H22118.00
C1—C6—H6120.00C23—C22—H22118.00
C5—C6—H6120.00C23—C24—H24119.00
C8—C7—H7119.00C25—C24—H24119.00
N1—C7—H7119.00C26—C27—H27120.00
C8—C9—H9120.00C28—C27—H27120.00
C10—C9—H9120.00C23—C28—H28119.00
C11—C12—H12120.00C27—C28—H28119.00
C13—C12—H12120.00O3—C29—H29A109.00
C12—C13—H13120.00O3—C29—H29B109.00
C8—C13—H13120.00O3—C29—H29C109.00
O1—C14—H14B109.00H29A—C29—H29B109.00
H14A—C14—H14C109.00H29A—C29—H29C109.00
O1—C14—H14C109.00H29B—C29—H29C109.00
H14A—C14—H14B109.00O4—C30—H30A109.00
O1—C14—H14A109.00O4—C30—H30B109.00
H14B—C14—H14C109.00O4—C30—H30C109.00
O2—C15—H15C109.00H30A—C30—H30B109.00
H15A—C15—H15C109.00H30A—C30—H30C109.00
H15B—C15—H15C109.00H30B—C30—H30C110.00
C14—O1—C11—C10179.1 (2)O2—C10—C11—O12.1 (3)
C14—O1—C11—C121.3 (3)O2—C10—C11—C12178.25 (19)
C15—O2—C10—C93.4 (3)C9—C10—C11—O1178.4 (2)
C15—O2—C10—C11176.1 (2)C9—C10—C11—C121.3 (3)
C29—O3—C25—C26169.99 (18)O1—C11—C12—C13179.5 (2)
C29—O3—C25—C249.7 (3)C10—C11—C12—C130.1 (3)
C30—O4—C26—C25169.27 (18)C11—C12—C13—C80.8 (3)
C30—O4—C26—C2710.8 (3)N2—C16—C17—C18179.24 (19)
C1—N1—C7—C8178.84 (19)C21—C16—C17—C180.7 (3)
C7—N1—C1—C641.7 (3)N2—C16—C21—C20179.1 (2)
C7—N1—C1—C2141.6 (2)C17—C16—C21—C200.6 (3)
C22—N2—C16—C2121.7 (3)C16—C17—C18—C190.5 (3)
C16—N2—C22—C23179.0 (2)C17—C18—C19—Cl2178.91 (17)
C22—N2—C16—C17159.9 (2)C17—C18—C19—C200.3 (3)
N1—C1—C6—C5178.2 (2)Cl2—C19—C20—C21178.95 (17)
C6—C1—C2—C31.9 (3)C18—C19—C20—C210.3 (3)
N1—C1—C2—C3178.78 (19)C19—C20—C21—C160.5 (3)
C2—C1—C6—C51.5 (3)N2—C22—C23—C241.6 (3)
C1—C2—C3—C41.2 (3)N2—C22—C23—C28178.1 (2)
C2—C3—C4—Cl1179.88 (17)C22—C23—C24—C25179.9 (2)
C2—C3—C4—C50.1 (3)C28—C23—C24—C250.4 (3)
Cl1—C4—C5—C6179.46 (17)C22—C23—C28—C27179.6 (2)
C3—C4—C5—C60.3 (3)C24—C23—C28—C270.0 (4)
C4—C5—C6—C10.4 (3)C23—C24—C25—O3179.9 (2)
N1—C7—C8—C93.9 (3)C23—C24—C25—C260.2 (3)
N1—C7—C8—C13175.8 (2)O3—C25—C26—O40.8 (3)
C7—C8—C9—C10179.8 (2)O3—C25—C26—C27179.21 (19)
C9—C8—C13—C120.6 (3)C24—C25—C26—O4179.42 (19)
C13—C8—C9—C100.5 (3)C24—C25—C26—C270.5 (3)
C7—C8—C13—C12179.1 (2)O4—C26—C27—C28179.0 (2)
C8—C9—C10—C111.5 (3)C25—C26—C27—C281.0 (3)
C8—C9—C10—O2178.0 (2)C26—C27—C28—C230.7 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C8–C13 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14B···O3i0.962.523.468 (3)170
C6—H6···Cg3ii0.932.853.602 (2)139
C18—H18···Cg10.932.893.588 (2)133
C21—H21···Cg3iii0.932.883.549 (2)130
C29—H29C···Cg20.962.883.782 (2)157
C30—H30C···Cg1iv0.962.763.613 (2)148
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y1/2, z+1/2; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC15H14ClNO2
Mr275.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.4227 (4), 7.3638 (2), 30.4583 (13)
β (°) 96.080 (2)
V3)2770.60 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.35 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.932, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
20975, 5007, 3456
Rint0.026
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.05
No. of reflections5007
No. of parameters347
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C8–C13 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14B···O3i0.962.523.468 (3)170
C6—H6···Cg3ii0.932.853.602 (2)139
C18—H18···Cg10.932.893.588 (2)133
C21—H21···Cg3iii0.932.883.549 (2)130
C29—H29C···Cg20.962.883.782 (2)157
C30—H30C···Cg1iv0.962.763.613 (2)148
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y1/2, z+1/2; (iv) x+1, y1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDehno Khalaji, A., Asghari, J., Fejfarová, K. & Dušek, M. (2009). Acta Cryst. E65, o253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShang, Z.-H. & Tan, S. (2007). Acta Cryst. E63, o2960–o2961.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds