organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Oxoindolin-3-yl­­idene)-4-[2-(tri­fluoro­meth­yl)phen­yl]thio­semicarbazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 August 2010; accepted 19 August 2010; online 25 August 2010)

In the title compound, C16H11F3N4OS, the dihedral angle between the aromatic ring systems is 69.15 (10)°. Intra­molecular N—H⋯N and N—H⋯O hydrogen bonds generate S(5) and S(6) rings, respectively. A short N—H⋯F contact also occurs. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops. The dimers are linked by N—H⋯F hydrogen bonds, forming polymeric chains propagating in [100]. ππ inter­actions also exist between the centroids of the benzene rings of the 2-oxoindoline group at a distance of 3.543 (3) Å and a short C=O⋯π contact occurs. Two F atoms of the trifluoro­methyl group are disordered over two sets of sites in a 0.517 (8):0.483 (8) ratio.

Related literature

For the synthetic and biological background see: Pervez et al. (2007[Pervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178-1186.], 2008[Pervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I., Khan, K. M. & Yaqub, M. (2008). J. Enz. Inhib. Med. Chem. 23, 848-854.], 2010a[Pervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010a). Lett. Drug Des. Discov. 7, 102-108.]). For a related structure, see: Pervez et al. (2010b[Pervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Cryst. E66, o1018.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11F3N4OS

  • Mr = 364.35

  • Monoclinic, P 21 /c

  • a = 4.5214 (3) Å

  • b = 16.6197 (14) Å

  • c = 21.6111 (18) Å

  • β = 93.241 (3)°

  • V = 1621.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.32 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.970

  • 12183 measured reflections

  • 2886 independent reflections

  • 1920 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.167

  • S = 1.02

  • 2886 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1/C2/C7/N1/C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.03 2.864 (5) 163
N3—H3A⋯O1 0.86 2.09 2.766 (4) 135
N4—H4A⋯F1ii 0.86 2.24 2.998 (5) 147
N4—H4A⋯F2A 0.86 2.39 2.745 (9) 105
N4—H4A⋯N2 0.86 2.16 2.582 (5) 110
C3—H3⋯F3Aiii 0.93 2.48 3.017 (10) 117
C8—O1⋯Cg1iv 1.23 (1) 3.42 (1) 3.835 (5) 100 (1)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y, -z; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our work on the synthesis of biologically important isatin derivatives (Pervez et al., 2007, 2008, 2010a), we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide has been published (Pervez et al., 2010b). The title compound (I) differs from (II) due to the presence of trifluoromethyl instead of fluoro function at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety.

In (I), the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the phenyl ring C (C10—C15) of the trifluoromethylphenyl substituant are almost planar with r. m. s. deviations of 0.0243, 0.0199 and 0.0035 Å, respectively. The dihedral angle between A/B, A/C and B/C is 5.56 (16)°, 69.15 (10)° and 68.08 (11)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), two S(5) and three S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are dimerized (Fig. 2) due to intermolecular H-bonding of N—H···O type with R22(8) ring motifs. There exist CO···π interaction (Table 1). There also exist ππ interactions between the centroids of the rings of 2-oxoindolin at a distance of 3.543 (3) Å. The dimers are interlinked from the ends through N—H···F type of H-bondings. The interlinkage of dimers make one dimensional polymeric chains extending along the a axis. The trifluoromethyl substituant has two F-atoms disordered over two set of sites with occupancy ratio of 0.517 (8):0.483 (8).

Related literature top

For the synthetic and biological background see: Pervez et al. (2007, 2008, 2010a). For a related structure, see: Pervez et al. (2010b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot solution of isatin (0.74 g, 5.0 mmol) in ethanol (10 ml) containing a few drops of glacial acetic acid was added 4-(2-(trifluoromethyl)phenyl)thiosemicarbazide (1.18 g, 5.0 mmol) dissolved in ethanol (10 ml) under stirring. The reaction mixture was then heated under reflux for 2 h. The yellow crystalline solid formed during heating was collected by suction filtration. Thorough washing with hot ethanol followed by ether furnished the target compound in pure form (1.37 g, 83%), m.p. 529 K (d). The dark yellow needle-like crystals of (I) were grown in ethyl acetate by slow evaporation at room temperature.

Refinement top

The trifluoromethyl substituent has two F-atoms disordered. The disordered atoms were treated with equal anisotropic thermal parameters which resulted in the occupancy ratio of 0.517 (8):0.483 (8).

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all other H-atoms.

Structure description top

In continuation of our work on the synthesis of biologically important isatin derivatives (Pervez et al., 2007, 2008, 2010a), we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide has been published (Pervez et al., 2010b). The title compound (I) differs from (II) due to the presence of trifluoromethyl instead of fluoro function at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety.

In (I), the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the phenyl ring C (C10—C15) of the trifluoromethylphenyl substituant are almost planar with r. m. s. deviations of 0.0243, 0.0199 and 0.0035 Å, respectively. The dihedral angle between A/B, A/C and B/C is 5.56 (16)°, 69.15 (10)° and 68.08 (11)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), two S(5) and three S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are dimerized (Fig. 2) due to intermolecular H-bonding of N—H···O type with R22(8) ring motifs. There exist CO···π interaction (Table 1). There also exist ππ interactions between the centroids of the rings of 2-oxoindolin at a distance of 3.543 (3) Å. The dimers are interlinked from the ends through N—H···F type of H-bondings. The interlinkage of dimers make one dimensional polymeric chains extending along the a axis. The trifluoromethyl substituant has two F-atoms disordered over two set of sites with occupancy ratio of 0.517 (8):0.483 (8).

For the synthetic and biological background see: Pervez et al. (2007, 2008, 2010a). For a related structure, see: Pervez et al. (2010b). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form one-dimensional polymeric chains extending along the a axis due to interlinkage of dimers with different ring motifs.
1-(2-Oxoindolin-3-ylidene)-4-[2-(trifluoromethyl)phenyl]thiosemicarbazide top
Crystal data top
C16H11F3N4OSF(000) = 744
Mr = 364.35Dx = 1.493 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1920 reflections
a = 4.5214 (3) Åθ = 2.3–25.1°
b = 16.6197 (14) ŵ = 0.24 mm1
c = 21.6111 (18) ÅT = 296 K
β = 93.241 (3)°Needle, yellow
V = 1621.4 (2) Å30.32 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2886 independent reflections
Radiation source: fine-focus sealed tube1920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8.3 pixels mm-1θmax = 25.1°, θmin = 2.3°
ω scansh = 53
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1919
Tmin = 0.962, Tmax = 0.970l = 2525
12183 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.076P)2 + 1.5855P]
where P = (Fo2 + 2Fc2)/3
2886 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C16H11F3N4OSV = 1621.4 (2) Å3
Mr = 364.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5214 (3) ŵ = 0.24 mm1
b = 16.6197 (14) ÅT = 296 K
c = 21.6111 (18) Å0.32 × 0.14 × 0.12 mm
β = 93.241 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2886 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1920 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.970Rint = 0.042
12183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.02Δρmax = 0.81 e Å3
2886 reflectionsΔρmin = 0.42 e Å3
227 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.1580 (3)0.24551 (7)0.21357 (6)0.0553 (4)
F10.0115 (7)0.0741 (2)0.08290 (15)0.0825 (12)
F2A0.375 (2)0.0318 (5)0.0597 (4)0.0788 (14)0.517 (8)
F3A0.0360 (19)0.0568 (5)0.0737 (4)0.0788 (14)0.517 (8)
O10.4521 (8)0.42453 (18)0.06431 (14)0.0553 (10)
N10.7546 (8)0.4227 (2)0.01834 (16)0.0499 (11)
N20.6597 (8)0.25246 (19)0.07503 (15)0.0416 (11)
N30.4709 (8)0.27331 (19)0.11784 (15)0.0430 (11)
N40.4895 (8)0.14419 (19)0.15100 (16)0.0466 (11)
C10.7346 (9)0.3061 (2)0.03602 (18)0.0394 (12)
C20.9279 (9)0.2941 (3)0.01449 (18)0.0427 (12)
C31.0847 (11)0.2284 (3)0.0344 (2)0.0543 (17)
C41.2404 (12)0.2366 (3)0.0870 (2)0.0645 (17)
C51.2403 (12)0.3090 (4)0.1191 (2)0.0662 (19)
C61.0873 (11)0.3748 (3)0.0996 (2)0.0619 (17)
C70.9314 (10)0.3661 (3)0.04719 (19)0.0458 (14)
C80.6269 (10)0.3914 (3)0.03103 (19)0.0438 (14)
C90.3807 (9)0.2175 (2)0.15997 (17)0.0377 (12)
C100.4371 (9)0.0756 (2)0.18801 (19)0.0428 (14)
C110.2761 (10)0.0108 (3)0.1631 (2)0.0491 (16)
C120.2286 (12)0.0553 (3)0.2002 (3)0.070 (2)
C130.3394 (14)0.0571 (3)0.2602 (3)0.079 (2)
C140.5000 (13)0.0060 (3)0.2843 (3)0.0698 (19)
C150.5497 (11)0.0725 (3)0.2485 (2)0.0558 (17)
C160.1630 (12)0.0110 (3)0.0976 (3)0.0607 (17)
F2B0.361 (2)0.0028 (6)0.0569 (4)0.0788 (14)0.483 (8)
F3B0.057 (2)0.0436 (5)0.0932 (4)0.0788 (14)0.483 (8)
H10.730800.471610.030710.0598*
H41.346920.193160.101200.0768*
H31.085070.180010.012810.0654*
H3A0.405630.321850.119040.0515*
H61.089150.423370.120970.0737*
H120.120210.098780.184080.0849*
H130.305190.101670.284800.0948*
H140.576340.004100.325110.0834*
H150.659440.115410.265210.0668*
H4A0.600460.137900.120330.0558*
H51.346200.312960.154610.0794*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0671 (8)0.0496 (7)0.0511 (7)0.0070 (6)0.0199 (6)0.0021 (5)
F10.086 (2)0.083 (2)0.078 (2)0.0254 (19)0.0001 (17)0.0080 (17)
F2A0.091 (2)0.076 (3)0.070 (2)0.007 (3)0.0103 (16)0.042 (2)
F3A0.091 (2)0.076 (3)0.070 (2)0.007 (3)0.0103 (16)0.042 (2)
O10.078 (2)0.0382 (16)0.0506 (18)0.0052 (16)0.0105 (17)0.0086 (14)
N10.063 (2)0.0381 (19)0.049 (2)0.0037 (17)0.0070 (18)0.0155 (16)
N20.052 (2)0.0348 (18)0.0383 (18)0.0034 (16)0.0060 (16)0.0034 (15)
N30.057 (2)0.0297 (17)0.0429 (19)0.0026 (16)0.0086 (17)0.0053 (14)
N40.064 (2)0.0330 (19)0.045 (2)0.0015 (16)0.0229 (17)0.0028 (15)
C10.049 (2)0.033 (2)0.036 (2)0.0040 (18)0.0003 (18)0.0058 (17)
C20.047 (2)0.042 (2)0.039 (2)0.009 (2)0.0005 (19)0.0043 (18)
C30.066 (3)0.048 (3)0.049 (3)0.009 (2)0.005 (2)0.003 (2)
C40.069 (3)0.068 (3)0.058 (3)0.008 (3)0.017 (3)0.010 (3)
C50.068 (3)0.085 (4)0.047 (3)0.017 (3)0.015 (2)0.003 (3)
C60.067 (3)0.069 (3)0.050 (3)0.015 (3)0.007 (2)0.019 (2)
C70.045 (2)0.051 (3)0.041 (2)0.011 (2)0.0014 (19)0.009 (2)
C80.055 (3)0.036 (2)0.040 (2)0.006 (2)0.002 (2)0.0090 (18)
C90.047 (2)0.032 (2)0.034 (2)0.0045 (18)0.0019 (18)0.0011 (16)
C100.052 (3)0.031 (2)0.047 (2)0.0045 (19)0.016 (2)0.0073 (18)
C110.057 (3)0.032 (2)0.059 (3)0.005 (2)0.010 (2)0.0033 (19)
C120.079 (4)0.033 (3)0.099 (4)0.008 (2)0.003 (3)0.013 (3)
C130.091 (4)0.055 (3)0.093 (4)0.002 (3)0.016 (4)0.038 (3)
C140.087 (4)0.066 (3)0.057 (3)0.007 (3)0.010 (3)0.023 (3)
C150.071 (3)0.047 (3)0.050 (3)0.003 (2)0.010 (2)0.005 (2)
C160.066 (3)0.041 (3)0.075 (3)0.006 (2)0.004 (3)0.007 (2)
F2B0.091 (2)0.076 (3)0.070 (2)0.007 (3)0.0103 (16)0.042 (2)
F3B0.091 (2)0.076 (3)0.070 (2)0.007 (3)0.0103 (16)0.042 (2)
Geometric parameters (Å, º) top
S1—C91.645 (4)C2—C71.390 (7)
F1—C161.340 (6)C3—C41.377 (7)
F2A—C161.341 (11)C4—C51.389 (8)
F2B—C161.310 (11)C5—C61.373 (8)
F3A—C161.354 (10)C6—C71.375 (6)
F3B—C161.346 (10)C10—C151.377 (6)
O1—C81.229 (6)C10—C111.391 (6)
N1—C81.346 (6)C11—C121.384 (7)
N1—C71.403 (6)C11—C161.478 (8)
N2—C11.286 (5)C12—C131.364 (9)
N2—N31.339 (5)C13—C141.362 (8)
N3—C91.378 (5)C14—C151.375 (7)
N4—C101.420 (5)C3—H30.9300
N4—C91.332 (5)C4—H40.9300
N1—H10.8600C5—H50.9300
N3—H3A0.8600C6—H60.9300
N4—H4A0.8600C12—H120.9300
C1—C21.450 (6)C13—H130.9300
C1—C81.501 (6)C14—H140.9300
C2—C31.384 (7)C15—H150.9300
C7—N1—C8112.0 (4)C10—C11—C12119.0 (4)
N3—N2—C1118.4 (3)C10—C11—C16120.9 (4)
N2—N3—C9120.4 (3)C11—C12—C13120.5 (5)
C9—N4—C10125.3 (3)C12—C13—C14120.4 (5)
C8—N1—H1124.00C13—C14—C15120.3 (6)
C7—N1—H1124.00C10—C15—C14120.1 (5)
N2—N3—H3A120.00F1—C16—C11113.3 (5)
C9—N3—H3A120.00F1—C16—F2B113.2 (6)
C10—N4—H4A117.00F2B—C16—C11115.5 (6)
C9—N4—H4A117.00F3B—C16—C11106.3 (6)
N2—C1—C8127.3 (4)F2B—C16—F3B111.4 (7)
N2—C1—C2126.2 (4)F1—C16—F3B95.1 (5)
C2—C1—C8106.4 (3)F2A—C16—F3A106.5 (7)
C1—C2—C7106.8 (4)F2A—C16—C11111.4 (6)
C1—C2—C3133.1 (4)F3A—C16—C11118.7 (6)
C3—C2—C7120.0 (4)F1—C16—F2A94.9 (5)
C2—C3—C4118.3 (4)F1—C16—F3A109.3 (6)
C3—C4—C5120.8 (5)C2—C3—H3121.00
C4—C5—C6121.5 (4)C4—C3—H3121.00
C5—C6—C7117.4 (5)C3—C4—H4120.00
N1—C7—C2109.2 (4)C5—C4—H4120.00
N1—C7—C6128.8 (4)C4—C5—H5119.00
C2—C7—C6122.0 (4)C6—C5—H5119.00
O1—C8—C1126.7 (4)C5—C6—H6121.00
N1—C8—C1105.7 (4)C7—C6—H6121.00
O1—C8—N1127.6 (4)C11—C12—H12120.00
S1—C9—N4127.4 (3)C13—C12—H12120.00
S1—C9—N3119.4 (3)C12—C13—H13120.00
N3—C9—N4113.2 (3)C14—C13—H13120.00
N4—C10—C15120.0 (4)C13—C14—H14120.00
N4—C10—C11120.3 (4)C15—C14—H14120.00
C11—C10—C15119.7 (4)C10—C15—H15120.00
C12—C11—C16120.0 (5)C14—C15—H15120.00
C8—N1—C7—C21.7 (5)C3—C2—C7—N1179.4 (4)
C8—N1—C7—C6177.6 (5)C3—C2—C7—C60.1 (7)
C7—N1—C8—O1177.0 (4)C2—C3—C4—C50.1 (7)
C7—N1—C8—C11.2 (5)C3—C4—C5—C60.3 (8)
C1—N2—N3—C9179.0 (4)C4—C5—C6—C70.6 (7)
N3—N2—C1—C2178.0 (4)C5—C6—C7—N1178.8 (5)
N3—N2—C1—C82.0 (6)C5—C6—C7—C20.4 (7)
N2—N3—C9—S1177.9 (3)N4—C10—C11—C12179.9 (4)
N2—N3—C9—N42.7 (5)N4—C10—C11—C161.5 (6)
C10—N4—C9—S11.6 (6)C15—C10—C11—C121.0 (7)
C10—N4—C9—N3178.9 (4)C15—C10—C11—C16177.5 (4)
C9—N4—C10—C11113.7 (5)N4—C10—C15—C14179.8 (4)
C9—N4—C10—C1567.3 (6)C11—C10—C15—C140.8 (7)
N2—C1—C2—C31.7 (8)C10—C11—C12—C130.4 (8)
N2—C1—C2—C7176.0 (4)C16—C11—C12—C13178.1 (5)
C8—C1—C2—C3178.3 (5)C10—C11—C16—F156.9 (6)
C8—C1—C2—C70.7 (5)C10—C11—C16—F2A48.7 (7)
N2—C1—C8—O11.3 (7)C10—C11—C16—F3A172.9 (6)
N2—C1—C8—N1176.9 (4)C12—C11—C16—F1124.6 (5)
C2—C1—C8—O1177.9 (4)C12—C11—C16—F2A129.8 (6)
C2—C1—C8—N10.3 (5)C12—C11—C16—F3A5.6 (8)
C1—C2—C3—C4177.1 (5)C11—C12—C13—C140.4 (9)
C7—C2—C3—C40.3 (7)C12—C13—C14—C150.6 (9)
C1—C2—C7—N11.4 (5)C13—C14—C15—C100.0 (8)
C1—C2—C7—C6177.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1/C2/C7/N1/C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.864 (5)163
N3—H3A···O10.862.092.766 (4)135
N4—H4A···F1ii0.862.242.998 (5)147
N4—H4A···F2A0.862.392.745 (9)105
N4—H4A···N20.862.162.582 (5)110
C3—H3···F3Aiii0.932.483.017 (10)117
C8—O1···Cg1iv1.23 (1)3.42 (1)3.835 (5)100 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H11F3N4OS
Mr364.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.5214 (3), 16.6197 (14), 21.6111 (18)
β (°) 93.241 (3)
V3)1621.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.32 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.962, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
12183, 2886, 1920
Rint0.042
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.167, 1.02
No. of reflections2886
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1/C2/C7/N1/C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.864 (5)163
N3—H3A···O10.862.092.766 (4)135
N4—H4A···F1ii0.862.242.998 (5)147
N4—H4A···F2A0.862.392.745 (9)105
N4—H4A···N20.862.162.582 (5)110
C3—H3···F3Aiii0.932.483.017 (10)117
C8—O1···Cg1iv1.229 (6)3.424 (4)3.835 (5)100.1 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x1, y, z.
 

Acknowledgements

MR, HP and MY thank the Ministry of Science & Technology (MoST), Government of Pakistan, for partial financial assistance under the Projects for the Strengthening of S&T Education in Universities (Project No. P&D/ S&T/2001/231).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178–1186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I., Khan, K. M. & Yaqub, M. (2008). J. Enz. Inhib. Med. Chem. 23, 848–854.  Web of Science CrossRef CAS Google Scholar
First citationPervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010a). Lett. Drug Des. Discov. 7, 102–108.  CrossRef CAS Google Scholar
First citationPervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Cryst. E66, o1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds