organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(1,3-Di­thio­lan-2-yl)meth­yl]-8-nitro-6-propyl-1,2,3,5,6,7-hexa­hydro­imidazo[1,2-c]pyrimidine

aShandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, People's Republic of China, and bSchool of Sciences, University of Jinan, People's Republic of China
*Correspondence e-mail: chm_tianzz@ujn.edu.cn

(Received 19 August 2010; accepted 21 August 2010; online 28 August 2010)

In the title compound, C13H22N4O2S2, the six-membered ring displays a half-chair conformation. The olefin amine unit is close to being coplanar with the imidazolidine ring (r.m.s. deviation = 0.059 Å). The dithiol­ane ring adopts a twisted conformation. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions.

Related literature

For related structures, see Tian et al. (2010[Tian, Z., Dong, H., Li, D. & Wang, G. (2010). Acta Cryst. E66, o2330.]); Li et al. (2010[Li, D., Tian, Z., Wang, G., Wei, P. & Zhang, Y. (2010). Acta Cryst. E66, o2216.]). For background to neonicotinoid insecticides, see Mori et al. (2001[Mori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2001). Pest. Manage. Sci. 46, 40-46.]); Ohno et al. (2009[Ohno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476-482.]); Jeschke et al. (2008[Jeschke, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084-1098.]); Kagabu (1997[Kagabu, S. (1997). Rev. Toxicol. 1, 75-129.]); Tian et al. (2007[Tian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288-2292.]).

[Scheme 1]

Experimental

Crystal data
  • C13H22N4O2S2

  • Mr = 330.47

  • Monoclinic, P 21 /c

  • a = 11.9680 (3) Å

  • b = 13.6304 (3) Å

  • c = 10.8866 (3) Å

  • β = 115.465 (3)°

  • V = 1603.38 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.45 × 0.41 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 1.0

  • 13404 measured reflections

  • 3256 independent reflections

  • 2486 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.04

  • 3256 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.97 2.48 3.322 (2) 145
C3—H3B⋯O1ii 0.97 2.56 3.269 (2) 130
C4—H4A⋯O2i 0.97 2.52 3.449 (2) 160
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Neonicotinoid inseticides have become an important chemical class of insecticides (Ohno et al., 2009 and Jeschke et al., 2008). We have synthesized a series of new compounds by introducing sulfur atoms into the lead struture to improve the lipid solubility of neonicotinoids insecticides. in which the title compound exhibited moderate insecticidal activities against pea aphids.

The structure of the title compound is shown in Fig. 1 with the atom-numbering scheme. The title compound is homolog of 1-[(1,3-Dithiolan-2-yl)methyl]-6-methyl- 8-nitro-1,2,3,5,6,7-hexahydroimidazo- [1,2-c]pyrimidine (Tian et al., 2010). The six-membered ring displays an half-chair conformation. The olefin-amine moity is close to being coplanar with imidazolidine ring. The dithiolane is in a twisted conformation [C9—C10—S1 = 110.31 (13)° and C9—S2—C8 = 94.61 (8)°]. The packing of the molecules is mainly stabilized by C—H···O interactions (Table 1).

Related literature top

For related structures, see Tian et al. (2010); Li et al. (2010). For background to neonicotinoid insecticides, see Mori et al. (2001); Ohno et al. (2009); Jeschke et al. (2008); Kagabu (1997); Tian et al. (2007).

Experimental top

A mixture of 1-((1,3-dithiolan-2-yl)methyl)-2-(nitromethylene)imidazolidine (0.75 mmol), formaldehyde (1.6 mmol, in the form of 35% aqueous solution), and propylamine (0.83 mmol) in ethanol (5 ml) was stirred overnight. The solution thus obtained was concentrated under vacuum and further purified by flash chromatography to give the desired product. Colourless prisms of (I) were obtained by slow evaporation of a solution of dichloromethane and ethyl acetate of the title compound.

Refinement top

All H atoms were placed in their calculated positions and then refined using riding model with C—H = 0.96–0.98 Å, Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

Neonicotinoid inseticides have become an important chemical class of insecticides (Ohno et al., 2009 and Jeschke et al., 2008). We have synthesized a series of new compounds by introducing sulfur atoms into the lead struture to improve the lipid solubility of neonicotinoids insecticides. in which the title compound exhibited moderate insecticidal activities against pea aphids.

The structure of the title compound is shown in Fig. 1 with the atom-numbering scheme. The title compound is homolog of 1-[(1,3-Dithiolan-2-yl)methyl]-6-methyl- 8-nitro-1,2,3,5,6,7-hexahydroimidazo- [1,2-c]pyrimidine (Tian et al., 2010). The six-membered ring displays an half-chair conformation. The olefin-amine moity is close to being coplanar with imidazolidine ring. The dithiolane is in a twisted conformation [C9—C10—S1 = 110.31 (13)° and C9—S2—C8 = 94.61 (8)°]. The packing of the molecules is mainly stabilized by C—H···O interactions (Table 1).

For related structures, see Tian et al. (2010); Li et al. (2010). For background to neonicotinoid insecticides, see Mori et al. (2001); Ohno et al. (2009); Jeschke et al. (2008); Kagabu (1997); Tian et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. The H atoms are shown as spheres of arbitrary size.
1-[(1,3-Dithiolan-2-yl)methyl]-8-nitro-6-propyl-1,2,3,5,6,7- hexahydroimidazo[1,2-c]pyrimidine top
Crystal data top
C13H22N4O2S2F(000) = 704
Mr = 330.47Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 7164 reflections
a = 11.9680 (3) Åθ = 3.3–28.9°
b = 13.6304 (3) ŵ = 0.34 mm1
c = 10.8866 (3) ÅT = 293 K
β = 115.465 (3)°Prism, colourless
V = 1603.38 (8) Å30.45 × 0.41 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3256 independent reflections
Radiation source: fine-focus sealed tube2486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.0355 pixels mm-1θmax = 26.4°, θmin = 3.5°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1717
Tmin = 0.917, Tmax = 1.0l = 1313
13404 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0605P)2]
where P = (Fo2 + 2Fc2)/3
3256 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H22N4O2S2V = 1603.38 (8) Å3
Mr = 330.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9680 (3) ŵ = 0.34 mm1
b = 13.6304 (3) ÅT = 293 K
c = 10.8866 (3) Å0.45 × 0.41 × 0.26 mm
β = 115.465 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3256 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2486 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 1.0Rint = 0.024
13404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3256 reflectionsΔρmin = 0.16 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21596 (14)0.03042 (13)0.24992 (18)0.0490 (4)
H1A0.15840.01700.15650.059*
H1B0.19370.01100.30830.059*
C20.30273 (15)0.15638 (14)0.41120 (18)0.0527 (4)
H2A0.29600.11510.48030.063*
H2B0.29490.22420.43360.063*
C30.52500 (16)0.21274 (12)0.46180 (18)0.0488 (4)
H3B0.55170.22620.55780.059*
H3A0.50150.27370.41120.059*
C40.62423 (15)0.15974 (12)0.43666 (18)0.0489 (4)
H4A0.66090.20280.39310.059*
H4B0.68890.13600.52140.059*
C50.44343 (13)0.07042 (11)0.34006 (14)0.0358 (3)
C60.34568 (13)0.00437 (12)0.26942 (15)0.0392 (4)
C70.58540 (13)0.05456 (12)0.23001 (15)0.0389 (4)
H7B0.60830.11490.19930.047*
H7A0.51030.03030.15630.047*
C80.68837 (13)0.02085 (12)0.25948 (15)0.0372 (3)
H80.66260.08270.28550.045*
C90.88413 (18)0.07980 (17)0.2809 (2)0.0653 (6)
H9A0.84000.14170.25520.078*
H9B0.97210.09360.32660.078*
C100.85620 (19)0.01841 (19)0.1568 (2)0.0737 (6)
H10B0.92060.03040.17650.088*
H10A0.85480.05970.08360.088*
C110.19972 (16)0.19983 (15)0.17239 (19)0.0577 (5)
H11A0.25780.17710.13820.069*
H11B0.22560.26470.21060.069*
C120.07252 (19)0.20656 (19)0.0556 (2)0.0789 (7)
H12B0.07850.24070.01950.095*
H12A0.04220.14090.02500.095*
C130.01760 (19)0.25861 (18)0.0930 (3)0.0896 (8)
H13B0.09830.25610.01810.134*
H13C0.00730.32580.11400.134*
H13A0.02000.22760.17090.134*
N10.55919 (10)0.07677 (9)0.34598 (13)0.0372 (3)
N20.42417 (11)0.14173 (10)0.41168 (13)0.0436 (3)
N30.20390 (12)0.13306 (11)0.28063 (14)0.0472 (4)
N40.36386 (12)0.08788 (10)0.23411 (14)0.0439 (3)
O10.46924 (10)0.12073 (8)0.25825 (12)0.0487 (3)
O20.26936 (11)0.14243 (10)0.17994 (15)0.0678 (4)
S10.70823 (4)0.04188 (4)0.10432 (4)0.05415 (16)
S20.83629 (3)0.01316 (4)0.39184 (4)0.04712 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (9)0.0547 (11)0.0542 (11)0.0003 (8)0.0230 (8)0.0050 (8)
C20.0557 (10)0.0621 (11)0.0483 (10)0.0097 (9)0.0299 (8)0.0015 (9)
C30.0617 (10)0.0354 (8)0.0463 (9)0.0014 (8)0.0205 (8)0.0012 (8)
C40.0462 (9)0.0384 (9)0.0531 (10)0.0057 (7)0.0128 (8)0.0025 (8)
C50.0377 (8)0.0368 (8)0.0319 (7)0.0036 (6)0.0140 (6)0.0059 (6)
C60.0372 (8)0.0417 (9)0.0399 (8)0.0011 (7)0.0177 (7)0.0014 (7)
C70.0335 (8)0.0478 (9)0.0336 (8)0.0014 (7)0.0128 (6)0.0087 (7)
C80.0336 (7)0.0456 (9)0.0331 (7)0.0021 (7)0.0150 (6)0.0033 (7)
C90.0534 (11)0.0806 (14)0.0620 (12)0.0236 (10)0.0249 (9)0.0013 (11)
C100.0649 (13)0.1042 (17)0.0659 (13)0.0218 (12)0.0414 (11)0.0039 (12)
C110.0521 (10)0.0646 (12)0.0598 (11)0.0118 (9)0.0273 (9)0.0205 (10)
C120.0761 (14)0.0835 (16)0.0628 (13)0.0131 (12)0.0162 (11)0.0208 (12)
C130.0573 (12)0.0760 (16)0.122 (2)0.0094 (11)0.0252 (13)0.0350 (15)
N10.0340 (6)0.0366 (7)0.0393 (7)0.0021 (5)0.0143 (5)0.0013 (6)
N20.0453 (7)0.0432 (8)0.0427 (8)0.0025 (6)0.0194 (6)0.0047 (6)
N30.0445 (7)0.0536 (9)0.0483 (8)0.0105 (6)0.0246 (6)0.0094 (7)
N40.0429 (7)0.0457 (8)0.0447 (8)0.0073 (6)0.0203 (6)0.0049 (6)
O10.0441 (6)0.0443 (6)0.0623 (8)0.0003 (5)0.0273 (5)0.0079 (6)
O20.0505 (7)0.0591 (8)0.0897 (10)0.0204 (6)0.0263 (7)0.0248 (7)
S10.0480 (3)0.0784 (4)0.0390 (2)0.0091 (2)0.02147 (19)0.0101 (2)
S20.0341 (2)0.0642 (3)0.0365 (2)0.00106 (18)0.00896 (16)0.00165 (19)
Geometric parameters (Å, º) top
C1—H1A0.9700C8—H80.9800
C1—H1B0.9700C8—S11.8268 (15)
C1—C61.516 (2)C8—S21.7976 (15)
C1—N31.460 (2)C9—H9A0.9700
C2—H2A0.9700C9—H9B0.9700
C2—H2B0.9700C9—C101.499 (3)
C2—N21.465 (2)C9—S21.791 (2)
C2—N31.440 (2)C10—H10B0.9700
C3—H3B0.9700C10—H10A0.9700
C3—H3A0.9700C10—S11.8078 (19)
C3—C41.512 (2)C11—H11A0.9700
C3—N21.458 (2)C11—H11B0.9700
C4—H4A0.9700C11—C121.509 (3)
C4—H4B0.9700C11—N31.473 (2)
C4—N11.483 (2)C12—H12B0.9700
C5—C61.413 (2)C12—H12A0.9700
C5—N11.3617 (18)C12—C131.486 (3)
C5—N21.3269 (19)C13—H13B0.9600
C6—N41.359 (2)C13—H13C0.9600
C7—H7B0.9700C13—H13A0.9600
C7—H7A0.9700N4—O11.2550 (16)
C7—C81.529 (2)N4—O21.2674 (16)
C7—N11.4576 (19)
C1—N3—C11112.44 (14)C12—C13—H13A109.5
H1A—C1—H1B107.8H12B—C12—H12A107.8
C2—N3—C1108.50 (13)C13—C12—C11112.7 (2)
C2—N3—C11112.60 (14)C13—C12—H12B109.0
H2A—C2—H2B108.0C13—C12—H12A109.0
C3—C4—H4A110.8H13B—C13—H13C109.5
C3—C4—H4B110.8H13B—C13—H13A109.5
C3—N2—C2124.84 (14)H13C—C13—H13A109.5
H3B—C3—H3A109.3N1—C4—C3104.87 (12)
C4—C3—H3B111.4N1—C4—H4A110.8
C4—C3—H3A111.4N1—C4—H4B110.8
H4A—C4—H4B108.8N1—C5—C6130.82 (14)
C5—C6—C1119.04 (14)N1—C7—H7B108.7
C5—N1—C4108.19 (12)N1—C7—H7A108.7
C5—N1—C7122.63 (12)N1—C7—C8114.33 (12)
C5—N2—C2121.37 (13)N2—C2—H2A109.3
C5—N2—C3112.42 (13)N2—C2—H2B109.3
C6—C1—H1A109.0N2—C3—H3B111.4
C6—C1—H1B109.0N2—C3—H3A111.4
C7—C8—H8108.3N2—C3—C4101.72 (13)
C7—C8—S1108.97 (10)N2—C5—C6118.30 (13)
C7—C8—S2114.96 (11)N2—C5—N1110.84 (13)
C7—N1—C4119.23 (13)N3—C1—H1A109.0
H7B—C7—H7A107.6N3—C1—H1B109.0
C8—C7—H7B108.7N3—C1—C6112.87 (13)
C8—C7—H7A108.7N3—C2—H2A109.3
C9—C10—H10B109.6N3—C2—H2B109.3
C9—C10—H10A109.6N3—C2—N2111.46 (13)
C9—C10—S1110.31 (13)N3—C11—H11A109.0
C9—S2—C894.61 (8)N3—C11—H11B109.0
H9A—C9—H9B108.4N3—C11—C12112.74 (16)
C10—C9—H9A110.1N4—C6—C1117.12 (13)
C10—C9—H9B110.1N4—C6—C5123.19 (13)
C10—C9—S2108.21 (15)O1—N4—C6122.64 (13)
C10—S1—C897.79 (9)O1—N4—O2120.23 (13)
H10B—C10—H10A108.1O2—N4—C6117.06 (13)
C11—C12—H12B109.0S1—C8—H8108.3
C11—C12—H12A109.0S1—C10—H10B109.6
H11A—C11—H11B107.8S1—C10—H10A109.6
C12—C11—H11A109.0S2—C8—H8108.3
C12—C11—H11B109.0S2—C8—S1107.87 (8)
C12—C13—H13B109.5S2—C9—H9A110.1
C12—C13—H13C109.5S2—C9—H9B110.1
C1—C6—N4—O1172.73 (14)N1—C5—C6—C1163.47 (15)
C1—C6—N4—O24.3 (2)N1—C5—C6—N426.1 (3)
C3—C4—N1—C510.33 (17)N1—C5—N2—C2174.29 (13)
C3—C4—N1—C7136.21 (14)N1—C5—N2—C37.03 (18)
C4—C3—N2—C2179.65 (14)N1—C7—C8—S1179.15 (10)
C4—C3—N2—C512.91 (17)N1—C7—C8—S259.67 (16)
C5—C6—N4—O12.1 (2)N2—C2—N3—C159.98 (18)
C5—C6—N4—O2174.92 (14)N2—C2—N3—C1165.14 (19)
C6—C1—N3—C249.56 (18)N2—C3—C4—N113.31 (16)
C6—C1—N3—C1175.65 (17)N2—C5—C6—C114.4 (2)
C6—C5—N1—C4179.54 (15)N2—C5—C6—N4156.09 (15)
C6—C5—N1—C735.3 (2)N2—C5—N1—C42.50 (17)
C6—C5—N2—C24.0 (2)N2—C5—N1—C7142.66 (14)
C6—C5—N2—C3171.22 (13)N3—C1—C6—C513.5 (2)
C7—C8—S1—C10109.21 (13)N3—C1—C6—N4175.50 (14)
C7—C8—S2—C986.58 (13)N3—C2—N2—C3131.22 (16)
C8—C7—N1—C491.93 (16)N3—C2—N2—C534.4 (2)
C8—C7—N1—C5126.53 (15)N3—C11—C12—C1369.8 (2)
C9—C10—S1—C814.29 (18)S1—C8—S2—C935.20 (11)
C10—C9—S2—C846.45 (16)S2—C8—S1—C1016.21 (11)
C12—C11—N3—C182.0 (2)S2—C9—C10—S140.3 (2)
C12—C11—N3—C2155.08 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.972.483.322 (2)145
C3—H3B···O1ii0.972.563.269 (2)130
C4—H4A···O2i0.972.523.449 (2)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H22N4O2S2
Mr330.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.9680 (3), 13.6304 (3), 10.8866 (3)
β (°) 115.465 (3)
V3)1603.38 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.45 × 0.41 × 0.26
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.917, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
13404, 3256, 2486
Rint0.024
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.04
No. of reflections3256
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.972.483.322 (2)145
C3—H3B···O1ii0.972.563.269 (2)130
C4—H4A···O2i0.972.523.449 (2)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant 20902037) and the Doctoral Foundation of University of Jinan (B0542) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJeschke, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084–1098.  Web of Science CrossRef CAS Google Scholar
First citationKagabu, S. (1997). Rev. Toxicol. 1, 75–129.  CAS Google Scholar
First citationLi, D., Tian, Z., Wang, G., Wei, P. & Zhang, Y. (2010). Acta Cryst. E66, o2216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2001). Pest. Manage. Sci. 46, 40–46.  Google Scholar
First citationOhno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476–482.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z., Dong, H., Li, D. & Wang, G. (2010). Acta Cryst. E66, o2330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288–2292.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds