metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­­[(N-ethyl­pyrimidin-2-amine)­copper(II)](CuCu)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 August 2010; accepted 23 August 2010; online 28 August 2010)

In the centrosymmetric title mol­ecule, [Cu2(CH3COO)4(C6H9N3)2], each of the four acetate groups bridges a pair of CuII atoms [Cu—Cu = 2.6540 (4) Å]. The distorted octa­hedral geometry of the metal atom is completed by an N-donor atom of the N-ethyl­pyrimidin-2-amine ligand: an intra­molecular N—H⋯O hydrogen links its N—H group to an acetate carboxyl­ate O atom. In the crystal, C—H⋯O inter­actions link the mol­ecules into a supra­molecular chain along the b axis.

Related literature

For related examples of tetra­kis­acetato­bis­[(substituted 2-amino­pyrid­yl)copper(II)] complexes, see: Fairuz et al. (2010a[Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, m1049-m1050.],b[Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, m1077-m1078.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C6H9N3)2]

  • Mr = 609.58

  • Triclinic, [P \overline 1]

  • a = 7.8488 (6) Å

  • b = 8.5114 (7) Å

  • c = 10.2999 (8) Å

  • α = 98.404 (1)°

  • β = 92.698 (1)°

  • γ = 105.599 (1)°

  • V = 652.92 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.613, Tmax = 0.746

  • 6208 measured reflections

  • 2969 independent reflections

  • 2669 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.080

  • S = 1.02

  • 2969 reflections

  • 170 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O1 1.978 (2)
Cu—O2i 1.963 (2)
Cu—O3 1.955 (1)
Cu—O4i 1.953 (1)
Cu—N1 2.246 (2)
Cu—Cui 2.6540 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.85 (1) 2.04 (1) 2.871 (2) 164 (2)
C4—H4a⋯O3ii 0.96 2.51 3.458 (3) 171
Symmetry code: (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of on-going structural studies of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes (Fairuz et al., 2010a, 2010b), the title complex, (I), was investigated.

The binuclear copper(II) complex, Fig. 1, is situated about a centre of inversion and features two Cu atoms bridged by four acetate groups. The Cu–O bond distances lie in a narrow range of 1.953 (1) to 1.978 (2) Å, Table 1. The coordination environment for each Cu atom is completed by an N atom derived from the N-ethylpyrimidin-2-amine ligand and the second Cu atom [Cu···Cui = 2.6540 (4) Å for i: 1 - x, 1 - y, 1 - z]. The resulting hexa-coordinated geometry is based on an octahedron. An intramolecular N3–H···O1 interaction contributes to the stability of the dinuclear molecule, Table 2. The N-heterocycle is effectively planar as seen in the C8–N3–C9–C10 torsion angle of -166.6 (2) °. In the crystal packing, the presence of C–H···O interactions connect dinuclear molecules into supramolecular chains along the b axis, Fig. 2 and Table 2.

Related literature top

For related examples of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Fairuz et al. (2010a,b).

Experimental top

Copper acetate (0.1 g, 0.5 mmol) was dissolved in acetonitrile (15 ml) and mixed with a solution of N-(pyrimidin-2-yl)ethylamine (0.2 g, 1.1 mmol) dissolved in acetonitrile (15 ml). The blue precipitate that formed was recrystallized from acetonitrile to yield blue prisms of (I).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atom was located in a difference Fourier map and was refined with a distance restraint of N–H 0.86±0.01 Å; the Uiso value was freely refined

Structure description top

In continuation of on-going structural studies of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes (Fairuz et al., 2010a, 2010b), the title complex, (I), was investigated.

The binuclear copper(II) complex, Fig. 1, is situated about a centre of inversion and features two Cu atoms bridged by four acetate groups. The Cu–O bond distances lie in a narrow range of 1.953 (1) to 1.978 (2) Å, Table 1. The coordination environment for each Cu atom is completed by an N atom derived from the N-ethylpyrimidin-2-amine ligand and the second Cu atom [Cu···Cui = 2.6540 (4) Å for i: 1 - x, 1 - y, 1 - z]. The resulting hexa-coordinated geometry is based on an octahedron. An intramolecular N3–H···O1 interaction contributes to the stability of the dinuclear molecule, Table 2. The N-heterocycle is effectively planar as seen in the C8–N3–C9–C10 torsion angle of -166.6 (2) °. In the crystal packing, the presence of C–H···O interactions connect dinuclear molecules into supramolecular chains along the b axis, Fig. 2 and Table 2.

For related examples of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Fairuz et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level. Primed atoms are related by the symmetry operation i: 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Supramolecular chain along the b axis in (I) mediated by C–H···O contacts shown as orange dashed lines.
Tetra-µ-acetato-κ8O:O'-bis[(N-ethylpyrimidin-2- amine)copper(II)](CuCu) top
Crystal data top
[Cu2(C2H3O2)4(C6H9N3)2]Z = 1
Mr = 609.58F(000) = 314
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8488 (6) ÅCell parameters from 3508 reflections
b = 8.5114 (7) Åθ = 2.5–28.2°
c = 10.2999 (8) ŵ = 1.68 mm1
α = 98.404 (1)°T = 293 K
β = 92.698 (1)°Prism, blue
γ = 105.599 (1)°0.40 × 0.35 × 0.10 mm
V = 652.92 (9) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2969 independent reflections
Radiation source: fine-focus sealed tube2669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.613, Tmax = 0.746k = 1111
6208 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1167P]
where P = (Fo2 + 2Fc2)/3
2969 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
[Cu2(C2H3O2)4(C6H9N3)2]γ = 105.599 (1)°
Mr = 609.58V = 652.92 (9) Å3
Triclinic, P1Z = 1
a = 7.8488 (6) ÅMo Kα radiation
b = 8.5114 (7) ŵ = 1.68 mm1
c = 10.2999 (8) ÅT = 293 K
α = 98.404 (1)°0.40 × 0.35 × 0.10 mm
β = 92.698 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2969 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2669 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.746Rint = 0.018
6208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0261 restraint
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
2969 reflectionsΔρmin = 0.25 e Å3
170 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.60458 (3)0.58733 (2)0.42299 (2)0.02818 (9)
O10.3830 (2)0.5272 (2)0.30471 (15)0.0479 (4)
O20.2102 (2)0.3821 (2)0.43330 (16)0.0491 (4)
O30.5310 (2)0.77124 (17)0.51727 (16)0.0474 (4)
O40.3551 (2)0.62484 (18)0.64537 (16)0.0473 (4)
N10.7898 (2)0.7417 (2)0.30101 (17)0.0328 (3)
N20.8689 (3)0.8709 (2)0.11294 (19)0.0473 (4)
N30.5862 (3)0.7135 (2)0.12539 (18)0.0435 (4)
H30.513 (3)0.648 (2)0.165 (2)0.048 (7)*
C10.2361 (3)0.4432 (2)0.3307 (2)0.0364 (4)
C20.0792 (3)0.4133 (4)0.2317 (3)0.0585 (7)
H2A0.09170.50810.18890.088*
H2B0.02770.39460.27580.088*
H2C0.07360.31800.16720.088*
C30.4244 (3)0.7560 (2)0.6037 (2)0.0361 (4)
C40.3760 (4)0.9086 (3)0.6633 (3)0.0595 (7)
H4A0.39910.98800.60440.089*
H4B0.44570.95520.74590.089*
H4C0.25220.87990.67750.089*
C50.9529 (3)0.8135 (3)0.3561 (2)0.0497 (6)
H50.98360.79260.43890.060*
C61.0798 (3)0.9180 (4)0.2965 (3)0.0650 (8)
H61.19280.97060.33810.078*
C71.0308 (3)0.9397 (3)0.1740 (3)0.0566 (6)
H71.11511.00640.13020.068*
C80.7529 (3)0.7767 (2)0.18107 (19)0.0342 (4)
C90.5238 (4)0.7487 (3)0.0013 (2)0.0564 (6)
H9A0.57160.69220.07070.068*
H9B0.56450.86660.00000.068*
C100.3254 (4)0.6923 (4)0.0163 (3)0.0754 (9)
H10A0.28480.71360.09960.113*
H10B0.27850.75130.05340.113*
H10C0.28550.57590.01400.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02719 (13)0.02865 (14)0.02816 (14)0.00393 (9)0.00634 (9)0.00911 (9)
O10.0309 (7)0.0684 (10)0.0392 (8)0.0011 (7)0.0011 (6)0.0225 (7)
O20.0326 (7)0.0646 (10)0.0454 (9)0.0021 (7)0.0016 (6)0.0253 (8)
O30.0602 (10)0.0330 (7)0.0548 (10)0.0145 (7)0.0295 (8)0.0149 (7)
O40.0601 (10)0.0336 (7)0.0526 (9)0.0139 (7)0.0292 (8)0.0122 (7)
N10.0319 (8)0.0309 (8)0.0339 (8)0.0039 (6)0.0071 (6)0.0077 (6)
N20.0493 (11)0.0492 (10)0.0452 (10)0.0069 (8)0.0209 (9)0.0206 (9)
N30.0444 (10)0.0495 (10)0.0344 (9)0.0033 (8)0.0042 (8)0.0178 (8)
C10.0308 (9)0.0396 (10)0.0367 (10)0.0061 (8)0.0001 (8)0.0081 (8)
C20.0364 (11)0.0801 (18)0.0541 (15)0.0041 (11)0.0089 (10)0.0223 (13)
C30.0414 (10)0.0314 (9)0.0367 (10)0.0108 (8)0.0080 (8)0.0068 (8)
C40.0823 (18)0.0381 (12)0.0678 (17)0.0253 (12)0.0358 (14)0.0144 (11)
C50.0410 (12)0.0578 (14)0.0434 (12)0.0030 (10)0.0060 (10)0.0171 (11)
C60.0387 (12)0.0742 (18)0.0664 (18)0.0164 (12)0.0095 (12)0.0203 (14)
C70.0510 (14)0.0589 (15)0.0581 (15)0.0006 (11)0.0247 (12)0.0254 (12)
C80.0419 (11)0.0298 (9)0.0325 (10)0.0094 (8)0.0137 (8)0.0080 (7)
C90.0632 (16)0.0740 (17)0.0362 (12)0.0191 (13)0.0054 (11)0.0222 (11)
C100.0622 (17)0.116 (3)0.0530 (16)0.0251 (17)0.0021 (13)0.0323 (17)
Geometric parameters (Å, º) top
Cu—O11.978 (2)C2—H2A0.9600
Cu—O2i1.963 (2)C2—H2B0.9600
Cu—O31.955 (1)C2—H2C0.9600
Cu—O4i1.953 (1)C3—C41.504 (3)
Cu—N12.246 (2)C4—H4A0.9600
Cu—Cui2.6540 (4)C4—H4B0.9600
O1—C11.247 (2)C4—H4C0.9600
O2—C11.246 (3)C5—C61.378 (3)
O3—C31.247 (2)C5—H50.9300
O4—C31.250 (2)C6—C71.355 (4)
N1—C51.321 (3)C6—H60.9300
N1—C81.349 (3)C7—H70.9300
N2—C71.331 (3)C9—C101.494 (4)
N2—C81.340 (3)C9—H9A0.9700
N3—C81.338 (3)C9—H9B0.9700
N3—C91.448 (3)C10—H10A0.9600
N3—H30.85 (1)C10—H10B0.9600
C1—C21.502 (3)C10—H10C0.9600
O4i—Cu—O3167.23 (6)H2B—C2—H2C109.5
O4i—Cu—O2i88.86 (8)O3—C3—O4125.51 (18)
O3—Cu—O2i89.53 (8)O3—C3—C4117.20 (18)
O4i—Cu—O189.76 (8)O4—C3—C4117.29 (18)
O3—Cu—O188.95 (7)C3—C4—H4A109.5
O2i—Cu—O1166.94 (6)C3—C4—H4B109.5
O4i—Cu—N197.38 (6)H4A—C4—H4B109.5
O3—Cu—N195.36 (6)C3—C4—H4C109.5
O2i—Cu—N193.54 (6)H4A—C4—H4C109.5
O1—Cu—N199.52 (6)H4B—C4—H4C109.5
O4i—Cu—Cui83.74 (4)N1—C5—C6123.0 (2)
O3—Cu—Cui83.49 (4)N1—C5—H5118.5
O2i—Cu—Cui84.07 (5)C6—C5—H5118.5
O1—Cu—Cui82.87 (5)C7—C6—C5116.3 (2)
N1—Cu—Cui177.35 (4)C7—C6—H6121.9
C1—O1—Cu124.63 (14)C5—C6—H6121.9
C1—O2—Cui123.95 (14)N2—C7—C6123.7 (2)
C3—O3—Cu123.73 (13)N2—C7—H7118.2
C3—O4—Cui123.48 (13)C6—C7—H7118.2
C5—N1—C8115.85 (17)N3—C8—N2116.97 (19)
C5—N1—Cu115.99 (14)N3—C8—N1117.50 (17)
C8—N1—Cu128.08 (13)N2—C8—N1125.53 (19)
C7—N2—C8115.5 (2)N3—C9—C10109.8 (2)
C8—N3—C9123.88 (19)N3—C9—H9A109.7
C8—N3—H3118.0 (17)C10—C9—H9A109.7
C9—N3—H3118.1 (17)N3—C9—H9B109.7
O2—C1—O1124.4 (2)C10—C9—H9B109.7
O2—C1—C2117.62 (19)H9A—C9—H9B108.2
O1—C1—C2117.9 (2)C9—C10—H10A109.5
C1—C2—H2A109.5C9—C10—H10B109.5
C1—C2—H2B109.5H10A—C10—H10B109.5
H2A—C2—H2B109.5C9—C10—H10C109.5
C1—C2—H2C109.5H10A—C10—H10C109.5
H2A—C2—H2C109.5H10B—C10—H10C109.5
O4i—Cu—O1—C184.62 (19)Cui—O2—C1—C2177.97 (16)
O3—Cu—O1—C182.68 (19)Cu—O1—C1—O22.0 (3)
O2i—Cu—O1—C10.7 (4)Cu—O1—C1—C2178.01 (16)
N1—Cu—O1—C1177.93 (18)Cu—O3—C3—O42.6 (3)
Cui—Cu—O1—C10.90 (18)Cu—O3—C3—C4177.68 (17)
O4i—Cu—O3—C32.8 (4)Cui—O4—C3—O32.2 (3)
O2i—Cu—O3—C385.53 (19)Cui—O4—C3—C4178.11 (17)
O1—Cu—O3—C381.49 (18)C8—N1—C5—C60.1 (3)
N1—Cu—O3—C3179.05 (18)Cu—N1—C5—C6177.0 (2)
Cui—Cu—O3—C31.45 (17)N1—C5—C6—C72.4 (4)
O4i—Cu—N1—C593.37 (16)C8—N2—C7—C60.3 (4)
O3—Cu—N1—C585.80 (16)C5—C6—C7—N22.3 (4)
O2i—Cu—N1—C54.07 (16)C9—N3—C8—N23.6 (3)
O1—Cu—N1—C5175.63 (16)C9—N3—C8—N1175.8 (2)
Cui—Cu—N1—C521.6 (10)C7—N2—C8—N3176.3 (2)
O4i—Cu—N1—C890.11 (16)C7—N2—C8—N13.1 (3)
O3—Cu—N1—C890.72 (16)C5—N1—C8—N3176.44 (19)
O2i—Cu—N1—C8179.42 (16)Cu—N1—C8—N30.1 (3)
O1—Cu—N1—C80.89 (17)C5—N1—C8—N23.0 (3)
Cui—Cu—N1—C8154.9 (8)Cu—N1—C8—N2179.51 (15)
Cui—O2—C1—O12.0 (3)C8—N3—C9—C10166.6 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.85 (1)2.04 (1)2.871 (2)164 (2)
C4—H4a···O3ii0.962.513.458 (3)171
Symmetry code: (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C6H9N3)2]
Mr609.58
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8488 (6), 8.5114 (7), 10.2999 (8)
α, β, γ (°)98.404 (1), 92.698 (1), 105.599 (1)
V3)652.92 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.40 × 0.35 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.613, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
6208, 2969, 2669
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.080, 1.02
No. of reflections2969
No. of parameters170
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu—O11.978 (2)Cu—O4i1.953 (1)
Cu—O2i1.963 (2)Cu—N12.246 (2)
Cu—O31.955 (1)Cu—Cui2.6540 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.85 (1)2.043 (12)2.871 (2)164 (2)
C4—H4a···O3ii0.962.513.458 (3)171
Symmetry code: (ii) x+1, y+2, z+1.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

Z. Abdullah thanks the Ministry of Higher Education for a research grant (FS143/2008 C). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, m1049–m1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, m1077–m1078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds