organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[(Z)-(5-Methyl-2-fur­yl)methyl­­idene­amino]­eth­yl}benzene­sulfonamide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 19 August 2010; accepted 24 August 2010; online 28 August 2010)

In the title compound, C14H16N2O3S, the dihedral angle between the phenyl and 5-methyl­furan groups is 54.89 (14)° and the C=N bond assumes a trans conformation. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) ring motifs. The dimers are inter­linked by N—H⋯N hydrogen bonds, resulting in the formation of infinite chains extending along the b axis. The packing is consolidated by weak C—H⋯π inter­actions.

Related literature

For biochemical background and related crystal structures, see: Chohan et al. (2008[Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o725.]); Davis et al. (2007[Davis, R. A., Healy, P. C. & Poulsen, S.-A. (2007). Acta Cryst. E63, o96-o97.]); Li (2006[Li, X. (2006). Acta Cryst. E62, o3019-o3020.]); Suo (2008[Suo, J. (2008). Acta Cryst. E64, o1788.]); For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O3S

  • Mr = 292.35

  • Triclinic, [P \overline 1]

  • a = 9.1947 (14) Å

  • b = 9.7592 (14) Å

  • c = 9.8493 (15) Å

  • α = 61.027 (6)°

  • β = 70.650 (6)°

  • γ = 81.574 (7)°

  • V = 729.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.20 × 0.16 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.977

  • 10058 measured reflections

  • 2638 independent reflections

  • 1461 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.153

  • S = 0.97

  • 2638 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of furan (C10—C13/O3) and phenyl (C1—C6) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.80 (4) 2.18 (4) 2.928 (5) 155 (4)
N1—H1B⋯N2ii 0.82 (4) 2.25 (5) 3.015 (5) 156 (5)
C6—H6⋯Cg1iii 0.93 2.87 3.596 (4) 136
C11—H11⋯Cg2iv 0.93 2.75 3.535 (4) 143
C14—H14CCg2v 0.96 2.84 3.743 (5) 157
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y+1, z; (iii) -x+1, -y, -z+1; (iv) x, y, z-1; (v) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is being reported here in the context of our new project of synthesizing Schiff basis of various sulfonamide drugs, studying their bio-activity and the formation of their metal complexes.

The crystal structures of (II) 4-(2-(3-ethyl-4-methyl-2-oxo-3-pyrrolidine-1-carboxamido)ethyl) benzenesulfonamide (Li, 2006), (III) N-(2-(4-(aminosulfonyl)phenyl)ethyl)-2-(4-hydroxyphenyl)acetamide (Davis et al., 2007), (IV) 4-(2-((5-chloro-2-hydroxybenzylidene)amino)ethyl)benzenesulfonamide (Chohan et al., 2008) and (V) (E)-4-[(5-methyl-2-furyl)methyleneamino]benzenesulfonic acid (Suo, 2008) have been published which are related to the title compound.

In (I), the thiophenol A (C1–C6/S1) and 5-methylfuran-2-yl B (C10–C14/O3) are planar with r. m. s. deviations of 0.0037 and 0.0029 Å, respectively. The dihedral angle between A/B is 54.89 (14)°. The S-atom is at a distance of -0.4487 (19) Å from the plane formed by (O1/O2/N1). The central group of N-methylideneethanamine makes a torsion angle of -136.6 (4)°. In the title compound an S(5) ring motif (Bernstein et al., 1995) is formed due to C—H···O type of intramolecular H-bonding. The molecules are dimerized due to N—H···O type of intermolecular H-bonding (Table 1, Fig. 2) with R22(8) ring motif. The dimers are interlinked through H-bondings of N—H···N type resulting in the formation of infinite one dimensional polymeric chains extending along the b axis. In the stabilization of molecules C—H···π interactions (Table 1) play an important role.

Related literature top

For biochemical background and related crystal structures, see: Chohan et al. (2008); Davis et al. (2007); Li (2006); Suo (2008); For graph-set notation, see: Bernstein et al. (1995).

Experimental top

An ethanol solution (15 ml) of sulfonamide (0.20 g, 1 mmol) was added to the solution of 5-methylfuran-2-carbaldehyde (0.099 ml, 1 mmol) in ethanol (10 ml). The reaction mixture was refluxed for 4 h. The solution was cooled to room temperature, filtered and volume reduced to about one-third using rotary evaporator. It was then allowed to stand for 5 days, after which dark yellow plates of (I) were obtained.

Refinement top

The coordinates of H-atoms of amine were refined and the other H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

The title compound (I, Fig. 1) is being reported here in the context of our new project of synthesizing Schiff basis of various sulfonamide drugs, studying their bio-activity and the formation of their metal complexes.

The crystal structures of (II) 4-(2-(3-ethyl-4-methyl-2-oxo-3-pyrrolidine-1-carboxamido)ethyl) benzenesulfonamide (Li, 2006), (III) N-(2-(4-(aminosulfonyl)phenyl)ethyl)-2-(4-hydroxyphenyl)acetamide (Davis et al., 2007), (IV) 4-(2-((5-chloro-2-hydroxybenzylidene)amino)ethyl)benzenesulfonamide (Chohan et al., 2008) and (V) (E)-4-[(5-methyl-2-furyl)methyleneamino]benzenesulfonic acid (Suo, 2008) have been published which are related to the title compound.

In (I), the thiophenol A (C1–C6/S1) and 5-methylfuran-2-yl B (C10–C14/O3) are planar with r. m. s. deviations of 0.0037 and 0.0029 Å, respectively. The dihedral angle between A/B is 54.89 (14)°. The S-atom is at a distance of -0.4487 (19) Å from the plane formed by (O1/O2/N1). The central group of N-methylideneethanamine makes a torsion angle of -136.6 (4)°. In the title compound an S(5) ring motif (Bernstein et al., 1995) is formed due to C—H···O type of intramolecular H-bonding. The molecules are dimerized due to N—H···O type of intermolecular H-bonding (Table 1, Fig. 2) with R22(8) ring motif. The dimers are interlinked through H-bondings of N—H···N type resulting in the formation of infinite one dimensional polymeric chains extending along the b axis. In the stabilization of molecules C—H···π interactions (Table 1) play an important role.

For biochemical background and related crystal structures, see: Chohan et al. (2008); Davis et al. (2007); Li (2006); Suo (2008); For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form dimers which are interlinked.
4-{2-[(Z)-(5-Methyl-2-furyl)methylideneamino]ethyl}benzenesulfonamide top
Crystal data top
C14H16N2O3SZ = 2
Mr = 292.35F(000) = 308
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1947 (14) ÅCell parameters from 1461 reflections
b = 9.7592 (14) Åθ = 2.4–25.3°
c = 9.8493 (15) ŵ = 0.23 mm1
α = 61.027 (6)°T = 296 K
β = 70.650 (6)°Plate, dark yellow
γ = 81.574 (7)°0.20 × 0.16 × 0.08 mm
V = 729.4 (2) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2638 independent reflections
Radiation source: fine-focus sealed tube1461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 8.20 pixels mm-1θmax = 25.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.956, Tmax = 0.977l = 1111
10058 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0756P)2]
where P = (Fo2 + 2Fc2)/3
2638 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H16N2O3Sγ = 81.574 (7)°
Mr = 292.35V = 729.4 (2) Å3
Triclinic, P1Z = 2
a = 9.1947 (14) ÅMo Kα radiation
b = 9.7592 (14) ŵ = 0.23 mm1
c = 9.8493 (15) ÅT = 296 K
α = 61.027 (6)°0.20 × 0.16 × 0.08 mm
β = 70.650 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2638 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1461 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.977Rint = 0.068
10058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.22 e Å3
2638 reflectionsΔρmin = 0.33 e Å3
188 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74690 (11)0.53303 (11)0.83986 (11)0.0552 (4)
O10.6857 (3)0.4598 (3)1.0147 (3)0.0670 (10)
O20.8947 (3)0.6089 (3)0.7640 (3)0.0748 (11)
O30.7176 (3)0.2510 (3)0.3423 (3)0.0507 (8)
N10.6254 (4)0.6587 (4)0.7715 (4)0.0646 (12)
N20.7059 (3)0.0369 (3)0.4601 (4)0.0574 (11)
C10.7622 (4)0.1521 (4)0.6961 (4)0.0461 (11)
C20.8939 (4)0.2404 (4)0.6471 (4)0.0510 (12)
C30.8887 (4)0.3549 (4)0.6906 (4)0.0474 (11)
C40.7533 (4)0.3868 (4)0.7848 (4)0.0413 (11)
C50.6216 (4)0.2987 (4)0.8352 (4)0.0486 (12)
C60.6275 (4)0.1842 (4)0.7922 (4)0.0510 (12)
C70.7667 (4)0.0281 (4)0.6470 (5)0.0635 (14)
C80.7022 (5)0.0834 (4)0.5068 (5)0.0725 (18)
C90.7504 (4)0.0059 (4)0.3090 (5)0.0568 (14)
C100.7612 (4)0.0949 (4)0.2409 (4)0.0496 (12)
C110.8112 (4)0.0715 (5)0.0851 (4)0.0594 (16)
C120.8012 (4)0.2149 (5)0.0879 (4)0.0615 (16)
C130.7442 (4)0.3207 (4)0.2452 (4)0.0504 (12)
C140.7067 (5)0.4902 (4)0.3273 (5)0.0703 (16)
H1A0.535 (4)0.638 (5)0.802 (5)0.0777*
H1B0.643 (4)0.724 (5)0.676 (5)0.0777*
H20.986440.220870.583790.0612*
H30.977740.412200.656310.0567*
H50.529130.318360.898440.0585*
H60.538690.125900.828440.0611*
H7A0.707910.062830.739390.0768*
H7B0.872570.003440.616200.0768*
H8A0.596550.115520.537280.0866*
H8B0.761420.173920.414100.0866*
H90.777910.110760.238040.0682*
H110.846040.023150.007500.0717*
H120.828720.233410.001470.0735*
H14A0.746910.530070.250330.1053*
H14B0.596830.505530.370490.1053*
H14C0.752020.544680.414350.1053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0661 (7)0.0559 (6)0.0413 (6)0.0178 (5)0.0026 (4)0.0246 (5)
O10.0882 (19)0.0783 (18)0.0346 (14)0.0201 (14)0.0061 (13)0.0285 (13)
O20.0692 (17)0.0801 (19)0.0763 (19)0.0301 (14)0.0002 (14)0.0428 (16)
O30.0698 (16)0.0453 (14)0.0336 (13)0.0044 (11)0.0145 (11)0.0152 (11)
N10.073 (2)0.050 (2)0.052 (2)0.0051 (18)0.004 (2)0.0174 (16)
N20.081 (2)0.0476 (18)0.046 (2)0.0008 (15)0.0207 (16)0.0225 (16)
C10.064 (2)0.0387 (19)0.038 (2)0.0061 (17)0.0210 (18)0.0175 (16)
C20.058 (2)0.053 (2)0.034 (2)0.0076 (18)0.0114 (17)0.0176 (18)
C30.053 (2)0.047 (2)0.0345 (19)0.0092 (16)0.0091 (16)0.0132 (17)
C40.044 (2)0.0443 (19)0.0272 (17)0.0032 (15)0.0060 (15)0.0124 (15)
C50.048 (2)0.050 (2)0.046 (2)0.0018 (16)0.0060 (16)0.0255 (18)
C60.052 (2)0.049 (2)0.050 (2)0.0070 (16)0.0112 (18)0.0221 (19)
C70.089 (3)0.052 (2)0.060 (2)0.009 (2)0.032 (2)0.030 (2)
C80.118 (4)0.049 (2)0.064 (3)0.008 (2)0.042 (2)0.029 (2)
C90.073 (3)0.042 (2)0.052 (2)0.0064 (18)0.025 (2)0.0135 (19)
C100.060 (2)0.043 (2)0.037 (2)0.0075 (16)0.0156 (16)0.0092 (17)
C110.069 (3)0.062 (3)0.031 (2)0.0100 (19)0.0118 (17)0.0085 (18)
C120.070 (3)0.078 (3)0.038 (2)0.000 (2)0.0145 (18)0.029 (2)
C130.061 (2)0.055 (2)0.046 (2)0.0056 (17)0.0223 (18)0.029 (2)
C140.105 (3)0.054 (2)0.062 (3)0.004 (2)0.040 (2)0.026 (2)
Geometric parameters (Å, º) top
S1—O11.441 (3)C10—C111.357 (5)
S1—O21.428 (3)C11—C121.402 (7)
S1—N11.582 (4)C12—C131.346 (5)
S1—C41.743 (4)C13—C141.482 (6)
O3—C101.385 (5)C2—H20.9300
O3—C131.365 (5)C3—H30.9300
N2—C81.446 (6)C5—H50.9300
N2—C91.265 (5)C6—H60.9300
N1—H1B0.82 (4)C7—H7A0.9700
N1—H1A0.80 (4)C7—H7B0.9700
C1—C61.387 (5)C8—H8A0.9700
C1—C71.496 (6)C8—H8B0.9700
C1—C21.399 (6)C9—H90.9300
C2—C31.367 (6)C11—H110.9300
C3—C41.382 (5)C12—H120.9300
C4—C51.395 (6)C14—H14A0.9600
C5—C61.363 (6)C14—H14B0.9600
C7—C81.509 (6)C14—H14C0.9600
C9—C101.412 (6)
O1—S1—O2118.85 (17)C12—C13—C14132.9 (4)
O1—S1—N1106.50 (18)C1—C2—H2119.00
O1—S1—C4106.27 (18)C3—C2—H2120.00
O2—S1—N1107.94 (19)C2—C3—H3119.00
O2—S1—C4108.41 (19)C4—C3—H3119.00
N1—S1—C4108.5 (2)C4—C5—H5120.00
C10—O3—C13107.0 (3)C6—C5—H5120.00
C8—N2—C9116.4 (4)C1—C6—H6119.00
S1—N1—H1B123 (3)C5—C6—H6119.00
H1A—N1—H1B105 (4)C1—C7—H7A109.00
S1—N1—H1A122 (3)C1—C7—H7B109.00
C6—C1—C7121.5 (4)C8—C7—H7A109.00
C2—C1—C6117.2 (4)C8—C7—H7B109.00
C2—C1—C7121.3 (3)H7A—C7—H7B108.00
C1—C2—C3121.1 (4)N2—C8—H8A109.00
C2—C3—C4121.1 (4)N2—C8—H8B109.00
S1—C4—C3121.0 (3)C7—C8—H8A109.00
C3—C4—C5118.3 (4)C7—C8—H8B109.00
S1—C4—C5120.7 (3)H8A—C8—H8B108.00
C4—C5—C6120.4 (4)N2—C9—H9118.00
C1—C6—C5121.9 (4)C10—C9—H9118.00
C1—C7—C8112.3 (4)C10—C11—H11126.00
N2—C8—C7112.2 (4)C12—C11—H11126.00
N2—C9—C10124.4 (4)C11—C12—H12127.00
O3—C10—C9119.6 (3)C13—C12—H12127.00
O3—C10—C11108.0 (4)C13—C14—H14A109.00
C9—C10—C11132.4 (4)C13—C14—H14B109.00
C10—C11—C12108.2 (3)C13—C14—H14C109.00
C11—C12—C13106.7 (4)H14A—C14—H14B110.00
O3—C13—C12110.1 (4)H14A—C14—H14C110.00
O3—C13—C14117.0 (3)H14B—C14—H14C109.00
O1—S1—C4—C3125.4 (3)C2—C1—C7—C8100.7 (4)
O1—S1—C4—C554.5 (3)C6—C1—C7—C879.4 (5)
O2—S1—C4—C33.4 (4)C1—C2—C3—C40.2 (5)
O2—S1—C4—C5176.7 (3)C2—C3—C4—S1179.9 (3)
N1—S1—C4—C3120.4 (3)C2—C3—C4—C50.2 (5)
N1—S1—C4—C559.7 (3)S1—C4—C5—C6179.8 (3)
C13—O3—C10—C9178.2 (4)C3—C4—C5—C60.1 (5)
C13—O3—C10—C110.8 (4)C4—C5—C6—C10.9 (6)
C10—O3—C13—C120.5 (4)C1—C7—C8—N2179.7 (3)
C10—O3—C13—C14179.7 (4)N2—C9—C10—O31.7 (6)
C9—N2—C8—C7136.6 (4)N2—C9—C10—C11177.1 (4)
C8—N2—C9—C10179.9 (4)O3—C10—C11—C120.8 (5)
C6—C1—C2—C30.9 (5)C9—C10—C11—C12178.0 (4)
C7—C1—C2—C3179.2 (3)C10—C11—C12—C130.5 (5)
C2—C1—C6—C51.3 (5)C11—C12—C13—O30.0 (5)
C7—C1—C6—C5178.8 (3)C11—C12—C13—C14179.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of furan (C10—C13/O3) and phenyl (C1—C6) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.80 (4)2.18 (4)2.928 (5)155 (4)
N1—H1B···N2ii0.82 (4)2.25 (5)3.015 (5)156 (5)
C6—H6···Cg1iii0.932.873.596 (4)136
C11—H11···Cg2iv0.932.753.535 (4)143
C14—H14C···Cg2v0.962.843.743 (5)157
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x, y, z1; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H16N2O3S
Mr292.35
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.1947 (14), 9.7592 (14), 9.8493 (15)
α, β, γ (°)61.027 (6), 70.650 (6), 81.574 (7)
V3)729.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.16 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.956, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
10058, 2638, 1461
Rint0.068
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.153, 0.97
No. of reflections2638
No. of parameters188
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of furan (C10—C13/O3) and phenyl (C1—C6) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.80 (4)2.18 (4)2.928 (5)155 (4)
N1—H1B···N2ii0.82 (4)2.25 (5)3.015 (5)156 (5)
C6—H6···Cg1iii0.932.873.596 (4)136
C11—H11···Cg2iv0.932.753.535 (4)143
C14—H14C···Cg2v0.962.843.743 (5)157
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x, y, z1; (v) x, y1, z.
 

Acknowledgements

The authors would like to thank the Higher Education Commission (HEC), Pakistan, for financial assistance to KM under the National Research Program for Universities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDavis, R. A., Healy, P. C. & Poulsen, S.-A. (2007). Acta Cryst. E63, o96–o97.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, X. (2006). Acta Cryst. E62, o3019–o3020.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuo, J. (2008). Acta Cryst. E64, o1788.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds