organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,8-Dimeth­­oxy-2-phenyl-1,4-di­hydro­quinoline-3-carbo­nitrile

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement, et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 2 August 2010; accepted 6 August 2010; online 18 August 2010)

The crystal structure of the title mol­ecule, C18H16N2O2, can be described as two types of crossed layers parallel to the (110) and ([\overline{1}]10) planes. An intra­molecular N—H⋯O hydrogen bond occurs.

Related literature

For our previous work on the preparation of quinoline derivatives see: Benzerka et al. (2008[Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089-o2090.]); Ladraa et al. (2009[Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475-o478.], 2010[Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693.]); Moussaoui et al. (2002[Moussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim. 12, 71-78.]); Menasra et al. (2005[Menasra, H., Kedjadja, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun. 35, 2779-2788.]); Belfaitah et al. (2006[Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355-o1357.]); Bouraiou et al. (2006[Bouraiou, A., Menasra, H., Debache, A., Rhouati, S. & Belfaitah, A. (2006). J. Soc. Alger. Chim. 16, 171-183.], 2007[Bouraiou, A., Belfaitah, A., Bouacida, S., Benard-Rocherulle, P. & Carboni, B. (2007). Acta Cryst. E63, o1626-o1628.], 2008[Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329-333.]). For more details of quinoline reduction, see: Dauphinee & Forrest (1978[Dauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632-634.]); Srikrishna et al. (1996[Srikrishna, A., Reddy, T. J. & Viswajanani, R. (1996). Tetrahedron, 52, 1631-1636.]); Vierhapper & Eliel (1975[Vierhapper, F. W. & Eliel, E. L. (1975). J. Org. Chem. 40, 2729-2734.]); Lim et al. (1995[Lim, C. L., Pyo, S. H., Kim, T. Y., Yim, E. S. & Han, B. H. (1995). Bull. Korean Chem. Soc. 16, 374-377.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O2

  • Mr = 292.33

  • Monoclinic, P 21 /c

  • a = 3.9952 (3) Å

  • b = 20.4544 (15) Å

  • c = 17.7313 (13) Å

  • β = 95.976 (5)°

  • V = 1441.12 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.27 × 0.07 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS: Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.702, Tmax = 0.996

  • 12491 measured reflections

  • 3292 independent reflections

  • 1975 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.133

  • S = 1.03

  • 3292 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 2.29 2.649 (2) 104

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEXII and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEXII and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In quinoline and its derivatives it is usually the pyridine ring which is reduced first. Sodium in liquid ammonia converted quinoline to 1,2-dihydroquinoline (Dauphinee et al., 1978). 1,2,3,4-tetrahydroquinoline was obtained by catalytic hydrogenation and by reduction with borane and sodium cyanoborohydride (Srikrishna et al., 1996), 5,6,7,8-tetrhydroquinoline by catalytic hydrogenation over platinum oxide or 5% palladium or rhodium on carbon in triflouroacetic acid (Vierhapper et al., 1975). Vigorous hydrogenation gave cis and trans-decahydroquinoline. The reducing proprieties of hydrazine are due to its thermal decomposition to hydrogen and nitrogen. The heating of hydrazine with aromatic hydrocarbons at 160–280°C effected complete hydrogenation of the aromatic ring. On the other hand, zinc is used to a limited extent for reductions of double bonds conjugated with strongly polar groups and partial reduction of some aromatics. The majority of reductions with zinc are carried out in acids: hydrochloric, sulfuric, formic and especially acetic. In previous works, we were interested in the design and synthesis of new molecules that contain a quinolyl moiety (Benzerka et al., 2008; Ladraa et al., 2009, 2010, Moussaoui et al., 2002; Menasra et al., 2005; Belfaitah et al., 2006 and Bouraiou et al.,2006, 2007, 2008). In this paper, we report the structure determination of new compound that result from an unwanted reduction of the pyridine ring of 3-cyano-5,8-dimethoxy-2-phenylquinoline. Our attempt to create a tetrazine ring linked quinolyl moiety, using hydrazine in the presence of Cu(NO3)2.3H2O-Zn, was failed and led to 1,4-dihydro-5,8-dimethoxy-2-phenylquinoline-3-carbonitrile (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of title compound contains a 1,4-dihydroquinolyl unit bearing a phenyl ring at position C-2, nitril group at C-3 and two methoxy at C-5 and C-8. The two rings of 1,4-dihydroquinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.17 (5)°. The phenyl ring form also with quinolyl plane a dihedral angle of 45.38 (6)°. The crystal packing can be described by two types of crossed layers which 1,4-dihydroquinolyl ring is parallel to (110) and (-110)planes respectively (Fig. 2). The crystal packing is stabilized by intramolecular hydrogen bond (N—H···O) and Van der Waals interactions, resulting in the formation of a three-dimensional network and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in table 1.

Related literature top

For our previous work on the preparation of quinoline derivatives see: Benzerka et al. (2008); Ladraa et al. (2009, 2010); Moussaoui et al. (2002); Menasra et al. (2005); Belfaitah et al. (2006); Bouraiou et al. (2006, 2007, 2008).For more details about quinoline reduction, see: Dauphinee et al. (1978); Srikrishna et al. (1996); Vierhapper et al. (1975); Lim et al. (1995).

Experimental top

Compound (I) was obtained by modification of reported procedure (Lim et al., 1995). Refluxing a mixture of 1 eq. of 3-cyano-5,8-dimethoxy-2-phenylquinoline, 2 eq. of zinc and 1 eq. of Cu(NO2)2. 3H2O in the presence of 4 eq. of hydrazine monohydrate for 3 days lead to the corresponding 1,4-dihydro-5,8-dimethoxy-2-phenylquinoline-3-carbonitrile I. The product was purified by column chromatography. Single crystals suitable for X-ray diffraction analysis were obtained by dissolving the corresponding compound in CH2Cl2/Petroleum ether mixture and letting the solution for slow evaporation at room temperature.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom.

Structure description top

In quinoline and its derivatives it is usually the pyridine ring which is reduced first. Sodium in liquid ammonia converted quinoline to 1,2-dihydroquinoline (Dauphinee et al., 1978). 1,2,3,4-tetrahydroquinoline was obtained by catalytic hydrogenation and by reduction with borane and sodium cyanoborohydride (Srikrishna et al., 1996), 5,6,7,8-tetrhydroquinoline by catalytic hydrogenation over platinum oxide or 5% palladium or rhodium on carbon in triflouroacetic acid (Vierhapper et al., 1975). Vigorous hydrogenation gave cis and trans-decahydroquinoline. The reducing proprieties of hydrazine are due to its thermal decomposition to hydrogen and nitrogen. The heating of hydrazine with aromatic hydrocarbons at 160–280°C effected complete hydrogenation of the aromatic ring. On the other hand, zinc is used to a limited extent for reductions of double bonds conjugated with strongly polar groups and partial reduction of some aromatics. The majority of reductions with zinc are carried out in acids: hydrochloric, sulfuric, formic and especially acetic. In previous works, we were interested in the design and synthesis of new molecules that contain a quinolyl moiety (Benzerka et al., 2008; Ladraa et al., 2009, 2010, Moussaoui et al., 2002; Menasra et al., 2005; Belfaitah et al., 2006 and Bouraiou et al.,2006, 2007, 2008). In this paper, we report the structure determination of new compound that result from an unwanted reduction of the pyridine ring of 3-cyano-5,8-dimethoxy-2-phenylquinoline. Our attempt to create a tetrazine ring linked quinolyl moiety, using hydrazine in the presence of Cu(NO3)2.3H2O-Zn, was failed and led to 1,4-dihydro-5,8-dimethoxy-2-phenylquinoline-3-carbonitrile (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of title compound contains a 1,4-dihydroquinolyl unit bearing a phenyl ring at position C-2, nitril group at C-3 and two methoxy at C-5 and C-8. The two rings of 1,4-dihydroquinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.17 (5)°. The phenyl ring form also with quinolyl plane a dihedral angle of 45.38 (6)°. The crystal packing can be described by two types of crossed layers which 1,4-dihydroquinolyl ring is parallel to (110) and (-110)planes respectively (Fig. 2). The crystal packing is stabilized by intramolecular hydrogen bond (N—H···O) and Van der Waals interactions, resulting in the formation of a three-dimensional network and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in table 1.

For our previous work on the preparation of quinoline derivatives see: Benzerka et al. (2008); Ladraa et al. (2009, 2010); Moussaoui et al. (2002); Menasra et al. (2005); Belfaitah et al. (2006); Bouraiou et al. (2006, 2007, 2008).For more details about quinoline reduction, see: Dauphinee et al. (1978); Srikrishna et al. (1996); Vierhapper et al. (1975); Lim et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the c axis.
5,8-Dimethoxy-2-phenyl-1,4-dihydroquinoline-3-carbonitrile top
Crystal data top
C18H16N2O2F(000) = 616
Mr = 292.33Dx = 1.347 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2693 reflections
a = 3.9952 (3) Åθ = 2.3–25.3°
b = 20.4544 (15) ŵ = 0.09 mm1
c = 17.7313 (13) ÅT = 150 K
β = 95.976 (5)°Stick, colourless
V = 1441.12 (18) Å30.27 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
CCD rotation images, thin slices scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS: Sheldrick, 2002)
h = 35
Tmin = 0.702, Tmax = 0.996k = 2624
12491 measured reflectionsl = 2222
3292 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.6371P]
where P = (Fo2 + 2Fc2)/3
3292 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C18H16N2O2V = 1441.12 (18) Å3
Mr = 292.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9952 (3) ŵ = 0.09 mm1
b = 20.4544 (15) ÅT = 150 K
c = 17.7313 (13) Å0.27 × 0.07 × 0.05 mm
β = 95.976 (5)°
Data collection top
Bruker APEXII
diffractometer
3292 independent reflections
Absorption correction: multi-scan
(SADABS: Sheldrick, 2002)
1975 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.996Rint = 0.051
12491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
3292 reflectionsΔρmin = 0.29 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1215 (5)0.13620 (9)0.66975 (11)0.0267 (5)
C20.0694 (5)0.18185 (9)0.72449 (11)0.0252 (4)
C30.2040 (5)0.17402 (10)0.80517 (11)0.0302 (5)
H3A0.01480.17630.83700.036*
H3B0.35730.21100.81980.036*
C40.3890 (5)0.11164 (9)0.82153 (11)0.0258 (4)
C50.5299 (5)0.09642 (10)0.89555 (11)0.0280 (5)
C60.7054 (5)0.03884 (10)0.91013 (12)0.0329 (5)
H60.79930.02890.96030.040*
C70.7448 (5)0.00496 (10)0.85068 (12)0.0329 (5)
H70.86680.04440.86090.040*
C80.6090 (5)0.00849 (9)0.77773 (11)0.0282 (5)
C100.8195 (6)0.09023 (10)0.72813 (14)0.0402 (6)
H10A1.04830.08070.75090.060*
H10B0.82960.11300.67980.060*
H10C0.70530.11800.76260.060*
C110.6472 (6)0.13355 (11)1.02389 (11)0.0377 (5)
H11A0.56990.09261.04500.056*
H11B0.59630.17011.05660.056*
H11C0.89060.13131.02110.056*
C120.1237 (5)0.23988 (10)0.70655 (11)0.0273 (5)
C130.0034 (5)0.14369 (9)0.58792 (11)0.0268 (4)
C140.0519 (5)0.20237 (10)0.55075 (11)0.0319 (5)
H140.16070.23780.57790.038*
C150.0572 (6)0.20951 (11)0.47439 (12)0.0383 (6)
H150.02320.24980.44960.046*
C160.2153 (6)0.15839 (12)0.43412 (13)0.0419 (6)
H160.29280.16370.38200.050*
C170.2606 (6)0.09925 (12)0.46989 (12)0.0409 (6)
H170.36700.06390.44210.049*
C180.1503 (5)0.09145 (11)0.54663 (12)0.0347 (5)
H180.17940.05070.57090.042*
C90.4271 (5)0.06718 (9)0.76313 (11)0.0265 (4)
N10.2916 (4)0.07985 (8)0.68900 (9)0.0294 (4)
H10.31660.05060.65360.035*
N20.2790 (5)0.28731 (9)0.69710 (10)0.0370 (5)
O10.6360 (4)0.02995 (7)0.71508 (8)0.0351 (4)
O20.4784 (4)0.14325 (7)0.94924 (8)0.0337 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0277 (11)0.0253 (11)0.0271 (11)0.0058 (8)0.0032 (8)0.0022 (8)
C20.0292 (11)0.0213 (10)0.0250 (10)0.0039 (8)0.0028 (8)0.0011 (8)
C30.0297 (11)0.0285 (11)0.0324 (11)0.0049 (9)0.0028 (9)0.0070 (9)
C40.0272 (11)0.0220 (10)0.0287 (11)0.0034 (8)0.0052 (8)0.0045 (8)
C50.0298 (11)0.0280 (11)0.0262 (11)0.0047 (8)0.0029 (8)0.0023 (8)
C60.0361 (13)0.0304 (12)0.0318 (12)0.0007 (9)0.0007 (9)0.0089 (9)
C70.0331 (12)0.0252 (11)0.0407 (13)0.0033 (9)0.0047 (9)0.0083 (9)
C80.0294 (11)0.0226 (10)0.0335 (11)0.0027 (8)0.0070 (8)0.0023 (8)
C100.0401 (14)0.0264 (12)0.0548 (15)0.0061 (10)0.0088 (11)0.0030 (10)
C110.0463 (14)0.0409 (13)0.0245 (11)0.0055 (10)0.0022 (9)0.0027 (9)
C120.0341 (12)0.0240 (11)0.0240 (10)0.0047 (9)0.0044 (8)0.0027 (8)
C130.0271 (11)0.0275 (11)0.0258 (11)0.0017 (8)0.0033 (8)0.0019 (8)
C140.0389 (13)0.0288 (11)0.0287 (11)0.0025 (9)0.0061 (9)0.0010 (9)
C150.0514 (15)0.0366 (13)0.0279 (12)0.0090 (11)0.0092 (10)0.0048 (9)
C160.0462 (15)0.0560 (16)0.0233 (11)0.0130 (12)0.0022 (10)0.0021 (10)
C170.0403 (14)0.0482 (15)0.0332 (12)0.0000 (11)0.0009 (10)0.0140 (11)
C180.0380 (13)0.0311 (12)0.0347 (12)0.0034 (9)0.0030 (9)0.0031 (9)
C90.0262 (11)0.0225 (10)0.0309 (11)0.0038 (8)0.0043 (8)0.0050 (8)
N10.0406 (11)0.0229 (9)0.0246 (9)0.0000 (7)0.0025 (7)0.0010 (7)
N20.0475 (12)0.0287 (10)0.0348 (10)0.0044 (9)0.0045 (8)0.0014 (8)
O10.0422 (9)0.0258 (8)0.0378 (9)0.0044 (6)0.0071 (7)0.0003 (6)
O20.0436 (9)0.0320 (8)0.0244 (8)0.0003 (6)0.0019 (6)0.0000 (6)
Geometric parameters (Å, º) top
C1—N11.363 (3)C10—H10B0.9800
C1—C21.378 (3)C10—H10C0.9800
C1—C131.486 (3)C11—O21.435 (2)
C2—C121.433 (3)C11—H11A0.9800
C2—C31.484 (3)C11—H11B0.9800
C3—C41.488 (3)C11—H11C0.9800
C3—H3A0.9900C12—N21.154 (3)
C3—H3B0.9900C13—C141.393 (3)
C4—C91.398 (3)C13—C181.400 (3)
C4—C51.408 (3)C14—C151.386 (3)
C5—O21.381 (2)C14—H140.9500
C5—C61.381 (3)C15—C161.381 (3)
C6—C71.405 (3)C15—H150.9500
C6—H60.9500C16—C171.386 (3)
C7—C81.377 (3)C16—H160.9500
C7—H70.9500C17—C181.395 (3)
C8—O11.374 (2)C17—H170.9500
C8—C91.413 (3)C18—H180.9500
C10—O11.441 (2)C9—N11.393 (2)
C10—H10A0.9800N1—H10.8800
N1—C1—C2120.29 (17)O2—C11—H11A109.5
N1—C1—C13115.53 (17)O2—C11—H11B109.5
C2—C1—C13124.18 (18)H11A—C11—H11B109.5
C1—C2—C12121.48 (17)O2—C11—H11C109.5
C1—C2—C3122.67 (18)H11A—C11—H11C109.5
C12—C2—C3115.85 (17)H11B—C11—H11C109.5
C2—C3—C4113.79 (17)N2—C12—C2175.5 (2)
C2—C3—H3A108.8C14—C13—C18119.03 (19)
C4—C3—H3A108.8C14—C13—C1120.34 (17)
C2—C3—H3B108.8C18—C13—C1120.61 (18)
C4—C3—H3B108.8C15—C14—C13120.5 (2)
H3A—C3—H3B107.7C15—C14—H14119.7
C9—C4—C5118.87 (18)C13—C14—H14119.7
C9—C4—C3120.23 (17)C16—C15—C14120.4 (2)
C5—C4—C3120.90 (18)C16—C15—H15119.8
O2—C5—C6124.87 (17)C14—C15—H15119.8
O2—C5—C4114.55 (17)C15—C16—C17119.9 (2)
C6—C5—C4120.58 (19)C15—C16—H16120.1
C5—C6—C7119.86 (19)C17—C16—H16120.1
C5—C6—H6120.1C16—C17—C18120.2 (2)
C7—C6—H6120.1C16—C17—H17119.9
C8—C7—C6120.88 (19)C18—C17—H17119.9
C8—C7—H7119.6C17—C18—C13120.0 (2)
C6—C7—H7119.6C17—C18—H18120.0
O1—C8—C7126.04 (18)C13—C18—H18120.0
O1—C8—C9114.84 (17)N1—C9—C4121.09 (17)
C7—C8—C9119.11 (19)N1—C9—C8118.22 (18)
O1—C10—H10A109.5C4—C9—C8120.68 (18)
O1—C10—H10B109.5C1—N1—C9121.88 (17)
H10A—C10—H10B109.5C1—N1—H1119.1
O1—C10—H10C109.5C9—N1—H1119.1
H10A—C10—H10C109.5C8—O1—C10116.18 (16)
H10B—C10—H10C109.5C5—O2—C11116.77 (16)
N1—C1—C2—C12176.67 (19)C13—C14—C15—C160.1 (3)
C13—C1—C2—C123.5 (3)C14—C15—C16—C171.0 (3)
N1—C1—C2—C32.6 (3)C15—C16—C17—C180.7 (3)
C13—C1—C2—C3177.25 (19)C16—C17—C18—C130.7 (3)
C1—C2—C3—C42.0 (3)C14—C13—C18—C171.8 (3)
C12—C2—C3—C4177.34 (17)C1—C13—C18—C17179.85 (19)
C2—C3—C4—C90.9 (3)C5—C4—C9—N1179.80 (18)
C2—C3—C4—C5179.41 (18)C3—C4—C9—N10.5 (3)
C9—C4—C5—O2179.88 (16)C5—C4—C9—C81.2 (3)
C3—C4—C5—O20.4 (3)C3—C4—C9—C8178.53 (19)
C9—C4—C5—C60.6 (3)O1—C8—C9—N10.9 (3)
C3—C4—C5—C6179.07 (19)C7—C8—C9—N1179.98 (18)
O2—C5—C6—C7179.32 (19)O1—C8—C9—C4178.15 (17)
C4—C5—C6—C70.1 (3)C7—C8—C9—C41.0 (3)
C5—C6—C7—C80.3 (3)C2—C1—N1—C92.1 (3)
C6—C7—C8—O1178.81 (19)C13—C1—N1—C9177.77 (17)
C6—C7—C8—C90.2 (3)C4—C9—N1—C11.1 (3)
N1—C1—C13—C14133.8 (2)C8—C9—N1—C1178.01 (18)
C2—C1—C13—C1446.0 (3)C7—C8—O1—C101.1 (3)
N1—C1—C13—C1844.5 (3)C9—C8—O1—C10179.86 (18)
C2—C1—C13—C18135.6 (2)C6—C5—O2—C116.0 (3)
C18—C13—C14—C151.5 (3)C4—C5—O2—C11173.46 (18)
C1—C13—C14—C15179.86 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.882.292.649 (2)104

Experimental details

Crystal data
Chemical formulaC18H16N2O2
Mr292.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)3.9952 (3), 20.4544 (15), 17.7313 (13)
β (°) 95.976 (5)
V3)1441.12 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.07 × 0.05
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS: Sheldrick, 2002)
Tmin, Tmax0.702, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
12491, 3292, 1975
Rint0.051
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.133, 1.03
No. of reflections3292
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.29

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.882.292.649 (2)104
 

Acknowledgements

We are grateful to all personel of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algérie for their assistance.

References

First citationBelfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouraiou, A., Belfaitah, A., Bouacida, S., Benard-Rocherulle, P. & Carboni, B. (2007). Acta Cryst. E63, o1626–o1628.  CSD CrossRef IUCr Journals Google Scholar
First citationBouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.  CrossRef CAS Google Scholar
First citationBouraiou, A., Menasra, H., Debache, A., Rhouati, S. & Belfaitah, A. (2006). J. Soc. Alger. Chim. 16, 171–183.  CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEXII and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632–634.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLadraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLadraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLim, C. L., Pyo, S. H., Kim, T. Y., Yim, E. S. & Han, B. H. (1995). Bull. Korean Chem. Soc. 16, 374–377.  CAS Google Scholar
First citationMenasra, H., Kedjadja, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun. 35, 2779–2788.  Web of Science CrossRef CAS Google Scholar
First citationMoussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim. 12, 71–78.  CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrikrishna, A., Reddy, T. J. & Viswajanani, R. (1996). Tetrahedron, 52, 1631–1636.  CrossRef CAS Web of Science Google Scholar
First citationVierhapper, F. W. & Eliel, E. L. (1975). J. Org. Chem. 40, 2729–2734.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds