organic compounds
5,8-Dimethoxy-2-phenyl-1,4-dihydroquinoline-3-carbonitrile
aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement, et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The 18H16N2O2, can be described as two types of crossed layers parallel to the (110) and (10) planes. An intramolecular N—H⋯O hydrogen bond occurs.
of the title molecule, CRelated literature
For our previous work on the preparation of quinoline derivatives see: Benzerka et al. (2008); Ladraa et al. (2009, 2010); Moussaoui et al. (2002); Menasra et al. (2005); Belfaitah et al. (2006); Bouraiou et al. (2006, 2007, 2008). For more details of quinoline reduction, see: Dauphinee & Forrest (1978); Srikrishna et al. (1996); Vierhapper & Eliel (1975); Lim et al. (1995).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810031685/hg2695sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810031685/hg2695Isup2.hkl
Compound (I) was obtained by modification of reported procedure (Lim et al., 1995). Refluxing a mixture of 1 eq. of 3-cyano-5,8-dimethoxy-2-phenylquinoline, 2 eq. of zinc and 1 eq. of Cu(NO2)2. 3H2O in the presence of 4 eq. of hydrazine monohydrate for 3 days lead to the corresponding 1,4-dihydro-5,8-dimethoxy-2-phenylquinoline-3-carbonitrile I. The product was purified by
Single crystals suitable for X-ray were obtained by dissolving the corresponding compound in CH2Cl2/Petroleum ether mixture and letting the solution for slow evaporation at room temperature.All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom.
In quinoline and its derivatives it is usually the pyridine ring which is reduced first. Sodium in liquid ammonia converted quinoline to 1,2-dihydroquinoline (Dauphinee et al., 1978). 1,2,3,4-tetrahydroquinoline was obtained by catalytic hydrogenation and by reduction with borane and sodium cyanoborohydride (Srikrishna et al., 1996), 5,6,7,8-tetrhydroquinoline by catalytic hydrogenation over platinum oxide or 5% palladium or rhodium on carbon in triflouroacetic acid (Vierhapper et al., 1975). Vigorous hydrogenation gave cis and trans-decahydroquinoline. The reducing proprieties of hydrazine are due to its thermal decomposition to hydrogen and nitrogen. The heating of hydrazine with aromatic hydrocarbons at 160–280°C effected complete hydrogenation of the aromatic ring. On the other hand, zinc is used to a limited extent for reductions of double bonds conjugated with strongly polar groups and partial reduction of some aromatics. The majority of reductions with zinc are carried out in acids: hydrochloric, sulfuric, formic and especially acetic. In previous works, we were interested in the design and synthesis of new molecules that contain a quinolyl moiety (Benzerka et al., 2008; Ladraa et al., 2009, 2010, Moussaoui et al., 2002; Menasra et al., 2005; Belfaitah et al., 2006 and Bouraiou et al.,2006, 2007, 2008). In this paper, we report the
of new compound that result from an unwanted reduction of the pyridine ring of 3-cyano-5,8-dimethoxy-2-phenylquinoline. Our attempt to create a tetrazine ring linked quinolyl moiety, using hydrazine in the presence of Cu(NO3)2.3H2O-Zn, was failed and led to 1,4-dihydro-5,8-dimethoxy-2-phenylquinoline-3-carbonitrile (I).The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The
of title compound contains a 1,4-dihydroquinolyl unit bearing a phenyl ring at position C-2, nitril group at C-3 and two methoxy at C-5 and C-8. The two rings of 1,4-dihydroquinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.17 (5)°. The phenyl ring form also with quinolyl plane a dihedral angle of 45.38 (6)°. The crystal packing can be described by two types of crossed layers which 1,4-dihydroquinolyl ring is parallel to (110) and (-110)planes respectively (Fig. 2). The crystal packing is stabilized by intramolecular hydrogen bond (N—H···O) and Van der Waals interactions, resulting in the formation of a three-dimensional network and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in table 1.For our previous work on the preparation of quinoline derivatives see: Benzerka et al. (2008); Ladraa et al. (2009, 2010); Moussaoui et al. (2002); Menasra et al. (2005); Belfaitah et al. (2006); Bouraiou et al. (2006, 2007, 2008).For more details about quinoline reduction, see: Dauphinee et al. (1978); Srikrishna et al. (1996); Vierhapper et al. (1975); Lim et al. (1995).
Data collection: APEX2 (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C18H16N2O2 | F(000) = 616 |
Mr = 292.33 | Dx = 1.347 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2693 reflections |
a = 3.9952 (3) Å | θ = 2.3–25.3° |
b = 20.4544 (15) Å | µ = 0.09 mm−1 |
c = 17.7313 (13) Å | T = 150 K |
β = 95.976 (5)° | Stick, colourless |
V = 1441.12 (18) Å3 | 0.27 × 0.07 × 0.05 mm |
Z = 4 |
Bruker APEXII diffractometer | 1975 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
CCD rotation images, thin slices scans | θmax = 27.6°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS: Sheldrick, 2002) | h = −3→5 |
Tmin = 0.702, Tmax = 0.996 | k = −26→24 |
12491 measured reflections | l = −22→22 |
3292 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0462P)2 + 0.6371P] where P = (Fo2 + 2Fc2)/3 |
3292 reflections | (Δ/σ)max < 0.001 |
201 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C18H16N2O2 | V = 1441.12 (18) Å3 |
Mr = 292.33 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.9952 (3) Å | µ = 0.09 mm−1 |
b = 20.4544 (15) Å | T = 150 K |
c = 17.7313 (13) Å | 0.27 × 0.07 × 0.05 mm |
β = 95.976 (5)° |
Bruker APEXII diffractometer | 3292 independent reflections |
Absorption correction: multi-scan (SADABS: Sheldrick, 2002) | 1975 reflections with I > 2σ(I) |
Tmin = 0.702, Tmax = 0.996 | Rint = 0.051 |
12491 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.17 e Å−3 |
3292 reflections | Δρmin = −0.29 e Å−3 |
201 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1215 (5) | 0.13620 (9) | 0.66975 (11) | 0.0267 (5) | |
C2 | 0.0694 (5) | 0.18185 (9) | 0.72449 (11) | 0.0252 (4) | |
C3 | 0.2040 (5) | 0.17402 (10) | 0.80517 (11) | 0.0302 (5) | |
H3A | 0.0148 | 0.1763 | 0.8370 | 0.036* | |
H3B | 0.3573 | 0.2110 | 0.8198 | 0.036* | |
C4 | 0.3890 (5) | 0.11164 (9) | 0.82153 (11) | 0.0258 (4) | |
C5 | 0.5299 (5) | 0.09642 (10) | 0.89555 (11) | 0.0280 (5) | |
C6 | 0.7054 (5) | 0.03884 (10) | 0.91013 (12) | 0.0329 (5) | |
H6 | 0.7993 | 0.0289 | 0.9603 | 0.040* | |
C7 | 0.7448 (5) | −0.00496 (10) | 0.85068 (12) | 0.0329 (5) | |
H7 | 0.8668 | −0.0444 | 0.8609 | 0.040* | |
C8 | 0.6090 (5) | 0.00849 (9) | 0.77773 (11) | 0.0282 (5) | |
C10 | 0.8195 (6) | −0.09023 (10) | 0.72813 (14) | 0.0402 (6) | |
H10A | 1.0483 | −0.0807 | 0.7509 | 0.060* | |
H10B | 0.8296 | −0.1130 | 0.6798 | 0.060* | |
H10C | 0.7053 | −0.1180 | 0.7626 | 0.060* | |
C11 | 0.6472 (6) | 0.13355 (11) | 1.02389 (11) | 0.0377 (5) | |
H11A | 0.5699 | 0.0926 | 1.0450 | 0.056* | |
H11B | 0.5963 | 0.1701 | 1.0566 | 0.056* | |
H11C | 0.8906 | 0.1313 | 1.0211 | 0.056* | |
C12 | −0.1237 (5) | 0.23988 (10) | 0.70655 (11) | 0.0273 (5) | |
C13 | 0.0034 (5) | 0.14369 (9) | 0.58792 (11) | 0.0268 (4) | |
C14 | 0.0519 (5) | 0.20237 (10) | 0.55075 (11) | 0.0319 (5) | |
H14 | 0.1607 | 0.2378 | 0.5779 | 0.038* | |
C15 | −0.0572 (6) | 0.20951 (11) | 0.47439 (12) | 0.0383 (6) | |
H15 | −0.0232 | 0.2498 | 0.4496 | 0.046* | |
C16 | −0.2153 (6) | 0.15839 (12) | 0.43412 (13) | 0.0419 (6) | |
H16 | −0.2928 | 0.1637 | 0.3820 | 0.050* | |
C17 | −0.2606 (6) | 0.09925 (12) | 0.46989 (12) | 0.0409 (6) | |
H17 | −0.3670 | 0.0639 | 0.4421 | 0.049* | |
C18 | −0.1503 (5) | 0.09145 (11) | 0.54663 (12) | 0.0347 (5) | |
H18 | −0.1794 | 0.0507 | 0.5709 | 0.042* | |
C9 | 0.4271 (5) | 0.06718 (9) | 0.76313 (11) | 0.0265 (4) | |
N1 | 0.2916 (4) | 0.07985 (8) | 0.68900 (9) | 0.0294 (4) | |
H1 | 0.3166 | 0.0506 | 0.6536 | 0.035* | |
N2 | −0.2790 (5) | 0.28731 (9) | 0.69710 (10) | 0.0370 (5) | |
O1 | 0.6360 (4) | −0.02995 (7) | 0.71508 (8) | 0.0351 (4) | |
O2 | 0.4784 (4) | 0.14325 (7) | 0.94924 (8) | 0.0337 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0277 (11) | 0.0253 (11) | 0.0271 (11) | −0.0058 (8) | 0.0032 (8) | 0.0022 (8) |
C2 | 0.0292 (11) | 0.0213 (10) | 0.0250 (10) | −0.0039 (8) | 0.0028 (8) | 0.0011 (8) |
C3 | 0.0297 (11) | 0.0285 (11) | 0.0324 (11) | −0.0049 (9) | 0.0028 (9) | 0.0070 (9) |
C4 | 0.0272 (11) | 0.0220 (10) | 0.0287 (11) | −0.0034 (8) | 0.0052 (8) | 0.0045 (8) |
C5 | 0.0298 (11) | 0.0280 (11) | 0.0262 (11) | −0.0047 (8) | 0.0029 (8) | 0.0023 (8) |
C6 | 0.0361 (13) | 0.0304 (12) | 0.0318 (12) | −0.0007 (9) | 0.0007 (9) | 0.0089 (9) |
C7 | 0.0331 (12) | 0.0252 (11) | 0.0407 (13) | 0.0033 (9) | 0.0047 (9) | 0.0083 (9) |
C8 | 0.0294 (11) | 0.0226 (10) | 0.0335 (11) | −0.0027 (8) | 0.0070 (8) | 0.0023 (8) |
C10 | 0.0401 (14) | 0.0264 (12) | 0.0548 (15) | 0.0061 (10) | 0.0088 (11) | −0.0030 (10) |
C11 | 0.0463 (14) | 0.0409 (13) | 0.0245 (11) | −0.0055 (10) | −0.0022 (9) | 0.0027 (9) |
C12 | 0.0341 (12) | 0.0240 (11) | 0.0240 (10) | −0.0047 (9) | 0.0044 (8) | −0.0027 (8) |
C13 | 0.0271 (11) | 0.0275 (11) | 0.0258 (11) | 0.0017 (8) | 0.0033 (8) | −0.0019 (8) |
C14 | 0.0389 (13) | 0.0288 (11) | 0.0287 (11) | 0.0025 (9) | 0.0061 (9) | 0.0010 (9) |
C15 | 0.0514 (15) | 0.0366 (13) | 0.0279 (12) | 0.0090 (11) | 0.0092 (10) | 0.0048 (9) |
C16 | 0.0462 (15) | 0.0560 (16) | 0.0233 (11) | 0.0130 (12) | 0.0022 (10) | −0.0021 (10) |
C17 | 0.0403 (14) | 0.0482 (15) | 0.0332 (12) | 0.0000 (11) | −0.0009 (10) | −0.0140 (11) |
C18 | 0.0380 (13) | 0.0311 (12) | 0.0347 (12) | −0.0034 (9) | 0.0030 (9) | −0.0031 (9) |
C9 | 0.0262 (11) | 0.0225 (10) | 0.0309 (11) | −0.0038 (8) | 0.0043 (8) | 0.0050 (8) |
N1 | 0.0406 (11) | 0.0229 (9) | 0.0246 (9) | 0.0000 (7) | 0.0025 (7) | 0.0010 (7) |
N2 | 0.0475 (12) | 0.0287 (10) | 0.0348 (10) | 0.0044 (9) | 0.0045 (8) | −0.0014 (8) |
O1 | 0.0422 (9) | 0.0258 (8) | 0.0378 (9) | 0.0044 (6) | 0.0071 (7) | −0.0003 (6) |
O2 | 0.0436 (9) | 0.0320 (8) | 0.0244 (8) | 0.0003 (6) | −0.0019 (6) | 0.0000 (6) |
C1—N1 | 1.363 (3) | C10—H10B | 0.9800 |
C1—C2 | 1.378 (3) | C10—H10C | 0.9800 |
C1—C13 | 1.486 (3) | C11—O2 | 1.435 (2) |
C2—C12 | 1.433 (3) | C11—H11A | 0.9800 |
C2—C3 | 1.484 (3) | C11—H11B | 0.9800 |
C3—C4 | 1.488 (3) | C11—H11C | 0.9800 |
C3—H3A | 0.9900 | C12—N2 | 1.154 (3) |
C3—H3B | 0.9900 | C13—C14 | 1.393 (3) |
C4—C9 | 1.398 (3) | C13—C18 | 1.400 (3) |
C4—C5 | 1.408 (3) | C14—C15 | 1.386 (3) |
C5—O2 | 1.381 (2) | C14—H14 | 0.9500 |
C5—C6 | 1.381 (3) | C15—C16 | 1.381 (3) |
C6—C7 | 1.405 (3) | C15—H15 | 0.9500 |
C6—H6 | 0.9500 | C16—C17 | 1.386 (3) |
C7—C8 | 1.377 (3) | C16—H16 | 0.9500 |
C7—H7 | 0.9500 | C17—C18 | 1.395 (3) |
C8—O1 | 1.374 (2) | C17—H17 | 0.9500 |
C8—C9 | 1.413 (3) | C18—H18 | 0.9500 |
C10—O1 | 1.441 (2) | C9—N1 | 1.393 (2) |
C10—H10A | 0.9800 | N1—H1 | 0.8800 |
N1—C1—C2 | 120.29 (17) | O2—C11—H11A | 109.5 |
N1—C1—C13 | 115.53 (17) | O2—C11—H11B | 109.5 |
C2—C1—C13 | 124.18 (18) | H11A—C11—H11B | 109.5 |
C1—C2—C12 | 121.48 (17) | O2—C11—H11C | 109.5 |
C1—C2—C3 | 122.67 (18) | H11A—C11—H11C | 109.5 |
C12—C2—C3 | 115.85 (17) | H11B—C11—H11C | 109.5 |
C2—C3—C4 | 113.79 (17) | N2—C12—C2 | 175.5 (2) |
C2—C3—H3A | 108.8 | C14—C13—C18 | 119.03 (19) |
C4—C3—H3A | 108.8 | C14—C13—C1 | 120.34 (17) |
C2—C3—H3B | 108.8 | C18—C13—C1 | 120.61 (18) |
C4—C3—H3B | 108.8 | C15—C14—C13 | 120.5 (2) |
H3A—C3—H3B | 107.7 | C15—C14—H14 | 119.7 |
C9—C4—C5 | 118.87 (18) | C13—C14—H14 | 119.7 |
C9—C4—C3 | 120.23 (17) | C16—C15—C14 | 120.4 (2) |
C5—C4—C3 | 120.90 (18) | C16—C15—H15 | 119.8 |
O2—C5—C6 | 124.87 (17) | C14—C15—H15 | 119.8 |
O2—C5—C4 | 114.55 (17) | C15—C16—C17 | 119.9 (2) |
C6—C5—C4 | 120.58 (19) | C15—C16—H16 | 120.1 |
C5—C6—C7 | 119.86 (19) | C17—C16—H16 | 120.1 |
C5—C6—H6 | 120.1 | C16—C17—C18 | 120.2 (2) |
C7—C6—H6 | 120.1 | C16—C17—H17 | 119.9 |
C8—C7—C6 | 120.88 (19) | C18—C17—H17 | 119.9 |
C8—C7—H7 | 119.6 | C17—C18—C13 | 120.0 (2) |
C6—C7—H7 | 119.6 | C17—C18—H18 | 120.0 |
O1—C8—C7 | 126.04 (18) | C13—C18—H18 | 120.0 |
O1—C8—C9 | 114.84 (17) | N1—C9—C4 | 121.09 (17) |
C7—C8—C9 | 119.11 (19) | N1—C9—C8 | 118.22 (18) |
O1—C10—H10A | 109.5 | C4—C9—C8 | 120.68 (18) |
O1—C10—H10B | 109.5 | C1—N1—C9 | 121.88 (17) |
H10A—C10—H10B | 109.5 | C1—N1—H1 | 119.1 |
O1—C10—H10C | 109.5 | C9—N1—H1 | 119.1 |
H10A—C10—H10C | 109.5 | C8—O1—C10 | 116.18 (16) |
H10B—C10—H10C | 109.5 | C5—O2—C11 | 116.77 (16) |
N1—C1—C2—C12 | −176.67 (19) | C13—C14—C15—C16 | −0.1 (3) |
C13—C1—C2—C12 | 3.5 (3) | C14—C15—C16—C17 | −1.0 (3) |
N1—C1—C2—C3 | 2.6 (3) | C15—C16—C17—C18 | 0.7 (3) |
C13—C1—C2—C3 | −177.25 (19) | C16—C17—C18—C13 | 0.7 (3) |
C1—C2—C3—C4 | −2.0 (3) | C14—C13—C18—C17 | −1.8 (3) |
C12—C2—C3—C4 | 177.34 (17) | C1—C13—C18—C17 | 179.85 (19) |
C2—C3—C4—C9 | 0.9 (3) | C5—C4—C9—N1 | 179.80 (18) |
C2—C3—C4—C5 | −179.41 (18) | C3—C4—C9—N1 | −0.5 (3) |
C9—C4—C5—O2 | −179.88 (16) | C5—C4—C9—C8 | −1.2 (3) |
C3—C4—C5—O2 | 0.4 (3) | C3—C4—C9—C8 | 178.53 (19) |
C9—C4—C5—C6 | 0.6 (3) | O1—C8—C9—N1 | 0.9 (3) |
C3—C4—C5—C6 | −179.07 (19) | C7—C8—C9—N1 | −179.98 (18) |
O2—C5—C6—C7 | −179.32 (19) | O1—C8—C9—C4 | −178.15 (17) |
C4—C5—C6—C7 | 0.1 (3) | C7—C8—C9—C4 | 1.0 (3) |
C5—C6—C7—C8 | −0.3 (3) | C2—C1—N1—C9 | −2.1 (3) |
C6—C7—C8—O1 | 178.81 (19) | C13—C1—N1—C9 | 177.77 (17) |
C6—C7—C8—C9 | −0.2 (3) | C4—C9—N1—C1 | 1.1 (3) |
N1—C1—C13—C14 | −133.8 (2) | C8—C9—N1—C1 | −178.01 (18) |
C2—C1—C13—C14 | 46.0 (3) | C7—C8—O1—C10 | 1.1 (3) |
N1—C1—C13—C18 | 44.5 (3) | C9—C8—O1—C10 | −179.86 (18) |
C2—C1—C13—C18 | −135.6 (2) | C6—C5—O2—C11 | 6.0 (3) |
C18—C13—C14—C15 | 1.5 (3) | C4—C5—O2—C11 | −173.46 (18) |
C1—C13—C14—C15 | 179.86 (19) |
Experimental details
Crystal data | |
Chemical formula | C18H16N2O2 |
Mr | 292.33 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 3.9952 (3), 20.4544 (15), 17.7313 (13) |
β (°) | 95.976 (5) |
V (Å3) | 1441.12 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.27 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII |
Absorption correction | Multi-scan (SADABS: Sheldrick, 2002) |
Tmin, Tmax | 0.702, 0.996 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12491, 3292, 1975 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.133, 1.03 |
No. of reflections | 3292 |
No. of parameters | 201 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.29 |
Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
Acknowledgements
We are grateful to all personel of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algérie for their assistance.
References
Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouraiou, A., Belfaitah, A., Bouacida, S., Benard-Rocherulle, P. & Carboni, B. (2007). Acta Cryst. E63, o1626–o1628. CSD CrossRef IUCr Journals Google Scholar
Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333. CrossRef CAS Google Scholar
Bouraiou, A., Menasra, H., Debache, A., Rhouati, S. & Belfaitah, A. (2006). J. Soc. Alger. Chim. 16, 171–183. CAS Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2001). APEXII and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632–634. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lim, C. L., Pyo, S. H., Kim, T. Y., Yim, E. S. & Han, B. H. (1995). Bull. Korean Chem. Soc. 16, 374–377. CAS Google Scholar
Menasra, H., Kedjadja, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun. 35, 2779–2788. Web of Science CrossRef CAS Google Scholar
Moussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim. 12, 71–78. CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srikrishna, A., Reddy, T. J. & Viswajanani, R. (1996). Tetrahedron, 52, 1631–1636. CrossRef CAS Web of Science Google Scholar
Vierhapper, F. W. & Eliel, E. L. (1975). J. Org. Chem. 40, 2729–2734. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In quinoline and its derivatives it is usually the pyridine ring which is reduced first. Sodium in liquid ammonia converted quinoline to 1,2-dihydroquinoline (Dauphinee et al., 1978). 1,2,3,4-tetrahydroquinoline was obtained by catalytic hydrogenation and by reduction with borane and sodium cyanoborohydride (Srikrishna et al., 1996), 5,6,7,8-tetrhydroquinoline by catalytic hydrogenation over platinum oxide or 5% palladium or rhodium on carbon in triflouroacetic acid (Vierhapper et al., 1975). Vigorous hydrogenation gave cis and trans-decahydroquinoline. The reducing proprieties of hydrazine are due to its thermal decomposition to hydrogen and nitrogen. The heating of hydrazine with aromatic hydrocarbons at 160–280°C effected complete hydrogenation of the aromatic ring. On the other hand, zinc is used to a limited extent for reductions of double bonds conjugated with strongly polar groups and partial reduction of some aromatics. The majority of reductions with zinc are carried out in acids: hydrochloric, sulfuric, formic and especially acetic. In previous works, we were interested in the design and synthesis of new molecules that contain a quinolyl moiety (Benzerka et al., 2008; Ladraa et al., 2009, 2010, Moussaoui et al., 2002; Menasra et al., 2005; Belfaitah et al., 2006 and Bouraiou et al.,2006, 2007, 2008). In this paper, we report the structure determination of new compound that result from an unwanted reduction of the pyridine ring of 3-cyano-5,8-dimethoxy-2-phenylquinoline. Our attempt to create a tetrazine ring linked quinolyl moiety, using hydrazine in the presence of Cu(NO3)2.3H2O-Zn, was failed and led to 1,4-dihydro-5,8-dimethoxy-2-phenylquinoline-3-carbonitrile (I).
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of title compound contains a 1,4-dihydroquinolyl unit bearing a phenyl ring at position C-2, nitril group at C-3 and two methoxy at C-5 and C-8. The two rings of 1,4-dihydroquinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.17 (5)°. The phenyl ring form also with quinolyl plane a dihedral angle of 45.38 (6)°. The crystal packing can be described by two types of crossed layers which 1,4-dihydroquinolyl ring is parallel to (110) and (-110)planes respectively (Fig. 2). The crystal packing is stabilized by intramolecular hydrogen bond (N—H···O) and Van der Waals interactions, resulting in the formation of a three-dimensional network and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in table 1.