organic compounds
1-(6-Methyl-4-phenyl-2-sulfanylidene-1,2,3,4-tetrahydropyrimidin-5-yl)ethanone
aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net
In the title compound, C13H14N2OS, the heterocyclic ring adopts a flattened boat conformation with the plane through the four coplanar atoms making a dihedral angle of 86.90 (13)° with the phenyl ring, which adopts an axial orientation. The thionyl, acetyl and methyl groups all have equatorial orientations. Intermolecular N—H⋯O, N—H⋯S and C—H⋯O hydrogen bonds are found in the crystal structure.
Related literature
For chemical and biological applications of dihydropyrimidinone derivatives, see: Chitra et al. (2010). For their applications and for related structures, see: Anuradha et al. (2008, 2009a,b,c).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810031296/hg2697sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810031296/hg2697Isup2.hkl
A solution of acetylacetone (1.0012 g, 0.01 mol), benzaldehyde (1.06 g, 0.01 mol) and thiourea (1.149 g, 0.015 mol) was heated under reflux in the presence of calcium fluoride (0.0780 g, 0.001 mol) for 2 h (monitored by TLC). After completion of the reaction, the reaction mixture was cooled to room temperature and poured into crushed ice. The crude product containing also the catalyst was collected on a Buchner funnel by filtration. The mixture of the product and the catalyst was digested in methanol (40 ml). The undissolved catalyst was removed by filtration. The crude product was obtained by evaporation of methanol and further purified by recrystallization from hot ethanol to afford the pure title compound. Yield 96% (2.8 g).
The two N-bound H atoms were located in a difference Fourier map and refined freely; N1—H1 = 0.80 (6)Å and N3—H3 = 0.88 (4) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with Csp2—H = 0.93, C(methyl)—H = 0.96, and C(methine)—H = 0.98 Å; Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.
Dihydropyrimidinone derivatives exhibit a wide range of biological effects such as antibacterial and antifungal activities (Chitra et al., 2010). The crystal structures of four very closely related compounds have recently been reported [Anuradha et al., (2008, 2009a,b,c)]. This study of the title compound, was undertaken to compare the biological activity and structure of dihydropyrimidin-2(1H)-thione and its corresponding 2(1H)-one (Anuradha et al., 2008).
In the title molecule, C13H14N2OS, Fig.1., the heterocyclic ring adopts a flattened boat conformation with the plane through the four coplanar atoms (C2,N3,C5,C6) making a dihedral angle of 86.90 (13)° with the phenyl ring, which adopts an axial orientation. The thionyl, acetyl and methyl groups all have equatorial orientations. Intermolecular N1—H1···O15, N3—H3···S2 and C61—H61B···O15 hydrogen bonds are found in the
(Fig. 2, Table 1).For chemical and biological applications of dihydropyrimidinone derivatives, see: Chitra et al. (2010). For their applications and for related structures, see: Anuradha et al. (2008, 2009a,b,c).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).C13H14N2OS | F(000) = 520 |
Mr = 246.33 | Dx = 1.340 Mg m−3 |
Monoclinic, P21/c | Melting point: 523.5 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54184 Å |
a = 7.8849 (10) Å | Cell parameters from 3041 reflections |
b = 7.2054 (5) Å | θ = 5.6–77.1° |
c = 21.555 (3) Å | µ = 2.23 mm−1 |
β = 94.401 (12)° | T = 295 K |
V = 1221.0 (2) Å3 | Prism, colourless |
Z = 4 | 0.44 × 0.31 × 0.16 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2531 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2226 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 77.3°, θmin = 5.6° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −5→9 |
Tmin = 0.307, Tmax = 1.000 | l = −24→27 |
4776 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.081 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.236 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.22 | w = 1/[σ2(Fo2) + (0.0912P)2 + 1.9142P] where P = (Fo2 + 2Fc2)/3 |
2531 reflections | (Δ/σ)max = 0.001 |
164 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C13H14N2OS | V = 1221.0 (2) Å3 |
Mr = 246.33 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 7.8849 (10) Å | µ = 2.23 mm−1 |
b = 7.2054 (5) Å | T = 295 K |
c = 21.555 (3) Å | 0.44 × 0.31 × 0.16 mm |
β = 94.401 (12)° |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2531 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2226 reflections with I > 2σ(I) |
Tmin = 0.307, Tmax = 1.000 | Rint = 0.029 |
4776 measured reflections |
R[F2 > 2σ(F2)] = 0.081 | 0 restraints |
wR(F2) = 0.236 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.22 | Δρmax = 0.62 e Å−3 |
2531 reflections | Δρmin = −0.30 e Å−3 |
164 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S2 | 0.49206 (14) | −0.24803 (15) | 0.06167 (5) | 0.0540 (4) | |
O15 | 0.7124 (6) | 0.5124 (5) | 0.21330 (16) | 0.0771 (13) | |
N1 | 0.6473 (5) | −0.1160 (5) | 0.16583 (16) | 0.0512 (11) | |
N3 | 0.5890 (4) | 0.0977 (5) | 0.08897 (16) | 0.0456 (10) | |
C2 | 0.5819 (5) | −0.0771 (5) | 0.10664 (18) | 0.0444 (11) | |
C4 | 0.6849 (5) | 0.2449 (5) | 0.12284 (18) | 0.0441 (11) | |
C5 | 0.7078 (5) | 0.1972 (5) | 0.19220 (17) | 0.0432 (11) | |
C6 | 0.6954 (5) | 0.0179 (6) | 0.21040 (18) | 0.0461 (11) | |
C15 | 0.7438 (6) | 0.3575 (6) | 0.23320 (19) | 0.0516 (14) | |
C16 | 0.8242 (9) | 0.3391 (8) | 0.2982 (2) | 0.080 (2) | |
C41 | 0.8574 (5) | 0.2795 (5) | 0.09762 (17) | 0.0444 (11) | |
C42 | 0.9599 (6) | 0.1317 (7) | 0.0816 (2) | 0.0585 (16) | |
C43 | 1.1194 (6) | 0.1664 (8) | 0.0619 (2) | 0.0673 (17) | |
C44 | 1.1803 (6) | 0.3452 (9) | 0.0582 (2) | 0.0661 (16) | |
C45 | 1.0782 (6) | 0.4909 (8) | 0.0726 (2) | 0.0617 (16) | |
C46 | 0.9178 (6) | 0.4592 (7) | 0.0921 (2) | 0.0548 (12) | |
C61 | 0.7244 (7) | −0.0627 (6) | 0.27457 (19) | 0.0603 (14) | |
H1 | 0.642 (7) | −0.225 (8) | 0.173 (2) | 0.061 (15)* | |
H3 | 0.565 (5) | 0.118 (6) | 0.049 (2) | 0.047 (11)* | |
H4 | 0.61861 | 0.35972 | 0.11825 | 0.0528* | |
H16A | 0.86487 | 0.45818 | 0.31279 | 0.1193* | |
H16B | 0.91778 | 0.25375 | 0.29855 | 0.1193* | |
H16C | 0.74161 | 0.29367 | 0.32496 | 0.1193* | |
H42 | 0.92086 | 0.01038 | 0.08427 | 0.0701* | |
H43 | 1.18682 | 0.06759 | 0.05095 | 0.0807* | |
H44 | 1.28923 | 0.36677 | 0.04607 | 0.0796* | |
H45 | 1.11727 | 0.61201 | 0.06913 | 0.0739* | |
H46 | 0.84985 | 0.55915 | 0.10164 | 0.0657* | |
H61A | 0.84360 | −0.05933 | 0.28748 | 0.0904* | |
H61B | 0.68524 | −0.18890 | 0.27422 | 0.0904* | |
H61C | 0.66278 | 0.00853 | 0.30303 | 0.0904* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S2 | 0.0612 (7) | 0.0456 (6) | 0.0530 (6) | −0.0106 (5) | −0.0089 (4) | −0.0029 (4) |
O15 | 0.128 (3) | 0.0362 (17) | 0.065 (2) | 0.0011 (19) | −0.007 (2) | −0.0031 (14) |
N1 | 0.070 (2) | 0.0316 (17) | 0.0496 (18) | −0.0030 (16) | −0.0112 (15) | 0.0024 (14) |
N3 | 0.0482 (17) | 0.0417 (18) | 0.0448 (17) | −0.0042 (14) | −0.0101 (13) | 0.0047 (14) |
C2 | 0.0420 (18) | 0.041 (2) | 0.049 (2) | −0.0012 (15) | −0.0037 (15) | −0.0004 (16) |
C4 | 0.049 (2) | 0.0365 (19) | 0.0455 (19) | −0.0013 (15) | −0.0050 (15) | 0.0027 (15) |
C5 | 0.0472 (19) | 0.0370 (19) | 0.0447 (19) | 0.0005 (15) | −0.0002 (15) | 0.0012 (15) |
C6 | 0.053 (2) | 0.041 (2) | 0.0433 (19) | −0.0006 (17) | −0.0027 (15) | 0.0009 (16) |
C15 | 0.069 (3) | 0.036 (2) | 0.050 (2) | −0.0061 (18) | 0.0050 (18) | −0.0008 (16) |
C16 | 0.123 (5) | 0.055 (3) | 0.058 (3) | −0.021 (3) | −0.015 (3) | −0.006 (2) |
C41 | 0.0477 (19) | 0.045 (2) | 0.0390 (17) | 0.0012 (16) | −0.0063 (14) | 0.0027 (15) |
C42 | 0.062 (3) | 0.050 (2) | 0.063 (3) | 0.004 (2) | 0.001 (2) | 0.005 (2) |
C43 | 0.055 (3) | 0.075 (3) | 0.072 (3) | 0.013 (2) | 0.005 (2) | −0.001 (3) |
C44 | 0.048 (2) | 0.093 (4) | 0.057 (2) | −0.008 (2) | 0.0027 (19) | 0.005 (3) |
C45 | 0.061 (3) | 0.068 (3) | 0.055 (2) | −0.014 (2) | −0.002 (2) | 0.003 (2) |
C46 | 0.060 (2) | 0.052 (2) | 0.052 (2) | −0.006 (2) | 0.0009 (18) | 0.0023 (18) |
C61 | 0.087 (3) | 0.044 (2) | 0.048 (2) | −0.005 (2) | −0.007 (2) | 0.0057 (18) |
S2—C2 | 1.689 (4) | C42—C43 | 1.381 (7) |
O15—C15 | 1.214 (6) | C43—C44 | 1.379 (8) |
N1—C2 | 1.368 (5) | C44—C45 | 1.373 (8) |
N1—C6 | 1.394 (5) | C45—C46 | 1.382 (7) |
N3—C2 | 1.318 (5) | C4—H4 | 0.9800 |
N3—C4 | 1.465 (5) | C16—H16A | 0.9600 |
N1—H1 | 0.80 (6) | C16—H16B | 0.9600 |
N3—H3 | 0.88 (4) | C16—H16C | 0.9600 |
C4—C41 | 1.524 (6) | C42—H42 | 0.9300 |
C4—C5 | 1.531 (5) | C43—H43 | 0.9300 |
C5—C6 | 1.356 (6) | C44—H44 | 0.9300 |
C5—C15 | 1.469 (6) | C45—H45 | 0.9300 |
C6—C61 | 1.501 (6) | C46—H46 | 0.9300 |
C15—C16 | 1.499 (6) | C61—H61A | 0.9600 |
C41—C46 | 1.388 (6) | C61—H61B | 0.9600 |
C41—C42 | 1.396 (6) | C61—H61C | 0.9600 |
S2···N3i | 3.436 (4) | C16···H61C | 2.7100 |
S2···H45ii | 3.1400 | C16···H61A | 2.8900 |
S2···H16Ciii | 3.1900 | C42···H16Aix | 2.8600 |
S2···H3i | 2.57 (4) | C43···H16Aix | 3.0800 |
S2···H44iv | 3.1200 | C45···H61Aviii | 3.0500 |
O15···N1v | 2.898 (5) | C46···H61Aviii | 3.0900 |
O15···C41 | 3.283 (5) | C61···H16B | 2.7700 |
O15···C46 | 3.201 (6) | C61···H16C | 2.7900 |
O15···C61v | 3.333 (6) | H1···O15vi | 2.14 (6) |
O15···H1v | 2.14 (6) | H1···H61B | 2.2000 |
O15···H4 | 2.3900 | H3···S2i | 2.57 (4) |
O15···H46 | 2.7400 | H4···O15 | 2.3900 |
O15···H61Bv | 2.5400 | H4···H46 | 2.3700 |
N1···O15vi | 2.898 (5) | H16A···C42viii | 2.8600 |
N3···S2i | 3.436 (4) | H16A···C43viii | 3.0800 |
N3···H42 | 2.7000 | H16B···C6 | 3.0100 |
C2···C42 | 3.418 (6) | H16B···C61 | 2.7700 |
C15···C46 | 3.509 (6) | H16B···H61A | 2.3400 |
C16···C61 | 3.033 (7) | H16C···C61 | 2.7900 |
C41···O15 | 3.283 (5) | H16C···H61C | 2.1900 |
C42···C2 | 3.418 (6) | H16C···S2x | 3.1900 |
C44···C46vii | 3.563 (6) | H42···N3 | 2.7000 |
C44···C45vii | 3.552 (7) | H42···C2 | 2.8200 |
C45···C46vii | 3.571 (6) | H44···S2iv | 3.1200 |
C45···C61viii | 3.555 (6) | H45···S2xi | 3.1400 |
C45···C44vii | 3.552 (7) | H46···O15 | 2.7400 |
C45···C45vii | 3.277 (6) | H46···H4 | 2.3700 |
C46···C15 | 3.509 (6) | H61A···C16 | 2.8900 |
C46···O15 | 3.201 (6) | H61A···H16B | 2.3400 |
C46···C45vii | 3.571 (6) | H61A···C45ix | 3.0500 |
C46···C44vii | 3.563 (6) | H61A···C46ix | 3.0900 |
C61···C45ix | 3.555 (6) | H61B···O15vi | 2.5400 |
C61···C16 | 3.033 (7) | H61B···H1 | 2.2000 |
C61···O15vi | 3.333 (6) | H61C···C15 | 3.0200 |
C2···H42 | 2.8200 | H61C···C16 | 2.7100 |
C6···H16B | 3.0100 | H61C···H16C | 2.1900 |
C15···H61C | 3.0200 | ||
C2—N1—C6 | 124.4 (3) | C44—C45—C46 | 120.6 (5) |
C2—N3—C4 | 125.4 (3) | C41—C46—C45 | 120.6 (5) |
C2—N1—H1 | 111 (3) | N3—C4—H4 | 108.00 |
C6—N1—H1 | 124 (3) | C5—C4—H4 | 108.00 |
C2—N3—H3 | 116 (3) | C41—C4—H4 | 108.00 |
C4—N3—H3 | 116 (3) | C15—C16—H16A | 109.00 |
S2—C2—N1 | 119.8 (3) | C15—C16—H16B | 109.00 |
S2—C2—N3 | 123.8 (3) | C15—C16—H16C | 110.00 |
N1—C2—N3 | 116.4 (3) | H16A—C16—H16B | 109.00 |
N3—C4—C5 | 110.0 (3) | H16A—C16—H16C | 109.00 |
C5—C4—C41 | 110.1 (3) | H16B—C16—H16C | 109.00 |
N3—C4—C41 | 112.4 (3) | C41—C42—H42 | 120.00 |
C4—C5—C6 | 119.4 (3) | C43—C42—H42 | 120.00 |
C4—C5—C15 | 114.5 (3) | C42—C43—H43 | 119.00 |
C6—C5—C15 | 126.2 (4) | C44—C43—H43 | 119.00 |
C5—C6—C61 | 128.7 (4) | C43—C44—H44 | 120.00 |
N1—C6—C5 | 118.8 (4) | C45—C44—H44 | 120.00 |
N1—C6—C61 | 112.4 (4) | C44—C45—H45 | 120.00 |
O15—C15—C16 | 118.1 (4) | C46—C45—H45 | 120.00 |
C5—C15—C16 | 122.8 (4) | C41—C46—H46 | 120.00 |
O15—C15—C5 | 119.0 (4) | C45—C46—H46 | 120.00 |
C4—C41—C42 | 120.9 (3) | C6—C61—H61A | 110.00 |
C4—C41—C46 | 120.3 (3) | C6—C61—H61B | 109.00 |
C42—C41—C46 | 118.8 (4) | C6—C61—H61C | 109.00 |
C41—C42—C43 | 119.7 (5) | H61A—C61—H61B | 109.00 |
C42—C43—C44 | 121.1 (5) | H61A—C61—H61C | 109.00 |
C43—C44—C45 | 119.2 (5) | H61B—C61—H61C | 109.00 |
C6—N1—C2—S2 | −167.7 (3) | C4—C5—C6—N1 | −5.6 (6) |
C6—N1—C2—N3 | 10.2 (6) | C4—C5—C6—C61 | 175.5 (4) |
C2—N1—C6—C5 | −12.3 (6) | C15—C5—C6—N1 | 175.0 (4) |
C2—N1—C6—C61 | 166.8 (4) | C15—C5—C6—C61 | −3.9 (7) |
C4—N3—C2—S2 | −171.4 (3) | C4—C5—C15—O15 | 17.8 (6) |
C4—N3—C2—N1 | 10.9 (6) | C4—C5—C15—C16 | −159.8 (5) |
C2—N3—C4—C5 | −25.7 (5) | C6—C5—C15—O15 | −162.8 (5) |
C2—N3—C4—C41 | 97.4 (4) | C6—C5—C15—C16 | 19.6 (7) |
N3—C4—C5—C6 | 22.0 (5) | C4—C41—C42—C43 | −176.7 (4) |
N3—C4—C5—C15 | −158.6 (3) | C46—C41—C42—C43 | 1.3 (6) |
C41—C4—C5—C6 | −102.5 (4) | C4—C41—C46—C45 | 176.3 (4) |
C41—C4—C5—C15 | 77.0 (4) | C42—C41—C46—C45 | −1.6 (6) |
N3—C4—C41—C42 | −42.5 (5) | C41—C42—C43—C44 | 0.5 (7) |
N3—C4—C41—C46 | 139.6 (4) | C42—C43—C44—C45 | −2.0 (7) |
C5—C4—C41—C42 | 80.5 (4) | C43—C44—C45—C46 | 1.6 (7) |
C5—C4—C41—C46 | −97.4 (4) | C44—C45—C46—C41 | 0.2 (7) |
Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y−1, z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+2, −y, −z; (v) x, y+1, z; (vi) x, y−1, z; (vii) −x+2, −y+1, −z; (viii) −x+2, y+1/2, −z+1/2; (ix) −x+2, y−1/2, −z+1/2; (x) −x+1, y+1/2, −z+1/2; (xi) x+1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O15vi | 0.80 (6) | 2.14 (6) | 2.898 (5) | 158 (5) |
N3—H3···S2i | 0.88 (4) | 2.57 (4) | 3.436 (4) | 168 (4) |
C61—H61B···O15vi | 0.96 | 2.54 | 3.333 (6) | 140 |
Symmetry codes: (i) −x+1, −y, −z; (vi) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C13H14N2OS |
Mr | 246.33 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 7.8849 (10), 7.2054 (5), 21.555 (3) |
β (°) | 94.401 (12) |
V (Å3) | 1221.0 (2) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.23 |
Crystal size (mm) | 0.44 × 0.31 × 0.16 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.307, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4776, 2531, 2226 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.633 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.081, 0.236, 1.22 |
No. of reflections | 2531 |
No. of parameters | 164 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.62, −0.30 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O15i | 0.80 (6) | 2.14 (6) | 2.898 (5) | 158 (5) |
N3—H3···S2ii | 0.88 (4) | 2.57 (4) | 3.436 (4) | 168 (4) |
C61—H61B···O15i | 0.96 | 2.54 | 3.333 (6) | 140 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z. |
Footnotes
‡Current address: Department of Chemistry, Sri Jayaram Engineering College, Cuddalore 607 003, Tamilnadu, India.
Acknowledgements
RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2008). Acta Cryst. E64, o2474–o2475. Web of Science CSD CrossRef IUCr Journals Google Scholar
Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009a). Acta Cryst. E65, o564–o565. Web of Science CSD CrossRef IUCr Journals Google Scholar
Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009b). Acta Cryst. E65, o3036. Web of Science CSD CrossRef IUCr Journals Google Scholar
Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009c). Acta Cryst. E65, o3068. Web of Science CSD CrossRef IUCr Journals Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Chitra, S., Devanathan, D. & Pandiarajan, K. (2010). Eur. J. Med. Chem. 45, 367–371. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dihydropyrimidinone derivatives exhibit a wide range of biological effects such as antibacterial and antifungal activities (Chitra et al., 2010). The crystal structures of four very closely related compounds have recently been reported [Anuradha et al., (2008, 2009a,b,c)]. This study of the title compound, was undertaken to compare the biological activity and structure of dihydropyrimidin-2(1H)-thione and its corresponding 2(1H)-one (Anuradha et al., 2008).
In the title molecule, C13H14N2OS, Fig.1., the heterocyclic ring adopts a flattened boat conformation with the plane through the four coplanar atoms (C2,N3,C5,C6) making a dihedral angle of 86.90 (13)° with the phenyl ring, which adopts an axial orientation. The thionyl, acetyl and methyl groups all have equatorial orientations. Intermolecular N1—H1···O15, N3—H3···S2 and C61—H61B···O15 hydrogen bonds are found in the crystal structure (Fig. 2, Table 1).