organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,2,2-Tetra­kis(1,3-benzo­thia­zol-2-yl)ethene chloro­form disolvate

aDepartment of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, South Africa
*Correspondence e-mail: lianger@sun.ac.za

(Received 10 August 2010; accepted 12 August 2010; online 21 August 2010)

The asymmetric unit of the title solvate, C30H16N4S4·2CHCl3, contains one half-molecule of tetrakis(2-benzothiazolyl)ethene, the complete molecule being generated by inversion symmetry, and one molecule of chloroform. Pairs of the benzothia­zole rings attached to the same carbon atom are almost perpendicular to each other, with an angle between planes of 85.74 (4)°. In the crystal, weak C—H⋯N and C—H⋯Cl interactions generate a three-dimensional network.

Related literature

For our recent studies on gold chemistry with heterocycles, see: Strasser et al. (2010[Strasser, C. E., Cronje, S. & Raubenheimer, H. G. (2010). New J. Chem. 34, 458-469.]); Gabrielli et al. (2009[Gabrielli, W. F., Nogai, S. D., McKenzie, J. M., Cronje, S. & Raubenheimer, H. G. (2009). New J. Chem. 33, 2208-2218.]). For the crystal structure of the reduced form of the title compound, see: Boga et al. (1999[Boga, C., Bonamartini, A. C., Forlani, L., Mezzina, E., Pompa, A., Sgarabotto, P., Spinelli, D. & Todesco, P. E. (1999). J. Chem. Res. (S), 7, 410-411.]). For bond lengths of benzothia­zole rings in related compounds, see: Pavlović et al. (2007[Pavlović, G., Soldin, Z., Popović, Ž. & Tralić-Kulenović, V. (2007). Polyhedron, 26, 5162-5170.]); Pindinelli et al. (2007[Pindinelli, E., Pilati, T. & Troisi, L. (2007). Eur. J. Org. Chem. 35, 5926-5933.]); Cox et al. (1993[Cox, O., Li, Y. J., Gao, Y. & Hernández, W. J. (1993). J. Crystallogr. Spectrosc. Res. 23, 825-828.]). For details on the cut-off applied for the C—H⋯Cl inter­actions, see: Brammer et al. (2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]). For the synthesis of AuCl(PPh3), see: Bruce et al. (1989[Bruce, M. I., Nicholson, B. K. & Shawkataly, O. B. (1989). Inorg. Synth. 26, 324-326.]).

[Scheme 1]

Experimental

Crystal data
  • C30H16N4S4·2CHCl3

  • Mr = 799.44

  • Monoclinic, P 21 /c

  • a = 9.955 (2) Å

  • b = 16.299 (3) Å

  • c = 11.569 (2) Å

  • β = 115.61 (3)°

  • V = 1692.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 0.891

  • 19051 measured reflections

  • 4018 independent reflections

  • 3704 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.07

  • 4018 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯N12i 1.00 2.23 3.148 (3) 153
C6—H6⋯Cl23ii 0.95 2.90 3.690 (2) 141
C7—H7⋯N3iii 0.95 2.66 3.300 (3) 125
C8—H8⋯N3iii 0.95 2.70 3.306 (2) 122
C17—H17⋯N3iv 0.95 2.71 3.565 (3) 149
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title chloroform solvate was isolated during ongoing research involving gold complexes and N-heterocycles (Strasser et al. 2010; Gabrielli et al. 2009) as a product of oxidation and dimerization of bis(2-benzothiazolyl)methane with chloroauric acid. The asymmetric unit consists of half of the tetrakis(2-benzothiazolyl)ethene molecule (the inversion centre generates the other half) and one molecule of chloroform (Fig. 1). The crystal structure of the reduced form of this compound, namely tetrakis(2-benzothiazolyl)ethane dichloromethane solvate was reported earlier by Boga et al. (1999). The conformations adopted by the benzothiazole rings differ significantly in the two molecules. In the reduced compound the pairs of the benzothiazole rings attached to the same carbon were more or less co-planar whereas in the compound presented here the planes of the corresponding rings are almost perpendicular to each other with an angle between the planes of 85.74 (4)°. The bond length of 1.359 (3) Å for C1—C1i (symmetry operation (i): 2 - x, -y + 1, 2 - z) confirms the formation of a double bond. As could be expected, in the reduced form the corresponding (single) bond is ca 0.1 Å longer. The bond lengths for the benzothiazole rings are in good agreement with previously reported values (Pavlović et al., 2007; Pindinelli et al., 2007; Cox et al., 1993). N3 from one of the benzothiazole rings acts as an acceptor of three C—H···N weak hydrogen bonds orginating from neighbouring benzothiazole rings (Table 1) resulting in the formation of a three-dimensional assembly. The nitrogen atoms from another benzothiazole ring, namely N12, participate in weak interactions between chloroform and tetrakis(2-benzothiazolyl)ethene molecules (C20—H20···N12i with a C···N distance of 3.148 (3) Å). Those together with interactions between C6—H6···Cl23ii atoms (symmetry operation (ii): -x + 1, y + 1/2, 3/2 - z) with a C···Cl distance of 3.690 (2) (Brammer et al., 2001) further support the resulting packing (Fig. 2).

Related literature top

For our recent studies on gold chemistry with heterocycles, see: Strasser et al. (2010); Gabrielli et al. (2009). For the crystal structure of the reduced form of the title compound, see: Boga et al. (1999). For bond lengths of benzothiazole rings in related compounds, see: Pavlović et al. (2007); Pindinelli et al. (2007); Cox et al. (1993). For details on the cut-off applied for the C—H···Cl interactions, see: Brammer et al. (2001). For the synthesis of AuCl(PPh3), see: Bruce et al. (1989).

Experimental top

A solution of bis(2-benzothiazolyl)methane in THF was treated with an equimolar quantity of n-BuLi in n-hexane at 203 K. The resulting blue fluorescent mixture was treated with a solution of one molar equivalent of AuCl(PPh3) (Bruce et al., 1989) in THF and stirred for 2 h. The solvent was removed under vacuum. Crystallization of the residue from a chloroform solution layered with n-hexane at 253 K afforded a mixture of yellow and orange crystals. Single crystal X-ray studies of the yellow crystals showed the oxidative dimerization of the bis(2-benzothiazolyl)methane to yield the title compound.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.95 and 1 Å for aromatic and chloroform H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

The title chloroform solvate was isolated during ongoing research involving gold complexes and N-heterocycles (Strasser et al. 2010; Gabrielli et al. 2009) as a product of oxidation and dimerization of bis(2-benzothiazolyl)methane with chloroauric acid. The asymmetric unit consists of half of the tetrakis(2-benzothiazolyl)ethene molecule (the inversion centre generates the other half) and one molecule of chloroform (Fig. 1). The crystal structure of the reduced form of this compound, namely tetrakis(2-benzothiazolyl)ethane dichloromethane solvate was reported earlier by Boga et al. (1999). The conformations adopted by the benzothiazole rings differ significantly in the two molecules. In the reduced compound the pairs of the benzothiazole rings attached to the same carbon were more or less co-planar whereas in the compound presented here the planes of the corresponding rings are almost perpendicular to each other with an angle between the planes of 85.74 (4)°. The bond length of 1.359 (3) Å for C1—C1i (symmetry operation (i): 2 - x, -y + 1, 2 - z) confirms the formation of a double bond. As could be expected, in the reduced form the corresponding (single) bond is ca 0.1 Å longer. The bond lengths for the benzothiazole rings are in good agreement with previously reported values (Pavlović et al., 2007; Pindinelli et al., 2007; Cox et al., 1993). N3 from one of the benzothiazole rings acts as an acceptor of three C—H···N weak hydrogen bonds orginating from neighbouring benzothiazole rings (Table 1) resulting in the formation of a three-dimensional assembly. The nitrogen atoms from another benzothiazole ring, namely N12, participate in weak interactions between chloroform and tetrakis(2-benzothiazolyl)ethene molecules (C20—H20···N12i with a C···N distance of 3.148 (3) Å). Those together with interactions between C6—H6···Cl23ii atoms (symmetry operation (ii): -x + 1, y + 1/2, 3/2 - z) with a C···Cl distance of 3.690 (2) (Brammer et al., 2001) further support the resulting packing (Fig. 2).

For our recent studies on gold chemistry with heterocycles, see: Strasser et al. (2010); Gabrielli et al. (2009). For the crystal structure of the reduced form of the title compound, see: Boga et al. (1999). For bond lengths of benzothiazole rings in related compounds, see: Pavlović et al. (2007); Pindinelli et al. (2007); Cox et al. (1993). For details on the cut-off applied for the C—H···Cl interactions, see: Brammer et al. (2001). For the synthesis of AuCl(PPh3), see: Bruce et al. (1989).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled ones by the symmetry operation (i) 2 - x, 1 - y, 2 - z.
[Figure 2] Fig. 2. Representation of the packing viewed down the a axis; weak C—H···N3 interactions are indicated by orange dashed lines, C20—H20···N12 and C6—H6···Cl23 by yellow and light blue dashed lines, respectively.
1,1,2,2-Tetrakis(1,3-benzothiazol-2-yl)ethene chloroform disolvate top
Crystal data top
C30H16N4S4·2CHCl3F(000) = 808
Mr = 799.44Dx = 1.568 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2580 reflections
a = 9.955 (2) Åθ = 2.7–27.5°
b = 16.299 (3) ŵ = 0.79 mm1
c = 11.569 (2) ÅT = 100 K
β = 115.61 (3)°Block, yellow
V = 1692.8 (6) Å30.35 × 0.25 × 0.15 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
4018 independent reflections
Radiation source: fine-focus sealed tube3704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1212
Tmin = 0.770, Tmax = 0.891k = 2121
19051 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0425P)2 + 1.4464P]
where P = (Fo2 + 2Fc2)/3
4018 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C30H16N4S4·2CHCl3V = 1692.8 (6) Å3
Mr = 799.44Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.955 (2) ŵ = 0.79 mm1
b = 16.299 (3) ÅT = 100 K
c = 11.569 (2) Å0.35 × 0.25 × 0.15 mm
β = 115.61 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4018 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3704 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.891Rint = 0.037
19051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.07Δρmax = 0.83 e Å3
4018 reflectionsΔρmin = 0.62 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.94075 (18)0.52372 (10)0.99285 (15)0.0127 (3)
C20.87364 (18)0.58940 (10)0.89861 (15)0.0123 (3)
N30.76258 (16)0.63137 (9)0.90007 (14)0.0143 (3)
C40.71780 (18)0.69236 (10)0.80832 (16)0.0139 (3)
C50.6029 (2)0.74885 (11)0.78653 (17)0.0183 (3)
H50.54770.74730.83600.022*
C60.57244 (19)0.80648 (11)0.69183 (17)0.0179 (3)
H60.49500.84510.67610.021*
C70.65214 (19)0.80981 (10)0.61813 (16)0.0167 (3)
H70.62740.85020.55290.020*
C80.76687 (19)0.75521 (11)0.63852 (17)0.0171 (3)
H80.82200.75770.58900.020*
C90.79844 (18)0.69662 (10)0.73415 (16)0.0139 (3)
S100.93325 (5)0.62064 (3)0.78321 (4)0.01696 (11)
C110.86666 (17)0.51295 (10)1.08024 (16)0.0122 (3)
N120.91748 (16)0.54510 (9)1.19354 (14)0.0138 (3)
C130.82944 (19)0.52252 (10)1.25436 (16)0.0146 (3)
C140.8538 (2)0.54653 (12)1.37835 (17)0.0203 (4)
H140.93410.58181.42780.024*
C150.7579 (2)0.51753 (13)1.42658 (18)0.0248 (4)
H150.77330.53281.51060.030*
C160.6383 (2)0.46595 (13)1.35398 (19)0.0247 (4)
H160.57490.44651.39020.030*
C170.6109 (2)0.44282 (12)1.23095 (18)0.0210 (4)
H170.52890.40851.18140.025*
C180.70809 (19)0.47171 (10)1.18186 (16)0.0153 (3)
S190.70563 (5)0.45367 (3)1.03337 (4)0.01547 (11)
C200.7989 (2)0.34163 (12)0.71325 (18)0.0233 (4)
H200.89390.36690.72090.028*
Cl210.72698 (8)0.27883 (4)0.57692 (6)0.04317 (16)
Cl220.83624 (6)0.28346 (4)0.85199 (5)0.03533 (14)
Cl230.67054 (6)0.42068 (3)0.69781 (5)0.02985 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0136 (7)0.0128 (7)0.0119 (7)0.0026 (6)0.0058 (6)0.0015 (6)
C20.0138 (7)0.0128 (7)0.0117 (7)0.0004 (6)0.0068 (6)0.0001 (6)
N30.0143 (7)0.0146 (7)0.0149 (7)0.0002 (5)0.0070 (6)0.0014 (5)
C40.0138 (8)0.0140 (8)0.0141 (7)0.0007 (6)0.0062 (6)0.0002 (6)
C50.0184 (8)0.0198 (8)0.0200 (8)0.0040 (7)0.0115 (7)0.0027 (7)
C60.0171 (8)0.0161 (8)0.0201 (8)0.0044 (6)0.0077 (7)0.0027 (7)
C70.0176 (8)0.0146 (8)0.0155 (8)0.0004 (6)0.0050 (7)0.0029 (6)
C80.0177 (8)0.0183 (8)0.0172 (8)0.0007 (7)0.0094 (7)0.0032 (7)
C90.0138 (8)0.0130 (7)0.0155 (8)0.0016 (6)0.0068 (6)0.0013 (6)
S100.0184 (2)0.0190 (2)0.0184 (2)0.00666 (16)0.01248 (17)0.00728 (16)
C110.0116 (7)0.0108 (7)0.0140 (7)0.0012 (6)0.0054 (6)0.0022 (6)
N120.0138 (7)0.0142 (7)0.0143 (7)0.0017 (5)0.0070 (6)0.0013 (5)
C130.0144 (8)0.0144 (8)0.0157 (8)0.0037 (6)0.0074 (6)0.0027 (6)
C140.0202 (9)0.0250 (9)0.0164 (8)0.0022 (7)0.0085 (7)0.0005 (7)
C150.0273 (10)0.0347 (11)0.0168 (9)0.0062 (8)0.0136 (8)0.0035 (8)
C160.0230 (9)0.0324 (10)0.0256 (10)0.0055 (8)0.0169 (8)0.0095 (8)
C170.0170 (8)0.0250 (9)0.0234 (9)0.0002 (7)0.0109 (7)0.0054 (7)
C180.0152 (8)0.0160 (8)0.0158 (8)0.0026 (6)0.0077 (7)0.0031 (6)
S190.0146 (2)0.0181 (2)0.0143 (2)0.00416 (15)0.00682 (16)0.00119 (15)
C200.0240 (9)0.0256 (10)0.0243 (9)0.0075 (7)0.0143 (8)0.0064 (7)
Cl210.0606 (4)0.0355 (3)0.0312 (3)0.0043 (3)0.0178 (3)0.0158 (2)
Cl220.0303 (3)0.0464 (3)0.0305 (3)0.0025 (2)0.0143 (2)0.0093 (2)
Cl230.0364 (3)0.0275 (3)0.0333 (3)0.0002 (2)0.0222 (2)0.00071 (19)
Geometric parameters (Å, º) top
C1—C1i1.359 (3)C11—S191.7453 (17)
C1—C21.467 (2)N12—C131.390 (2)
C1—C111.497 (2)C13—C141.403 (2)
C2—N31.306 (2)C13—C181.405 (2)
C2—S101.7546 (16)C14—C151.380 (3)
N3—C41.380 (2)C14—H140.9500
C4—C51.404 (2)C15—C161.402 (3)
C4—C91.408 (2)C15—H150.9500
C5—C61.374 (2)C16—C171.381 (3)
C5—H50.9500C16—H160.9500
C6—C71.394 (2)C17—C181.398 (2)
C6—H60.9500C17—H170.9500
C7—C81.385 (2)C18—S191.7327 (18)
C7—H70.9500C20—Cl211.753 (2)
C8—C91.391 (2)C20—Cl221.760 (2)
C8—H80.9500C20—Cl231.769 (2)
C9—S101.7315 (17)C20—H201.0000
C11—N121.294 (2)
C1i—C1—C2126.72 (19)C1—C11—S19120.63 (12)
C1i—C1—C11120.41 (19)C11—N12—C13110.45 (14)
C2—C1—C11112.86 (14)N12—C13—C14125.14 (16)
N3—C2—C1119.25 (14)N12—C13—C18114.94 (15)
N3—C2—S10115.11 (12)C14—C13—C18119.93 (16)
C1—C2—S10125.61 (12)C15—C14—C13118.27 (18)
C2—N3—C4111.16 (14)C15—C14—H14120.9
N3—C4—C5125.30 (15)C13—C14—H14120.9
N3—C4—C9115.13 (15)C14—C15—C16121.31 (18)
C5—C4—C9119.56 (15)C14—C15—H15119.3
C6—C5—C4118.26 (16)C16—C15—H15119.3
C6—C5—H5120.9C17—C16—C15121.31 (17)
C4—C5—H5120.9C17—C16—H16119.3
C5—C6—C7121.77 (16)C15—C16—H16119.3
C5—C6—H6119.1C16—C17—C18117.61 (18)
C7—C6—H6119.1C16—C17—H17121.2
C8—C7—C6121.06 (16)C18—C17—H17121.2
C8—C7—H7119.5C17—C18—C13121.56 (17)
C6—C7—H7119.5C17—C18—S19129.04 (15)
C7—C8—C9117.57 (16)C13—C18—S19109.39 (13)
C7—C8—H8121.2C18—S19—C1188.89 (8)
C9—C8—H8121.2Cl21—C20—Cl22110.44 (11)
C8—C9—C4121.77 (15)Cl21—C20—Cl23109.77 (11)
C8—C9—S10128.94 (13)Cl22—C20—Cl23110.05 (10)
C4—C9—S10109.29 (12)Cl21—C20—H20108.8
C9—S10—C289.31 (8)Cl22—C20—H20108.8
N12—C11—C1123.05 (15)Cl23—C20—H20108.8
N12—C11—S19116.31 (13)
C1i—C1—C2—N3177.7 (2)C1i—C1—C11—N1281.4 (3)
C11—C1—C2—N31.0 (2)C2—C1—C11—N1297.33 (19)
C1i—C1—C2—S100.1 (3)C1i—C1—C11—S1997.5 (2)
C11—C1—C2—S10178.72 (12)C2—C1—C11—S1983.71 (16)
C1—C2—N3—C4177.65 (14)C1—C11—N12—C13177.85 (14)
S10—C2—N3—C40.34 (18)S19—C11—N12—C131.15 (18)
C2—N3—C4—C5178.99 (17)C11—N12—C13—C14179.76 (16)
C2—N3—C4—C90.1 (2)C11—N12—C13—C180.3 (2)
N3—C4—C5—C6179.50 (16)N12—C13—C14—C15178.67 (17)
C9—C4—C5—C60.5 (3)C18—C13—C14—C151.4 (3)
C4—C5—C6—C70.0 (3)C13—C14—C15—C160.5 (3)
C5—C6—C7—C80.6 (3)C14—C15—C16—C170.7 (3)
C6—C7—C8—C90.6 (3)C15—C16—C17—C180.9 (3)
C7—C8—C9—C40.1 (3)C16—C17—C18—C130.1 (3)
C7—C8—C9—S10179.85 (14)C16—C17—C18—S19179.48 (15)
N3—C4—C9—C8179.57 (16)N12—C13—C18—C17178.94 (16)
C5—C4—C9—C80.5 (3)C14—C13—C18—C171.1 (3)
N3—C4—C9—S100.23 (19)N12—C13—C18—S190.69 (18)
C5—C4—C9—S10179.34 (13)C14—C13—C18—S19179.28 (13)
C8—C9—S10—C2179.45 (17)C17—C18—S19—C11178.54 (17)
C4—C9—S10—C20.33 (13)C13—C18—S19—C111.05 (13)
N3—C2—S10—C90.40 (14)N12—C11—S19—C181.33 (14)
C1—C2—S10—C9177.44 (15)C1—C11—S19—C18177.70 (14)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···N12i1.002.233.148 (3)153
C6—H6···Cl23ii0.952.903.690 (2)141
C7—H7···N3iii0.952.663.300 (3)125
C8—H8···N3iii0.952.703.306 (2)122
C17—H17···N3iv0.952.713.565 (3)149
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC30H16N4S4·2CHCl3
Mr799.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.955 (2), 16.299 (3), 11.569 (2)
β (°) 115.61 (3)
V3)1692.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.770, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
19051, 4018, 3704
Rint0.037
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.07
No. of reflections4018
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.62

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···N12i1.002.233.148 (3)153
C6—H6···Cl23ii0.952.903.690 (2)141
C7—H7···N3iii0.952.663.300 (3)125
C8—H8···N3iii0.952.703.306 (2)122
C17—H17···N3iv0.952.713.565 (3)149
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the National Research Foundation of South Africa for financial support.

References

First citationBoga, C., Bonamartini, A. C., Forlani, L., Mezzina, E., Pompa, A., Sgarabotto, P., Spinelli, D. & Todesco, P. E. (1999). J. Chem. Res. (S), 7, 410–411.  Web of Science CrossRef Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBruce, M. I., Nicholson, B. K. & Shawkataly, O. B. (1989). Inorg. Synth. 26, 324–326.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, O., Li, Y. J., Gao, Y. & Hernández, W. J. (1993). J. Crystallogr. Spectrosc. Res. 23, 825–828.  CSD CrossRef CAS Web of Science Google Scholar
First citationGabrielli, W. F., Nogai, S. D., McKenzie, J. M., Cronje, S. & Raubenheimer, H. G. (2009). New J. Chem. 33, 2208–2218.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPavlović, G., Soldin, Z., Popović, Ž. & Tralić-Kulenović, V. (2007). Polyhedron, 26, 5162–5170.  Google Scholar
First citationPindinelli, E., Pilati, T. & Troisi, L. (2007). Eur. J. Org. Chem. 35, 5926–5933.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrasser, C. E., Cronje, S. & Raubenheimer, H. G. (2010). New J. Chem. 34, 458–469.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds