metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-Chloro-2-[(2-hy­dr­oxy­eth­yl)imino­meth­yl]phenolato}{4-chloro-2-[(2-oxido­eth­yl)imino­meth­yl]phenolato}cobalt(III)

aExperimental Center, Linyi Normal University, Linyi Shandong 276005, People's Republic of China
*Correspondence e-mail: xiaoerduoaa@hotmail.com

(Received 10 August 2010; accepted 17 August 2010; online 21 August 2010)

In the title mononuclear cobalt(III) compound, [Co(C9H8ClNO2)(C9H9ClNO2)], the CoII atom is six-coordinated by two imine N atoms, two phenolate O atoms, and one hy­droxy and one oxide O atom from two Schiff base ligands, forming an octa­hedral geometry. In the crystal structure, adjacent mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds. The 2-oxidoethyl group is disordered over two positions in a 0.638 (3):0.362 (3) ratio.

Related literature

For general background to Schiff base cobalt(III) complexes, see: Zhang et al. (2010[Zhang, J.-S., Pan, F.-D., Cheng, H. & Du, W.-J. (2010). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 40, 211-215.]); Rodriguez et al. (2010[Rodriguez, L., Labisbal, E., Sousa-Pedrares, A., Garcia-Vazquez, J. A., Romero, J. & Sousa, A. (2010). Inorg. Chim. Acta, 363, 1284-1288.]); Khalaji et al. (2010[Khalaji, A. D., Hadadzadeh, H., Fejfarova, K. & Dušek, M. (2010). Polyhedron, 29, 807-812.]); Luo & Luo (2010[Luo, F. & Luo, M.-B. (2010). Inorg. Chem. Commun. 13, 319-321.]). For related cobalt complexes with octa­hedral coordination, see: De et al. (2001[De, R. L., Samanta, K., Maiti, K. & Keller, E. (2001). Inorg. Chim. Acta, 316, 113-116.]); Sun (2005[Sun, Y.-X. (2005). Acta Cryst. E61, m335-m337.]); Zhu et al. (2003[Zhu, H.-L., Lin, Y.-S., Meng, F.-J., Zou, Y. & Wang, D.-Q. (2003). Acta Cryst. E59, m878-m879.]); Yuan (2006[Yuan, C.-L. (2006). Acta Cryst. E62, m2257-m2259.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H8ClNO2)(C9H9ClNO2)]

  • Mr = 455.17

  • Hexagonal, [R \overline 3]

  • a = 18.675 (2) Å

  • c = 27.595 (3) Å

  • V = 8334.6 (16) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 298 K

  • 0.32 × 0.30 × 0.27 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.692, Tmax = 0.730

  • 13818 measured reflections

  • 4045 independent reflections

  • 2390 reflections with I > 2σ(I)

  • Rint = 0.126

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.00

  • 4045 reflections

  • 257 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 1.874 (2)
Co1—O3 1.877 (3)
Co1—N1 1.887 (3)
Co1—N2 1.897 (3)
Co1—O4 1.916 (3)
Co1—O2 1.918 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.86 (1) 1.59 (1) 2.436 (4) 173 (5)
Symmetry code: (i) [y-{\script{1\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{1\over 3}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cobalt(III) complexes with Schiff bases have been widely investigated in coordination chemistry and biological chemistry (Zhang et al., 2010; Rodriguez et al., 2010; Khalaji et al., 2010; Luo & Luo, 2010). In the present paper, the title new cobalt(III) complex with the Schiff base ligand 4-chloro-2-[(2-hydroxyethylimino)methyl]phenol, is reported.

The CoIII atom in the title complex (Fig. 1) is six-coordinated by two imine N atoms, two phenolate O atoms, and two hydroxy O atoms from two Schiff base ligands, forming an octahedral geometry. The mainly difference in the two ligands is that one of the hydroxy groups is deprotonated. The bond lengths and angles (Table 1) related to the Co atom are comparable with those observed in similar cobalt complexes with octahedral geometry (De et al., 2001; Sun, 2005; Zhu et al., 2003; Yuan, 2006). In the crystal structure, the adjacent molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2, Fig. 2).

Related literature top

For general background to Schiff base cobalt(III) complexes, see: Zhang et al. (2010); Rodriguez et al. (2010); Khalaji et al. (2010); Luo & Luo (2010). For related cobalt complexes with octahedral coordination, see: De et al. (2001); Sun (2005); Zhu et al. (2003); Yuan (2006).

Experimental top

5-Chlorosalicylaldehyde (0.1 mmol, 15.6 mg), 2-(2-aminoethylamino)ethanol (0.1 mmol, 10.4 mg), and cobalt acetate tetrahydrate (0.1 mmol, 24.9 mg) were mixed and stirred in methanol (20 ml) at reflux for 2 h, to give a red solution. The solution was cooled to room temperature, and red block-shaped single crystals were formed by slow evaporation of the solution in air. The characteristic IR absorption for the hydroxy group is at 3327 cm-1.

Refinement top

Atom H2 attached to O2 was located in a difference Fourier map and refined isotropically, with the O–H distance restrained to 0.85 (1) Å. The remaining H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The C8 atom is disordered over two distinct sites, with occupancies of 0.638 (3) and 0.362 (3).

Structure description top

Cobalt(III) complexes with Schiff bases have been widely investigated in coordination chemistry and biological chemistry (Zhang et al., 2010; Rodriguez et al., 2010; Khalaji et al., 2010; Luo & Luo, 2010). In the present paper, the title new cobalt(III) complex with the Schiff base ligand 4-chloro-2-[(2-hydroxyethylimino)methyl]phenol, is reported.

The CoIII atom in the title complex (Fig. 1) is six-coordinated by two imine N atoms, two phenolate O atoms, and two hydroxy O atoms from two Schiff base ligands, forming an octahedral geometry. The mainly difference in the two ligands is that one of the hydroxy groups is deprotonated. The bond lengths and angles (Table 1) related to the Co atom are comparable with those observed in similar cobalt complexes with octahedral geometry (De et al., 2001; Sun, 2005; Zhu et al., 2003; Yuan, 2006). In the crystal structure, the adjacent molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2, Fig. 2).

For general background to Schiff base cobalt(III) complexes, see: Zhang et al. (2010); Rodriguez et al. (2010); Khalaji et al. (2010); Luo & Luo (2010). For related cobalt complexes with octahedral coordination, see: De et al. (2001); Sun (2005); Zhu et al. (2003); Yuan (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title complex, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
{4-Chloro-2-[(2-hydroxyethyl)iminomethyl]phenolato}{4-chloro-2-[(2- oxidoethyl)iminomethyl]phenolato}cobalt(III) top
Crystal data top
[Co(C9H8ClNO2)(C9H9ClNO2)]Dx = 1.632 Mg m3
Mr = 455.17Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 2130 reflections
Hall symbol: -R 3θ = 2.5–24.5°
a = 18.675 (2) ŵ = 1.24 mm1
c = 27.595 (3) ÅT = 298 K
V = 8334.6 (16) Å3Block, red
Z = 180.32 × 0.30 × 0.27 mm
F(000) = 4176
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4045 independent reflections
Radiation source: fine-focus sealed tube2390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.126
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1922
Tmin = 0.692, Tmax = 0.730k = 2323
13818 measured reflectionsl = 3523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0437P)2]
where P = (Fo2 + 2Fc2)/3
4045 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.40 e Å3
9 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Co(C9H8ClNO2)(C9H9ClNO2)]Z = 18
Mr = 455.17Mo Kα radiation
Hexagonal, R3µ = 1.24 mm1
a = 18.675 (2) ÅT = 298 K
c = 27.595 (3) Å0.32 × 0.30 × 0.27 mm
V = 8334.6 (16) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4045 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2390 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.730Rint = 0.126
13818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0499 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.40 e Å3
4045 reflectionsΔρmin = 0.44 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.55643 (3)0.59070 (3)0.127819 (16)0.04116 (18)
Cl10.98997 (7)0.87669 (9)0.09447 (5)0.0861 (4)
Cl20.41025 (9)0.19824 (7)0.01276 (5)0.0928 (5)
N10.63370 (19)0.63087 (18)0.17903 (10)0.0430 (7)
N20.47432 (18)0.5496 (2)0.07872 (10)0.0453 (8)
O10.63160 (15)0.65983 (16)0.08074 (9)0.0539 (7)
O20.47877 (16)0.51745 (17)0.17488 (9)0.0503 (7)
O30.58854 (15)0.51130 (16)0.11779 (8)0.0514 (7)
C10.7546 (2)0.7142 (2)0.12998 (13)0.0433 (9)
C20.7114 (2)0.7059 (2)0.08620 (13)0.0455 (9)
C30.7592 (2)0.7521 (3)0.04638 (14)0.0538 (10)
H30.73270.74760.01710.065*
C40.8429 (2)0.8033 (2)0.04895 (15)0.0536 (10)
H40.87230.83380.02200.064*
C50.8833 (2)0.8092 (2)0.09172 (16)0.0540 (11)
C60.8408 (2)0.7664 (2)0.13157 (14)0.0505 (10)
H60.86910.77160.16030.061*
C70.7118 (2)0.6768 (2)0.17474 (13)0.0436 (9)
H70.74370.68710.20250.052*
C80.5941 (3)0.5974 (2)0.22574 (12)0.0543 (10)
H8A0.57560.63280.24020.065*
H8B0.63260.59390.24780.065*
C90.5219 (3)0.5132 (3)0.21629 (14)0.0587 (11)
H9A0.54100.47420.21060.070*
H9B0.48540.49450.24420.070*
C100.4806 (2)0.4271 (2)0.06097 (12)0.0459 (9)
C110.5442 (2)0.4424 (2)0.09464 (13)0.0446 (9)
C120.5605 (3)0.3772 (3)0.10272 (14)0.0549 (11)
H120.59990.38410.12570.066*
C130.5200 (3)0.3042 (3)0.07785 (15)0.0608 (11)
H130.53240.26260.08380.073*
C140.4608 (3)0.2926 (2)0.04396 (14)0.0575 (11)
C150.4415 (2)0.3523 (2)0.03509 (13)0.0518 (10)
H150.40220.34380.01170.062*
C160.4515 (2)0.4846 (2)0.05371 (13)0.0458 (9)
H160.41340.47350.02900.055*
O40.52234 (16)0.67011 (15)0.14056 (9)0.0524 (7)0.638 (18)
C170.4410 (3)0.6051 (3)0.07147 (16)0.0722 (14)0.638 (18)
H17A0.38360.57340.06150.087*0.638 (18)
H17B0.47170.64460.04600.087*0.638 (18)
C180.4473 (6)0.6495 (6)0.1169 (4)0.061 (3)0.638 (18)
H18A0.44550.69940.10980.073*0.638 (18)
H18B0.40100.61480.13780.073*0.638 (18)
O4'0.52234 (16)0.67011 (15)0.14056 (9)0.0524 (7)0.362 (18)
C17'0.4410 (3)0.6051 (3)0.07147 (16)0.0722 (14)0.362 (18)
H17C0.44070.61630.03720.087*0.362 (18)
H17D0.38440.57870.08310.087*0.362 (18)
C18'0.4876 (12)0.6776 (8)0.0957 (6)0.062 (5)0.362 (18)
H18C0.45360.70220.10240.074*0.362 (18)
H18D0.53240.71530.07470.074*0.362 (18)
H20.4293 (12)0.507 (3)0.1794 (16)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0373 (3)0.0420 (3)0.0389 (3)0.0159 (3)0.0011 (2)0.0015 (2)
Cl10.0381 (7)0.0883 (10)0.1121 (10)0.0166 (6)0.0011 (6)0.0099 (8)
Cl20.1280 (12)0.0464 (7)0.0801 (8)0.0257 (7)0.0243 (8)0.0136 (6)
N10.046 (2)0.0418 (18)0.0354 (16)0.0175 (16)0.0015 (14)0.0045 (13)
N20.0376 (18)0.055 (2)0.0399 (17)0.0202 (16)0.0004 (13)0.0005 (15)
O10.0357 (16)0.0643 (18)0.0447 (14)0.0121 (14)0.0010 (11)0.0086 (13)
O20.0366 (15)0.0582 (17)0.0497 (15)0.0188 (14)0.0006 (12)0.0096 (12)
O30.0427 (16)0.0563 (18)0.0551 (15)0.0246 (14)0.0131 (12)0.0166 (13)
C10.043 (2)0.040 (2)0.046 (2)0.0194 (19)0.0029 (17)0.0037 (16)
C20.039 (2)0.048 (2)0.048 (2)0.021 (2)0.0018 (17)0.0018 (17)
C30.047 (3)0.062 (3)0.049 (2)0.025 (2)0.0038 (18)0.0041 (19)
C40.040 (2)0.054 (3)0.062 (3)0.019 (2)0.0103 (19)0.009 (2)
C50.033 (2)0.047 (2)0.077 (3)0.017 (2)0.004 (2)0.000 (2)
C60.044 (2)0.055 (3)0.058 (2)0.029 (2)0.0064 (19)0.009 (2)
C70.047 (3)0.043 (2)0.042 (2)0.024 (2)0.0092 (17)0.0067 (16)
C80.062 (3)0.052 (3)0.035 (2)0.018 (2)0.0011 (18)0.0012 (17)
C90.055 (3)0.065 (3)0.048 (2)0.024 (2)0.0023 (19)0.011 (2)
C100.045 (2)0.047 (2)0.036 (2)0.016 (2)0.0040 (17)0.0027 (17)
C110.039 (2)0.048 (2)0.041 (2)0.0180 (19)0.0028 (16)0.0037 (17)
C120.056 (3)0.061 (3)0.050 (2)0.032 (2)0.0057 (19)0.005 (2)
C130.075 (3)0.055 (3)0.057 (3)0.036 (3)0.003 (2)0.002 (2)
C140.072 (3)0.044 (2)0.045 (2)0.020 (2)0.004 (2)0.0004 (18)
C150.051 (3)0.045 (2)0.043 (2)0.012 (2)0.0058 (17)0.0031 (18)
C160.034 (2)0.052 (3)0.0365 (19)0.0104 (19)0.0005 (15)0.0010 (18)
O40.0542 (17)0.0457 (17)0.0576 (16)0.0252 (14)0.0065 (13)0.0045 (12)
C170.080 (3)0.102 (4)0.065 (3)0.067 (3)0.009 (2)0.008 (3)
C180.047 (5)0.064 (6)0.080 (6)0.034 (5)0.002 (4)0.003 (4)
O4'0.0542 (17)0.0457 (17)0.0576 (16)0.0252 (14)0.0065 (13)0.0045 (12)
C17'0.080 (3)0.102 (4)0.065 (3)0.067 (3)0.009 (2)0.008 (3)
C18'0.063 (9)0.051 (7)0.073 (8)0.030 (6)0.006 (6)0.001 (6)
Geometric parameters (Å, º) top
Co1—O11.874 (2)C7—H70.9300
Co1—O31.877 (3)C8—C91.496 (5)
Co1—N11.887 (3)C8—H8A0.9700
Co1—N21.897 (3)C8—H8B0.9700
Co1—O41.916 (3)C9—H9A0.9700
Co1—O21.918 (3)C9—H9B0.9700
Cl1—C51.747 (4)C10—C151.405 (5)
Cl2—C141.753 (4)C10—C111.420 (5)
N1—C71.275 (4)C10—C161.440 (5)
N1—C81.462 (4)C11—C121.413 (5)
N2—C161.270 (4)C12—C131.367 (5)
N2—C171.465 (5)C12—H120.9300
O1—C21.305 (4)C13—C141.380 (6)
O2—C91.423 (4)C13—H130.9300
O2—H20.855 (10)C14—C151.356 (6)
O3—C111.298 (4)C15—H150.9300
C1—C61.404 (5)C16—H160.9300
C1—C21.418 (5)O4—C181.414 (7)
C1—C71.447 (5)C17—C181.474 (8)
C2—C31.406 (5)C17—H17A0.9700
C3—C41.368 (5)C17—H17B0.9700
C3—H30.9300C18—H18A0.9700
C4—C51.375 (5)C18—H18B0.9700
C4—H40.9300C18'—H18C0.9700
C5—C61.359 (5)C18'—H18D0.9700
C6—H60.9300
O1—Co1—O390.97 (12)N1—C8—C9107.0 (3)
O1—Co1—N194.87 (12)N1—C8—H8A110.3
O3—Co1—N186.66 (12)C9—C8—H8A110.3
O1—Co1—N287.65 (12)N1—C8—H8B110.3
O3—Co1—N295.06 (12)C9—C8—H8B110.3
N1—Co1—N2176.94 (12)H8A—C8—H8B108.6
O1—Co1—O491.05 (11)O2—C9—C8108.6 (3)
O3—Co1—O4177.77 (11)O2—C9—H9A110.0
N1—Co1—O492.22 (12)C8—C9—H9A110.0
N2—Co1—O485.98 (12)O2—C9—H9B110.0
O1—Co1—O2178.46 (12)C8—C9—H9B110.0
O3—Co1—O287.87 (12)H9A—C9—H9B108.4
N1—Co1—O286.08 (12)C15—C10—C11119.9 (4)
N2—Co1—O291.44 (12)C15—C10—C16118.0 (4)
O4—Co1—O290.13 (12)C11—C10—C16122.0 (3)
C7—N1—C8122.3 (3)O3—C11—C12118.1 (3)
C7—N1—Co1126.0 (2)O3—C11—C10125.2 (4)
C8—N1—Co1111.5 (2)C12—C11—C10116.7 (3)
C16—N2—C17122.9 (3)C13—C12—C11122.0 (4)
C16—N2—Co1126.3 (3)C13—C12—H12119.0
C17—N2—Co1110.8 (3)C11—C12—H12119.0
C2—O1—Co1126.1 (2)C12—C13—C14119.9 (4)
C9—O2—Co1109.7 (2)C12—C13—H13120.1
C9—O2—H2117 (3)C14—C13—H13120.1
Co1—O2—H2127 (3)C15—C14—C13120.9 (4)
C11—O3—Co1123.9 (2)C15—C14—Cl2120.5 (3)
C6—C1—C2119.6 (3)C13—C14—Cl2118.6 (4)
C6—C1—C7118.2 (3)C14—C15—C10120.5 (4)
C2—C1—C7121.8 (3)C14—C15—H15119.8
O1—C2—C3118.6 (3)C10—C15—H15119.8
O1—C2—C1124.8 (3)N2—C16—C10124.5 (3)
C3—C2—C1116.6 (3)N2—C16—H16117.8
C4—C3—C2122.7 (4)C10—C16—H16117.8
C4—C3—H3118.6C18—O4—Co1111.8 (3)
C2—C3—H3118.6N2—C17—C18109.8 (4)
C3—C4—C5119.4 (4)N2—C17—H17A109.7
C3—C4—H4120.3C18—C17—H17A109.7
C5—C4—H4120.3N2—C17—H17B109.7
C6—C5—C4120.8 (4)C18—C17—H17B109.7
C6—C5—Cl1120.6 (3)H17A—C17—H17B108.2
C4—C5—Cl1118.5 (3)O4—C18—C17109.6 (5)
C5—C6—C1120.9 (4)O4—C18—H18A109.7
C5—C6—H6119.6C17—C18—H18A109.7
C1—C6—H6119.6O4—C18—H18B109.7
N1—C7—C1125.1 (3)C17—C18—H18B109.7
N1—C7—H7117.5H18A—C18—H18B108.2
C1—C7—H7117.5H18C—C18'—H18D107.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.86 (1)1.59 (1)2.436 (4)173 (5)
Symmetry code: (i) y1/3, x+y+1/3, z+1/3.

Experimental details

Crystal data
Chemical formula[Co(C9H8ClNO2)(C9H9ClNO2)]
Mr455.17
Crystal system, space groupHexagonal, R3
Temperature (K)298
a, c (Å)18.675 (2), 27.595 (3)
V3)8334.6 (16)
Z18
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.32 × 0.30 × 0.27
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.692, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
13818, 4045, 2390
Rint0.126
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.00
No. of reflections4045
No. of parameters257
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.44

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O11.874 (2)Co1—N21.897 (3)
Co1—O31.877 (3)Co1—O41.916 (3)
Co1—N11.887 (3)Co1—O21.918 (3)
O1—Co1—O390.97 (12)N1—Co1—O492.22 (12)
O1—Co1—N194.87 (12)N2—Co1—O485.98 (12)
O3—Co1—N186.66 (12)O1—Co1—O2178.46 (12)
O1—Co1—N287.65 (12)O3—Co1—O287.87 (12)
O3—Co1—N295.06 (12)N1—Co1—O286.08 (12)
N1—Co1—N2176.94 (12)N2—Co1—O291.44 (12)
O1—Co1—O491.05 (11)O4—Co1—O290.13 (12)
O3—Co1—O4177.77 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.855 (10)1.586 (12)2.436 (4)173 (5)
Symmetry code: (i) y1/3, x+y+1/3, z+1/3.
 

Acknowledgements

The author acknowledges the Linyi Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe, R. L., Samanta, K., Maiti, K. & Keller, E. (2001). Inorg. Chim. Acta, 316, 113–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D., Hadadzadeh, H., Fejfarova, K. & Dušek, M. (2010). Polyhedron, 29, 807–812.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, F. & Luo, M.-B. (2010). Inorg. Chem. Commun. 13, 319–321.  Web of Science CSD CrossRef CAS Google Scholar
First citationRodriguez, L., Labisbal, E., Sousa-Pedrares, A., Garcia-Vazquez, J. A., Romero, J. & Sousa, A. (2010). Inorg. Chim. Acta, 363, 1284–1288.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X. (2005). Acta Cryst. E61, m335–m337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuan, C.-L. (2006). Acta Cryst. E62, m2257–m2259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J.-S., Pan, F.-D., Cheng, H. & Du, W.-J. (2010). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 40, 211–215.  CAS Google Scholar
First citationZhu, H.-L., Lin, Y.-S., Meng, F.-J., Zou, Y. & Wang, D.-Q. (2003). Acta Cryst. E59, m878–m879.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds