metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(N-sec-Butyl-N-n-propyl­di­thio­carbamato-κ2S,S′)tri­phenyl­tin(IV)

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangbaan Malaysia, 43600 Bangi, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 August 2010; accepted 17 August 2010; online 21 August 2010)

The Sn atom in the title compound, [Sn(C6H5)3(C8H16NS2)], is penta­coordinated by two S atoms, derived from an asymmetrically coordinating dithio­carbamate ligand, and three ipso-C atoms. The coordination geometry is inter­mediate between square-pyramidal and trigonal-bipyramidal, with a leaning towards the latter. The presence of close intra­molecular C—H⋯S contacts preclude the S atoms from forming significant inter­molecular inter­actions. Rather, mol­ecules are consolid­ated in the crystal structure by C—H⋯π inter­actions.

Related literature

For a review of the applications and structural chemistry of tin dithio­carbamates, see: Tiekink (2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). For a related organotin structure having the same dithio­carbamate ligand, see: Abdul Muthalib et al. (2010[Abdul Muthalib, A. F., Baba, I., Mohamed Tahir, M. I., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1087.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C8H16NS2)]

  • Mr = 540.33

  • Monoclinic, C 2/c

  • a = 14.7997 (5) Å

  • b = 12.1844 (5) Å

  • c = 28.8891 (11) Å

  • β = 97.348 (1)°

  • V = 5166.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.653, Tmax = 0.801

  • 17218 measured reflections

  • 5923 independent reflections

  • 5179 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.02

  • 5923 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯S2 0.93 2.75 3.433 (3) 131
C20—H20⋯S2 0.98 2.49 3.059 (3) 117
C24—H24a⋯S1 0.97 2.58 2.938 (3) 102
C25—H25b⋯S1 0.97 2.84 3.360 (4) 115
C16—H16⋯Cg1i 0.93 2.78 3.618 (3) 151
C23—H23a⋯Cg2ii 0.96 2.91 3.773 (4) 150
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organotin dithiocarbamates display properties that suggest their use as anti-cancer agents, anti-microbial agents and as insecticides (Tiekink, 2008). Such interest motivates on-going structural characterization of such compounds (Abdul Muthalib et al., 2010) and led to the investigation of the title compound, (I).

The Sn atom in (I) is penta-coordinated by two S atoms derived from an asymmetrically coordinating dithiocarbamate ligand and three ipso-C atoms from the phenyl substituents, Fig. 1. The resulting C3S2 coordination geometry is intermediate between square pyramidal and trigonal bi-pyramidal with a leaning towards the latter. Thus, compared to the ideal values for τ of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Addison et al., 1984), the value for τ in (I) computes to 0.55. The asymmetric mode of coordination of the dithiocarbamate ligand is reflected in significant differences in the associated C–S bond distances with that formed by the S1 atom, involved in the shorter of the Sn–S bonds, being considerably longer [S1–C19 = 1.755 (3) Å] than that formed by the S2 atom [S2–C19 = 1.682 (3) Å]. The observed molecular structure is entirely consistent with literature precedents (Tiekink, 2008).

Each of the S atoms is involved in two intramolecular C–H···S contacts and these do not participate in intermolecular interactions, Table 2. The presence of C–H···π contacts are noted, Table 1, and occur between benzene- and methyl-H atoms with two of the Sn-bound benzene rings functioning as the acceptors. These serve to consolidate the molecules into the crystal structure, Fig. 2.

Related literature top

For a review of the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008). For a related organotin structure having the same dithiocarbamate ligand, see Abdul Muthalib et al., (2010). For additional structural analysis, see: Addison et al. (1984).

Experimental top

Carbon disulfide (30 mmol) was dropped into an ethanol solution (100 ml) of N-sec-butyl-N-n-propylamine (30 mmol). The solution was kept at 273 K for an hour. Triphenyltin chloride (30 mmol) dissolved in ethanol (100 ml) was added to give a white precipitate. This was collected and colourless crystals were obtained by recrystallization from its chloroform/ethanol (1/1) mixture.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Structure description top

Organotin dithiocarbamates display properties that suggest their use as anti-cancer agents, anti-microbial agents and as insecticides (Tiekink, 2008). Such interest motivates on-going structural characterization of such compounds (Abdul Muthalib et al., 2010) and led to the investigation of the title compound, (I).

The Sn atom in (I) is penta-coordinated by two S atoms derived from an asymmetrically coordinating dithiocarbamate ligand and three ipso-C atoms from the phenyl substituents, Fig. 1. The resulting C3S2 coordination geometry is intermediate between square pyramidal and trigonal bi-pyramidal with a leaning towards the latter. Thus, compared to the ideal values for τ of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Addison et al., 1984), the value for τ in (I) computes to 0.55. The asymmetric mode of coordination of the dithiocarbamate ligand is reflected in significant differences in the associated C–S bond distances with that formed by the S1 atom, involved in the shorter of the Sn–S bonds, being considerably longer [S1–C19 = 1.755 (3) Å] than that formed by the S2 atom [S2–C19 = 1.682 (3) Å]. The observed molecular structure is entirely consistent with literature precedents (Tiekink, 2008).

Each of the S atoms is involved in two intramolecular C–H···S contacts and these do not participate in intermolecular interactions, Table 2. The presence of C–H···π contacts are noted, Table 1, and occur between benzene- and methyl-H atoms with two of the Sn-bound benzene rings functioning as the acceptors. These serve to consolidate the molecules into the crystal structure, Fig. 2.

For a review of the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008). For a related organotin structure having the same dithiocarbamate ligand, see Abdul Muthalib et al., (2010). For additional structural analysis, see: Addison et al. (1984).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of (I) showing the unit-cell contents. The C–H···π contacts are shown as purple dashed lines.
(N-sec-Butyl-N-n-propyldithiocarbamato- κ2S,S')triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C8H16NS2)]F(000) = 2208
Mr = 540.33Dx = 1.389 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7436 reflections
a = 14.7997 (5) Åθ = 2.1–27.2°
b = 12.1844 (5) ŵ = 1.16 mm1
c = 28.8891 (11) ÅT = 293 K
β = 97.348 (1)°Block, colourless
V = 5166.7 (3) Å30.40 × 0.30 × 0.20 mm
Z = 8
Data collection top
Bruker SMART
diffractometer
5923 independent reflections
Radiation source: fine-focus sealed tube5179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1917
Tmin = 0.653, Tmax = 0.801k = 1415
17218 measured reflectionsl = 3437
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0437P)2 + 4.4496P]
where P = (Fo2 + 2Fc2)/3
5923 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Sn(C6H5)3(C8H16NS2)]V = 5166.7 (3) Å3
Mr = 540.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.7997 (5) ŵ = 1.16 mm1
b = 12.1844 (5) ÅT = 293 K
c = 28.8891 (11) Å0.40 × 0.30 × 0.20 mm
β = 97.348 (1)°
Data collection top
Bruker SMART
diffractometer
5923 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5179 reflections with I > 2σ(I)
Tmin = 0.653, Tmax = 0.801Rint = 0.020
17218 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.02Δρmax = 0.70 e Å3
5923 reflectionsΔρmin = 0.30 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.247917 (10)0.577523 (13)0.418770 (5)0.04008 (7)
S10.22291 (6)0.39926 (6)0.37826 (2)0.05486 (18)
S20.28766 (6)0.56989 (6)0.31823 (2)0.0588 (2)
C10.21407 (15)0.50813 (19)0.48322 (8)0.0397 (5)
C20.26523 (19)0.4242 (2)0.50565 (10)0.0520 (6)
H20.31560.39790.49290.062*
C30.2432 (2)0.3786 (3)0.54658 (11)0.0616 (7)
H30.27860.32220.56110.074*
C40.1697 (2)0.4162 (3)0.56561 (11)0.0673 (9)
H40.15510.38610.59330.081*
C50.1171 (2)0.4987 (3)0.54404 (11)0.0704 (9)
H50.06620.52350.55680.085*
C60.13936 (19)0.5452 (2)0.50331 (10)0.0542 (6)
H60.10390.60190.48920.065*
C70.14476 (16)0.6950 (2)0.39602 (8)0.0445 (5)
C80.06015 (19)0.6649 (3)0.37279 (11)0.0649 (8)
H80.04840.59160.36540.078*
C90.0062 (2)0.7423 (4)0.36066 (13)0.0811 (11)
H90.06230.72090.34500.097*
C100.0095 (2)0.8508 (4)0.37143 (12)0.0774 (10)
H100.03570.90280.36310.093*
C110.0915 (3)0.8821 (3)0.39429 (11)0.0696 (9)
H110.10210.95560.40190.084*
C120.1597 (2)0.8046 (2)0.40645 (9)0.0541 (6)
H120.21580.82700.42170.065*
C130.38064 (15)0.6470 (2)0.43524 (8)0.0419 (5)
C140.42367 (19)0.7084 (3)0.40417 (10)0.0585 (7)
H140.39810.71270.37310.070*
C150.5041 (2)0.7634 (3)0.41863 (11)0.0650 (8)
H150.53200.80420.39730.078*
C160.54271 (18)0.7581 (3)0.46412 (11)0.0593 (7)
H160.59670.79540.47370.071*
C170.50182 (19)0.6978 (3)0.49562 (11)0.0599 (7)
H170.52790.69400.52660.072*
C180.42128 (18)0.6423 (2)0.48114 (9)0.0523 (6)
H180.39400.60110.50270.063*
C190.24957 (19)0.4410 (2)0.32344 (9)0.0473 (6)
C200.2709 (3)0.3917 (3)0.24303 (10)0.0678 (9)
H200.28750.46960.24330.081*
C210.1982 (3)0.3750 (4)0.20404 (12)0.0915 (12)
H21A0.17460.30100.20540.110*
H21B0.22330.38300.17480.110*
C220.1203 (3)0.4571 (4)0.20540 (17)0.1028 (14)
H22A0.07410.44370.17960.154*
H22B0.14330.53040.20340.154*
H22C0.09480.44870.23410.154*
C230.3572 (3)0.3250 (3)0.23634 (13)0.0822 (11)
H23A0.37610.34270.20670.123*
H23B0.34400.24800.23740.123*
H23C0.40520.34300.26080.123*
C240.2103 (2)0.2516 (2)0.29729 (10)0.0591 (7)
H24A0.23820.22700.32770.071*
H24B0.23120.20360.27410.071*
C250.1091 (2)0.2416 (3)0.29490 (12)0.0711 (8)
H25A0.08100.25500.26320.085*
H25B0.08650.29620.31500.085*
C270.0838 (3)0.1271 (3)0.31025 (17)0.0987 (13)
H27A0.01880.12110.30820.148*
H27B0.11050.11480.34190.148*
H27C0.10630.07330.29030.148*
N10.24161 (17)0.36613 (19)0.28932 (7)0.0540 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.04146 (10)0.04203 (11)0.03675 (10)0.00450 (7)0.00505 (7)0.00138 (6)
S10.0814 (5)0.0478 (4)0.0381 (3)0.0154 (3)0.0179 (3)0.0017 (3)
S20.0903 (5)0.0459 (4)0.0421 (4)0.0182 (3)0.0164 (3)0.0020 (3)
C10.0419 (11)0.0412 (12)0.0364 (11)0.0039 (10)0.0066 (9)0.0017 (9)
C20.0474 (14)0.0594 (17)0.0509 (15)0.0071 (12)0.0129 (12)0.0080 (12)
C30.0612 (17)0.0668 (19)0.0568 (17)0.0063 (15)0.0070 (13)0.0203 (14)
C40.080 (2)0.080 (2)0.0455 (16)0.0051 (17)0.0205 (15)0.0131 (14)
C50.0710 (19)0.083 (2)0.0644 (19)0.0102 (17)0.0366 (15)0.0018 (17)
C60.0553 (15)0.0532 (15)0.0566 (16)0.0098 (12)0.0164 (12)0.0027 (12)
C70.0437 (12)0.0550 (15)0.0355 (12)0.0011 (11)0.0074 (9)0.0085 (10)
C80.0526 (15)0.069 (2)0.0700 (19)0.0120 (14)0.0053 (14)0.0156 (15)
C90.0464 (16)0.109 (3)0.084 (2)0.0040 (18)0.0042 (15)0.035 (2)
C100.070 (2)0.097 (3)0.068 (2)0.031 (2)0.0197 (17)0.0336 (19)
C110.096 (2)0.0607 (19)0.0541 (17)0.0186 (18)0.0150 (17)0.0078 (14)
C120.0634 (16)0.0553 (16)0.0427 (14)0.0011 (13)0.0036 (12)0.0021 (11)
C130.0386 (11)0.0462 (13)0.0415 (12)0.0025 (10)0.0073 (9)0.0015 (10)
C140.0583 (16)0.072 (2)0.0449 (14)0.0156 (14)0.0058 (12)0.0049 (13)
C150.0580 (17)0.076 (2)0.0632 (18)0.0208 (15)0.0179 (14)0.0008 (15)
C160.0394 (13)0.0664 (19)0.0721 (19)0.0072 (12)0.0073 (12)0.0128 (15)
C170.0488 (14)0.075 (2)0.0538 (16)0.0035 (14)0.0026 (12)0.0035 (14)
C180.0491 (14)0.0628 (17)0.0451 (14)0.0060 (12)0.0059 (11)0.0030 (12)
C190.0597 (15)0.0479 (14)0.0350 (12)0.0078 (11)0.0089 (11)0.0007 (10)
C200.095 (2)0.0675 (19)0.0435 (15)0.0198 (18)0.0200 (15)0.0022 (13)
C210.140 (4)0.084 (3)0.0484 (18)0.018 (3)0.005 (2)0.0025 (17)
C220.107 (3)0.090 (3)0.104 (3)0.009 (3)0.015 (3)0.023 (3)
C230.095 (3)0.090 (3)0.070 (2)0.003 (2)0.041 (2)0.0058 (18)
C240.0743 (19)0.0518 (16)0.0531 (16)0.0002 (14)0.0152 (13)0.0078 (13)
C250.075 (2)0.070 (2)0.069 (2)0.0063 (17)0.0095 (16)0.0089 (16)
C270.111 (3)0.066 (2)0.127 (4)0.029 (2)0.049 (3)0.005 (2)
N10.0759 (15)0.0499 (13)0.0382 (11)0.0122 (11)0.0150 (10)0.0048 (9)
Geometric parameters (Å, º) top
Sn—C12.161 (2)C14—H140.9300
Sn—C72.134 (3)C15—C161.366 (4)
Sn—C12.161 (2)C15—H150.9300
Sn—C132.136 (2)C16—C171.370 (4)
Sn—C12.161 (2)C16—H160.9300
Sn—S12.4725 (7)C17—C181.388 (4)
S1—C191.755 (3)C17—H170.9300
S2—C191.682 (3)C18—H180.9300
C1—C61.388 (3)C19—N11.337 (3)
C1—C21.383 (3)C20—C211.468 (5)
C2—C31.383 (4)C20—N11.491 (4)
C2—H20.9300C20—C231.548 (5)
C3—C41.360 (4)C20—H200.9800
C3—H30.9300C21—C221.530 (6)
C4—C51.371 (5)C21—H21A0.9700
C4—H40.9300C21—H21B0.9700
C5—C61.383 (4)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—H60.9300C22—H22C0.9600
C7—C121.381 (4)C23—H23A0.9600
C7—C81.392 (4)C23—H23B0.9600
C8—C91.374 (5)C23—H23C0.9600
C8—H80.9300C24—N11.497 (4)
C9—C101.371 (6)C24—C251.496 (4)
C9—H90.9300C24—H24A0.9700
C10—C111.360 (5)C24—H24B0.9700
C10—H100.9300C25—C271.526 (5)
C11—C121.394 (4)C25—H25A0.9700
C11—H110.9300C25—H25B0.9700
C12—H120.9300C27—H27A0.9600
C13—C181.385 (3)C27—H27B0.9600
C13—C141.385 (4)C27—H27C0.9600
C14—C151.383 (4)
C7—Sn—C13113.84 (10)C16—C17—C18119.8 (3)
C7—Sn—C1106.99 (9)C16—C17—H17120.1
C13—Sn—C1105.72 (9)C18—C17—H17120.1
C7—Sn—S1112.67 (7)C13—C18—C17121.3 (3)
C13—Sn—S1122.09 (7)C13—C18—H18119.4
C1—Sn—S191.54 (6)C17—C18—H18119.4
C19—S1—Sn97.79 (9)N1—C19—S2124.7 (2)
C6—C1—C2117.5 (2)N1—C19—S1117.3 (2)
C6—C1—Sn121.17 (19)S2—C19—S1117.87 (15)
C2—C1—Sn121.29 (18)C21—C20—N1113.0 (3)
C3—C2—C1121.5 (3)C21—C20—C23111.5 (3)
C3—C2—H2119.2N1—C20—C23110.0 (3)
C1—C2—H2119.2C21—C20—H20107.4
C4—C3—C2119.9 (3)N1—C20—H20107.4
C4—C3—H3120.1C23—C20—H20107.4
C2—C3—H3120.1C20—C21—C22111.7 (3)
C3—C4—C5120.1 (3)C20—C21—H21A109.3
C3—C4—H4120.0C22—C21—H21A109.3
C5—C4—H4120.0C20—C21—H21B109.3
C6—C5—C4120.2 (3)C22—C21—H21B109.3
C6—C5—H5119.9H21A—C21—H21B107.9
C4—C5—H5119.9C21—C22—H22A109.5
C5—C6—C1120.8 (3)C21—C22—H22B109.5
C5—C6—H6119.6H22A—C22—H22B109.5
C1—C6—H6119.6C21—C22—H22C109.5
C12—C7—C8118.0 (3)H22A—C22—H22C109.5
C12—C7—Sn119.54 (19)H22B—C22—H22C109.5
C8—C7—Sn122.4 (2)C20—C23—H23A109.5
C9—C8—C7120.8 (3)C20—C23—H23B109.5
C9—C8—H8119.6H23A—C23—H23B109.5
C7—C8—H8119.6C20—C23—H23C109.5
C8—C9—C10120.6 (3)H23A—C23—H23C109.5
C8—C9—H9119.7H23B—C23—H23C109.5
C10—C9—H9119.7N1—C24—C25113.3 (3)
C11—C10—C9119.7 (3)N1—C24—H24A108.9
C11—C10—H10120.1C25—C24—H24A108.9
C9—C10—H10120.1N1—C24—H24B108.9
C10—C11—C12120.3 (3)C25—C24—H24B108.9
C10—C11—H11119.8H24A—C24—H24B107.7
C12—C11—H11119.8C24—C25—C27110.0 (3)
C7—C12—C11120.6 (3)C24—C25—H25A109.7
C7—C12—H12119.7C27—C25—H25A109.7
C11—C12—H12119.7C24—C25—H25B109.7
C18—C13—C14117.6 (2)C27—C25—H25B109.7
C18—C13—Sn118.10 (18)H25A—C25—H25B108.2
C14—C13—Sn123.77 (18)C25—C27—H27A109.5
C15—C14—C13121.0 (3)C25—C27—H27B109.5
C15—C14—H14119.5H27A—C27—H27B109.5
C13—C14—H14119.5C25—C27—H27C109.5
C16—C15—C14120.4 (3)H27A—C27—H27C109.5
C16—C15—H15119.8H27B—C27—H27C109.5
C14—C15—H15119.8C19—N1—C20120.7 (2)
C15—C16—C17119.9 (3)C19—N1—C24121.5 (2)
C15—C16—H16120.0C20—N1—C24117.7 (2)
C17—C16—H16120.0
C7—Sn—S1—C1971.53 (12)C10—C11—C12—C70.8 (5)
C13—Sn—S1—C1969.63 (13)C7—Sn—C13—C18114.8 (2)
C1—Sn—S1—C19179.32 (11)C1—Sn—C13—C182.4 (2)
C7—Sn—C1—C62.9 (2)S1—Sn—C13—C18104.5 (2)
C13—Sn—C1—C6118.8 (2)C7—Sn—C13—C1456.8 (3)
S1—Sn—C1—C6117.2 (2)C1—Sn—C13—C14173.9 (2)
C7—Sn—C1—C2176.2 (2)S1—Sn—C13—C1484.0 (2)
C13—Sn—C1—C262.1 (2)C18—C13—C14—C150.3 (4)
S1—Sn—C1—C262.0 (2)Sn—C13—C14—C15171.3 (2)
C6—C1—C2—C30.0 (4)C13—C14—C15—C160.0 (5)
Sn—C1—C2—C3179.2 (2)C14—C15—C16—C170.2 (5)
C1—C2—C3—C40.0 (5)C15—C16—C17—C180.0 (5)
C2—C3—C4—C50.6 (5)C14—C13—C18—C170.5 (4)
C3—C4—C5—C61.1 (5)Sn—C13—C18—C17171.6 (2)
C4—C5—C6—C11.1 (5)C16—C17—C18—C130.4 (5)
C2—C1—C6—C50.5 (4)Sn—S1—C19—N1178.0 (2)
Sn—C1—C6—C5178.6 (2)Sn—S1—C19—S24.69 (18)
C13—Sn—C7—C1219.9 (2)N1—C20—C21—C2266.8 (4)
C1—Sn—C7—C1296.5 (2)C23—C20—C21—C22168.7 (3)
S1—Sn—C7—C12164.36 (18)N1—C24—C25—C27171.8 (3)
C13—Sn—C7—C8163.4 (2)S2—C19—N1—C202.7 (4)
C1—Sn—C7—C880.2 (2)S1—C19—N1—C20174.4 (2)
S1—Sn—C7—C818.9 (2)S2—C19—N1—C24177.7 (2)
C12—C7—C8—C90.0 (4)S1—C19—N1—C240.6 (4)
Sn—C7—C8—C9176.8 (3)C21—C20—N1—C19124.4 (3)
C7—C8—C9—C100.3 (5)C23—C20—N1—C19110.2 (3)
C8—C9—C10—C110.0 (5)C21—C20—N1—C2460.4 (4)
C9—C10—C11—C120.5 (5)C23—C20—N1—C2465.0 (4)
C8—C7—C12—C110.5 (4)C25—C24—N1—C1980.9 (3)
Sn—C7—C12—C11176.3 (2)C25—C24—N1—C20103.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···S20.932.753.433 (3)131
C20—H20···S20.982.493.059 (3)117
C24—H24a···S10.972.582.938 (3)102
C25—H25b···S10.972.843.360 (4)115
C16—H16···Cg1i0.932.783.618 (3)151
C23—H23a···Cg2ii0.962.913.773 (4)150
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C8H16NS2)]
Mr540.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.7997 (5), 12.1844 (5), 28.8891 (11)
β (°) 97.348 (1)
V3)5166.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.653, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
17218, 5923, 5179
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.02
No. of reflections5923
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.30

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···S20.932.753.433 (3)131
C20—H20···S20.982.493.059 (3)117
C24—H24a···S10.972.582.938 (3)102
C25—H25b···S10.972.843.360 (4)115
C16—H16···Cg1i0.932.783.618 (3)151
C23—H23a···Cg2ii0.962.913.773 (4)150
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank UKM (UKM-GUP-NBT-08–27-111 and UKM-ST-06-FRGS0092–2010) and the University of Malaya for supporting this study.

References

First citationAbdul Muthalib, A. F., Baba, I., Mohamed Tahir, M. I., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds