organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-N-(4,6-di­methyl­pyrimidin-2-yl)benzene­sulfonamide–benzoic acid (1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 August 2010; accepted 24 August 2010; online 28 August 2010)

The constituents of the title co-crystal, C12H14N4O2S·C7H6O2, are connected by an eight-membered hetero-synthon {⋯NCNH⋯OCOH}, whereby the carb­oxy­lic acid forms donor and acceptor hydrogen bonds with a pyrimidine N atom and the adjacent amine, respectively. The dimeric aggregates thus formed are arranged in rows with their terminal NH2 groups forming N—H⋯O hydrogen bonds with neighbouring aggregates to form a two-dimensional array in the ac plane with an overall T-shaped topology. Layers inter­digitate along the b axis being connected by C—H⋯O, C—H⋯π and ππ [centroid–centroid distance = 3.6316 (19) Å] inter­actions.

Related literature

For related studies on co-crystal formation, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Ellis et al. (2009[Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352-1361.]); Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.]). For related structures of carb­oxy­lic acids with 4-amino-N-(4,6-dimethyl­pyrimidin-2-yl)benzene-1-sulfonamide, see: Caira (1991[Caira, M. R. (1991). J. Crystallogr. Spectrosc. Res. 21, 641-648.], 1992[Caira, M. R. (1992). J. Crystallogr. Spectrosc. Res. 22, 193-200.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N4O2S·C7H6O2

  • Mr = 400.45

  • Orthorhombic, P b c a

  • a = 15.203 (6) Å

  • b = 14.006 (5) Å

  • c = 18.015 (7) Å

  • V = 3836 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 98 K

  • 0.35 × 0.23 × 0.10 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.828, Tmax = 1

  • 30274 measured reflections

  • 4404 independent reflections

  • 4137 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.159

  • S = 1.17

  • 4404 reflections

  • 267 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4o⋯N4 0.85 (2) 1.79 (2) 2.639 (3) 177 (3)
N2—H3n⋯O3 0.89 (2) 1.90 (2) 2.787 (3) 176 (3)
N1—H1n⋯O1i 0.89 (2) 2.07 (2) 2.952 (3) 173 (3)
N1—H2n⋯O3ii 0.88 (2) 2.31 (3) 3.073 (3) 144 (2)
C12—H12c⋯O1iii 0.98 2.58 3.455 (3) 149
C11—H11c⋯Cg1iv 0.98 2.76 3.672 (3) 155
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of co-crystallization experiments of molecules related to pharmaceuticals (Broker & Tiekink, 2007; Ellis et al., 2009; Arman et al., 2010), the title co-crystal containing a 1:1 ratio of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzene-1-sulfonamide and benzoic acid was isolated, (I). Co-crystals of the sulfonamide with various substituted benzoic acid derivatives have been investigated previously (Caira, 1991; Caira, 1992).

A single molecule of each component comprises the asymmetric unit of (I), Fig. 1. These are connected into dimeric aggregates by an eight membered hetero-synthon {···NCNH···OCOH} involving the O3-carboxylic acid-H donating to the pyrimidine-N4 and the carbonyl-O4 accepting a hydrogen bond from the adjacent N2-amine-H. Such synthons are common to related co-crystals (Caira, 1991; Caira, 1992).

In the crystal packing, the benzoic acid and pyrimidine residues lie parallel to the ac plane and are arranged in a row along the a axis as highlighted in Fig. 2. The sulfonamide-N1-amine-H atoms bridge successive dimeric aggregates of an adjacent row. This occurs by the formation of hydrogen bonds to the carbonyl-O3 of one dimeric aggregate and a second N–H···O interaction involving the sulfonamide-O1 atom of another. This establishes a two-dimensional array, Fig. 3, that has an overall T-shaped topology. As shown in Fig. 4, the global crystal packing comprises the inter-digitation of successive rows of T-shaped and inverted T-shaped molecules. The interactions between the inter-digitated residues are of the type C—H···O and C—H···π, Table 1, and ππ [Cg(N3,N4,C7—C10)···Cg(C13—C18) = 3.6316 (19) Å for i: 1/2 + x, 11/2 - y, 1 - z].

Related literature top

For related studies on co-crystal formation, see: Broker & Tiekink (2007); Ellis et al. (2009); Arman et al. (2010). For related structures of carboxylic acids with 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzene-1- sulfonamide, see: Caira (1991, 1992).

Experimental top

Colourless crystals of (I) were isolated from the 1/1 co-crystallization of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzene-1- sulfonamide (ACROS, 0.11 mmol) and benzoic acid (ACROS, 0.11 mmol) in acetone; m. pt. 481–493 K.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The N– and O-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O–H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) = xUeq(carrier atom), where x = 1.5 for O and x = 1.2 for N.

Structure description top

In continuation of co-crystallization experiments of molecules related to pharmaceuticals (Broker & Tiekink, 2007; Ellis et al., 2009; Arman et al., 2010), the title co-crystal containing a 1:1 ratio of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzene-1-sulfonamide and benzoic acid was isolated, (I). Co-crystals of the sulfonamide with various substituted benzoic acid derivatives have been investigated previously (Caira, 1991; Caira, 1992).

A single molecule of each component comprises the asymmetric unit of (I), Fig. 1. These are connected into dimeric aggregates by an eight membered hetero-synthon {···NCNH···OCOH} involving the O3-carboxylic acid-H donating to the pyrimidine-N4 and the carbonyl-O4 accepting a hydrogen bond from the adjacent N2-amine-H. Such synthons are common to related co-crystals (Caira, 1991; Caira, 1992).

In the crystal packing, the benzoic acid and pyrimidine residues lie parallel to the ac plane and are arranged in a row along the a axis as highlighted in Fig. 2. The sulfonamide-N1-amine-H atoms bridge successive dimeric aggregates of an adjacent row. This occurs by the formation of hydrogen bonds to the carbonyl-O3 of one dimeric aggregate and a second N–H···O interaction involving the sulfonamide-O1 atom of another. This establishes a two-dimensional array, Fig. 3, that has an overall T-shaped topology. As shown in Fig. 4, the global crystal packing comprises the inter-digitation of successive rows of T-shaped and inverted T-shaped molecules. The interactions between the inter-digitated residues are of the type C—H···O and C—H···π, Table 1, and ππ [Cg(N3,N4,C7—C10)···Cg(C13—C18) = 3.6316 (19) Å for i: 1/2 + x, 11/2 - y, 1 - z].

For related studies on co-crystal formation, see: Broker & Tiekink (2007); Ellis et al. (2009); Arman et al. (2010). For related structures of carboxylic acids with 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzene-1- sulfonamide, see: Caira (1991, 1992).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the constituents of co-crystal (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level. The O—H···N and N—H···O hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. View of the supramolecular layer in projection down the b axis highlighting the rows of benzoic acid and pyrimidine residues connected via {···NCNH···OCOH} synthons (orange dashed lines). The amino-H···O hydrogen bonds are shown as blue dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for reasons of clarity.
[Figure 3] Fig. 3. Side-on view of the projection shown in Fig. 2 highlighting the two-dimensional array. Colour code for hydrogen bonds and atom omissions as for Fig. 2.
[Figure 4] Fig. 4. Unit-cell contents of (I) shown in projection down the a axis, highlighting the inter-digitation of rows of T-shaped and inverted T-shaped molecules.
4-Amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide–benzoic acid (1/1) top
Crystal data top
C12H14N4O2S·C7H6O2F(000) = 1680
Mr = 400.45Dx = 1.387 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 16577 reflections
a = 15.203 (6) Åθ = 2.3–40.5°
b = 14.006 (5) ŵ = 0.20 mm1
c = 18.015 (7) ÅT = 98 K
V = 3836 (2) Å3Block, colourless
Z = 80.35 × 0.23 × 0.10 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4404 independent reflections
Radiation source: fine-focus sealed tube4137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1919
Tmin = 0.828, Tmax = 1k = 1618
30274 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0647P)2 + 3.1388P]
where P = (Fo2 + 2Fc2)/3
4404 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.41 e Å3
5 restraintsΔρmin = 0.55 e Å3
Crystal data top
C12H14N4O2S·C7H6O2V = 3836 (2) Å3
Mr = 400.45Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.203 (6) ŵ = 0.20 mm1
b = 14.006 (5) ÅT = 98 K
c = 18.015 (7) Å0.35 × 0.23 × 0.10 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4404 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4137 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 1Rint = 0.073
30274 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0655 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.41 e Å3
4404 reflectionsΔρmin = 0.55 e Å3
267 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.54508 (4)0.60684 (4)0.73129 (3)0.02568 (16)
O10.60107 (11)0.68686 (12)0.74705 (9)0.0323 (4)
O20.45840 (11)0.60392 (12)0.76309 (9)0.0310 (4)
O30.35026 (10)0.58510 (12)0.59738 (9)0.0304 (4)
O40.38399 (11)0.61521 (13)0.47864 (9)0.0334 (4)
H4O0.4377 (9)0.615 (2)0.4912 (18)0.050*
N10.72042 (15)0.23929 (16)0.79698 (14)0.0402 (5)
H1N0.7731 (10)0.2262 (19)0.7781 (16)0.048*
H2N0.6859 (14)0.1909 (14)0.8089 (16)0.048*
N20.52506 (13)0.60582 (14)0.64115 (10)0.0277 (4)
H3N0.4698 (9)0.5961 (19)0.6277 (15)0.033*
N30.67129 (12)0.61923 (13)0.60236 (10)0.0258 (4)
N40.55167 (12)0.62139 (13)0.51621 (10)0.0249 (4)
C10.68116 (15)0.32487 (17)0.78271 (12)0.0296 (5)
C20.72999 (15)0.40339 (17)0.75643 (12)0.0289 (5)
H20.79150.39650.74870.035*
C30.69052 (15)0.49023 (17)0.74168 (12)0.0279 (5)
H30.72460.54240.72410.033*
C40.59970 (14)0.50071 (16)0.75289 (12)0.0254 (4)
C50.55028 (15)0.42415 (17)0.78067 (12)0.0292 (5)
H50.48890.43150.78890.035*
C60.59063 (16)0.33828 (17)0.79608 (13)0.0317 (5)
H60.55690.28730.81600.038*
C70.58666 (14)0.61564 (15)0.58457 (12)0.0241 (4)
C80.72783 (15)0.63113 (16)0.54554 (13)0.0277 (5)
C90.69815 (16)0.63989 (17)0.47292 (13)0.0307 (5)
H90.73850.64940.43330.037*
C100.60877 (15)0.63456 (16)0.45948 (12)0.0276 (5)
C110.82379 (15)0.63460 (18)0.56559 (14)0.0342 (5)
H11A0.83010.65320.61780.051*
H11B0.85380.68140.53400.051*
H11C0.85010.57150.55810.051*
C120.57027 (17)0.64250 (19)0.38306 (13)0.0358 (5)
H12A0.50630.63510.38580.054*
H12B0.59490.59240.35130.054*
H12C0.58450.70520.36210.054*
C130.23390 (14)0.60650 (15)0.51020 (12)0.0253 (4)
C140.21086 (15)0.63324 (16)0.43783 (12)0.0268 (4)
H140.25530.64520.40190.032*
C150.12273 (15)0.64217 (17)0.41883 (13)0.0300 (5)
H150.10690.66090.37000.036*
C160.05768 (16)0.62377 (17)0.47104 (14)0.0320 (5)
H160.00250.62940.45760.038*
C170.08033 (16)0.59699 (18)0.54334 (14)0.0329 (5)
H170.03580.58480.57910.039*
C180.16840 (16)0.58838 (17)0.56251 (13)0.0301 (5)
H180.18410.57000.61150.036*
C190.32779 (15)0.60083 (15)0.53280 (12)0.0262 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0240 (3)0.0291 (3)0.0240 (3)0.0018 (2)0.00015 (18)0.00016 (19)
O10.0319 (9)0.0304 (8)0.0346 (8)0.0011 (7)0.0027 (7)0.0038 (7)
O20.0234 (8)0.0397 (10)0.0299 (8)0.0061 (7)0.0035 (6)0.0030 (7)
O30.0270 (8)0.0375 (9)0.0268 (8)0.0004 (7)0.0025 (6)0.0013 (7)
O40.0222 (8)0.0476 (10)0.0303 (8)0.0011 (7)0.0003 (6)0.0051 (7)
N10.0340 (11)0.0322 (11)0.0544 (13)0.0047 (9)0.0073 (10)0.0061 (10)
N20.0212 (9)0.0359 (10)0.0259 (9)0.0016 (8)0.0031 (7)0.0042 (7)
N30.0224 (9)0.0256 (9)0.0294 (9)0.0004 (7)0.0004 (7)0.0013 (7)
N40.0263 (9)0.0235 (9)0.0249 (9)0.0001 (7)0.0007 (7)0.0027 (7)
C10.0294 (11)0.0307 (11)0.0288 (10)0.0018 (9)0.0012 (9)0.0004 (9)
C20.0226 (10)0.0366 (12)0.0275 (10)0.0012 (9)0.0010 (8)0.0002 (9)
C30.0240 (10)0.0329 (11)0.0266 (10)0.0035 (9)0.0011 (8)0.0022 (9)
C40.0263 (11)0.0276 (10)0.0225 (9)0.0005 (9)0.0015 (8)0.0013 (8)
C50.0245 (11)0.0336 (12)0.0295 (10)0.0020 (9)0.0017 (8)0.0014 (9)
C60.0284 (11)0.0303 (12)0.0363 (12)0.0040 (9)0.0020 (9)0.0014 (9)
C70.0232 (10)0.0223 (10)0.0269 (10)0.0009 (8)0.0009 (8)0.0016 (8)
C80.0244 (10)0.0233 (10)0.0354 (11)0.0019 (9)0.0027 (9)0.0003 (9)
C90.0298 (11)0.0310 (11)0.0311 (11)0.0032 (9)0.0070 (9)0.0021 (9)
C100.0302 (11)0.0241 (10)0.0285 (10)0.0000 (9)0.0015 (8)0.0006 (8)
C110.0239 (11)0.0374 (13)0.0413 (13)0.0013 (10)0.0009 (9)0.0018 (10)
C120.0367 (12)0.0425 (14)0.0280 (11)0.0014 (11)0.0012 (10)0.0046 (10)
C130.0251 (10)0.0227 (10)0.0281 (10)0.0014 (8)0.0019 (8)0.0029 (8)
C140.0273 (11)0.0262 (10)0.0270 (10)0.0008 (9)0.0000 (8)0.0008 (8)
C150.0298 (11)0.0294 (11)0.0308 (11)0.0012 (9)0.0075 (9)0.0019 (9)
C160.0260 (11)0.0348 (12)0.0353 (12)0.0010 (9)0.0030 (9)0.0028 (10)
C170.0253 (11)0.0388 (13)0.0346 (12)0.0002 (10)0.0016 (9)0.0009 (10)
C180.0291 (11)0.0331 (12)0.0281 (11)0.0007 (9)0.0012 (9)0.0008 (9)
C190.0264 (11)0.0242 (10)0.0280 (10)0.0002 (8)0.0015 (8)0.0006 (8)
Geometric parameters (Å, º) top
S1—O11.4358 (18)C6—H60.9500
S1—O21.4375 (17)C8—C91.389 (3)
S1—N21.652 (2)C8—C111.504 (3)
S1—C41.747 (2)C9—C101.382 (3)
O3—C191.232 (3)C9—H90.9500
O4—C191.313 (3)C10—C121.500 (3)
O4—H4O0.848 (10)C11—H11A0.9800
N1—C11.364 (3)C11—H11B0.9800
N1—H1N0.889 (9)C11—H11C0.9800
N1—H2N0.88 (2)C12—H12A0.9800
N2—C71.391 (3)C12—H12B0.9800
N2—H3N0.886 (10)C12—H12C0.9800
N3—C71.327 (3)C13—C181.394 (3)
N3—C81.347 (3)C13—C141.401 (3)
N4—C71.344 (3)C13—C191.486 (3)
N4—C101.353 (3)C14—C151.388 (3)
C1—C21.409 (3)C14—H140.9500
C1—C61.410 (3)C15—C161.389 (3)
C2—C31.382 (3)C15—H150.9500
C2—H20.9500C16—C171.398 (3)
C3—C41.403 (3)C16—H160.9500
C3—H30.9500C17—C181.388 (3)
C4—C51.402 (3)C17—H170.9500
C5—C61.378 (3)C18—H180.9500
C5—H50.9500
O1—S1—O2119.14 (10)C10—C9—C8118.6 (2)
O1—S1—N2108.07 (10)C10—C9—H9120.7
O2—S1—N2102.86 (10)C8—C9—H9120.7
O1—S1—C4109.78 (11)N4—C10—C9120.4 (2)
O2—S1—C4108.84 (10)N4—C10—C12116.9 (2)
N2—S1—C4107.40 (10)C9—C10—C12122.7 (2)
C19—O4—H4O115 (2)C8—C11—H11A109.5
C1—N1—H1N120.3 (18)C8—C11—H11B109.5
C1—N1—H2N117.5 (18)H11A—C11—H11B109.5
H1N—N1—H2N117.9 (14)C8—C11—H11C109.5
C7—N2—S1126.54 (16)H11A—C11—H11C109.5
C7—N2—H3N117.0 (18)H11B—C11—H11C109.5
S1—N2—H3N116.4 (18)C10—C12—H12A109.5
C7—N3—C8116.1 (2)C10—C12—H12B109.5
C7—N4—C10116.50 (19)H12A—C12—H12B109.5
N1—C1—C2121.3 (2)C10—C12—H12C109.5
N1—C1—C6120.8 (2)H12A—C12—H12C109.5
C2—C1—C6117.9 (2)H12B—C12—H12C109.5
C3—C2—C1121.5 (2)C18—C13—C14119.9 (2)
C3—C2—H2119.2C18—C13—C19119.4 (2)
C1—C2—H2119.2C14—C13—C19120.6 (2)
C2—C3—C4119.4 (2)C15—C14—C13119.7 (2)
C2—C3—H3120.3C15—C14—H14120.2
C4—C3—H3120.3C13—C14—H14120.2
C5—C4—C3119.9 (2)C14—C15—C16120.2 (2)
C5—C4—S1118.40 (17)C14—C15—H15119.9
C3—C4—S1121.66 (17)C16—C15—H15119.9
C6—C5—C4120.1 (2)C15—C16—C17120.3 (2)
C6—C5—H5120.0C15—C16—H16119.8
C4—C5—H5120.0C17—C16—H16119.8
C5—C6—C1121.1 (2)C18—C17—C16119.5 (2)
C5—C6—H6119.5C18—C17—H17120.2
C1—C6—H6119.5C16—C17—H17120.2
N3—C7—N4127.1 (2)C17—C18—C13120.3 (2)
N3—C7—N2118.66 (19)C17—C18—H18119.8
N4—C7—N2114.27 (19)C13—C18—H18119.8
N3—C8—C9121.3 (2)O3—C19—O4123.3 (2)
N3—C8—C11116.1 (2)O3—C19—C13122.3 (2)
C9—C8—C11122.6 (2)O4—C19—C13114.41 (19)
O1—S1—N2—C747.5 (2)S1—N2—C7—N35.5 (3)
O2—S1—N2—C7174.35 (18)S1—N2—C7—N4173.94 (16)
C4—S1—N2—C770.9 (2)C7—N3—C8—C90.6 (3)
N1—C1—C2—C3179.8 (2)C7—N3—C8—C11179.64 (19)
C6—C1—C2—C32.1 (3)N3—C8—C9—C101.1 (3)
C1—C2—C3—C40.2 (3)C11—C8—C9—C10179.1 (2)
C2—C3—C4—C51.7 (3)C7—N4—C10—C91.1 (3)
C2—C3—C4—S1177.03 (17)C7—N4—C10—C12179.1 (2)
O1—S1—C4—C5145.66 (18)C8—C9—C10—N40.2 (3)
O2—S1—C4—C513.6 (2)C8—C9—C10—C12179.6 (2)
N2—S1—C4—C597.07 (19)C18—C13—C14—C150.5 (3)
O1—S1—C4—C335.6 (2)C19—C13—C14—C15177.2 (2)
O2—S1—C4—C3167.67 (17)C13—C14—C15—C160.6 (3)
N2—S1—C4—C381.6 (2)C14—C15—C16—C170.6 (4)
C3—C4—C5—C60.8 (3)C15—C16—C17—C180.4 (4)
S1—C4—C5—C6177.91 (17)C16—C17—C18—C130.2 (4)
C4—C5—C6—C11.5 (4)C14—C13—C18—C170.2 (3)
N1—C1—C6—C5179.0 (2)C19—C13—C18—C17177.4 (2)
C2—C1—C6—C53.0 (3)C18—C13—C19—O33.6 (3)
C8—N3—C7—N40.9 (3)C14—C13—C19—O3174.0 (2)
C8—N3—C7—N2178.43 (19)C18—C13—C19—O4177.3 (2)
C10—N4—C7—N31.7 (3)C14—C13—C19—O45.1 (3)
C10—N4—C7—N2177.64 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4o···N40.85 (2)1.79 (2)2.639 (3)177 (3)
N2—H3n···O30.89 (2)1.90 (2)2.787 (3)176 (3)
N1—H1n···O1i0.89 (2)2.07 (2)2.952 (3)173 (3)
N1—H2n···O3ii0.88 (2)2.31 (3)3.073 (3)144 (2)
C12—H12c···O1iii0.982.583.455 (3)149
C11—H11c···Cg1iv0.982.763.672 (3)155
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H14N4O2S·C7H6O2
Mr400.45
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)98
a, b, c (Å)15.203 (6), 14.006 (5), 18.015 (7)
V3)3836 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.35 × 0.23 × 0.10
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.828, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
30274, 4404, 4137
Rint0.073
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.159, 1.17
No. of reflections4404
No. of parameters267
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.55

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4o···N40.847 (16)1.793 (16)2.639 (3)177 (3)
N2—H3n···O30.885 (15)1.904 (16)2.787 (3)176 (3)
N1—H1n···O1i0.889 (18)2.068 (18)2.952 (3)173 (3)
N1—H2n···O3ii0.88 (2)2.31 (3)3.073 (3)144 (2)
C12—H12c···O1iii0.982.583.455 (3)149
C11—H11c···Cg1iv0.982.763.672 (3)155
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z+1.
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationCaira, M. R. (1991). J. Crystallogr. Spectrosc. Res. 21, 641–648.  CSD CrossRef CAS Web of Science Google Scholar
First citationCaira, M. R. (1992). J. Crystallogr. Spectrosc. Res. 22, 193–200.  CSD CrossRef CAS Web of Science Google Scholar
First citationEllis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds