metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(5-carb­­oxy-2-propyl-1H-imidazole-4-carboxyl­ato-κ2N3,O4)zinc(II) 3.5-hydrate

aCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and cCollege of Medical Laboratory, Hebei North University, Zhangjiakou 075000, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 19 July 2010; accepted 5 August 2010; online 18 August 2010)

In the title complex, [Zn(C8H9N2O4)2(H2O)2]·3.5H2O, the ZnII ion is coordinated by two N,O-bidentate H2pimda ligands (H3pimda = 2-propyl-1H-imidazole-4,5-dicarb­oxy­lic acid) and two water mol­ecules in a distorted octa­hedral environment. In the crystal structure, extensive inter­molecular O—H⋯O and N—H⋯O hydrogen bonds stabilize the three-dimensional supra­molecular network. Intra­molecular O—H⋯O hydrogen bonds between the carboxyl groups are also observed. The propyl groups of the two H2pimda ligands are disordered each over two sites, with occupancy factors of 0.752 (5):0.248 (5) and 0.519 (7):0.481 (7). One of the water mol­ecules is half-occupied.

Related literature

For the potential uses and diverse structural types of metal complexes with imidazole-4,5-dicarb­oxy­lic acid, see: Li et al. (2006[Li, C.-J., Hu, S., Li, W., Lam, C.-K., Zheng, Y.-Z. & Tong, M.-L. (2006). Eur. J. Inorg. Chem. pp. 1931-1935.]); Zou et al. (2006[Zou, R.-Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542-2546.]). For our previous structural studies of complexes derived from 2-propyl-1H-imidazole-4,5-dicarb­oxy­lic acid, see: Fan et al. (2010[Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897-m898.]); He et al. (2010[He, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896.]); Li et al. (2010[Li, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m280.]); Song et al. (2010[Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.]); Yan et al. (2010[Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H9N2O4)2(H2O)2]·3.5H2O

  • Mr = 558.82

  • Triclinic, [P \overline 1]

  • a = 10.4780 (18) Å

  • b = 10.5729 (18) Å

  • c = 11.3012 (19) Å

  • α = 81.783 (2)°

  • β = 83.035 (2)°

  • γ = 86.852 (2)°

  • V = 1229.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 296 K

  • 0.29 × 0.24 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.747, Tmax = 0.806

  • 6393 measured reflections

  • 4360 independent reflections

  • 3172 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.160

  • S = 1.07

  • 4360 reflections

  • 342 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.82 1.68 2.502 (6) 180
O7—H7⋯O6 0.82 1.63 2.445 (6) 176
N2—H2⋯O4W 0.86 1.88 2.737 (6) 171
N4—H4⋯O6W 0.86 2.03 2.863 (6) 162
O1W—H1W⋯O5Wi 0.84 1.86 2.675 (6) 164
O1W—H2W⋯O8ii 0.84 1.89 2.720 (5) 170
O2W—H3W⋯O8iii 0.83 2.13 2.910 (6) 155
O2W—H4W⋯O2iv 0.83 2.00 2.802 (6) 161
O3W—H5W⋯O3iv 0.84 1.98 2.795 (8) 162
O3W—H6W⋯O3v 0.84 1.92 2.743 (8) 165
O4W—H7W⋯O3W 0.84 1.81 2.633 (9) 163
O4W—H8W⋯O7vi 0.84 2.16 2.877 (6) 143
O5W—H9W⋯O5vi 0.85 2.14 2.865 (6) 144
O5W—H10W⋯O4vii 0.85 1.98 2.812 (6) 169
O6W—H11W⋯O3Wvii 0.84 1.74 2.574 (10) 174
O6W—H12W⋯O5Wviii 0.84 2.27 2.789 (7) 120
Symmetry codes: (i) x+1, y, z-1; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+2, -y, -z+1; (v) x, y, z+1; (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y, -z+1; (viii) x, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, our research group has shown great interest in the solid-state coordination chemistry of N-heterocyclic carboxylic acids, such as 2-propyl-1H-imidazole-4,5-dicarboxylic acid (H3pimda) ligand as a derivative of imidazole-4,5-dicarboxylic acid (H3idc). The efficient N,O-donors have been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-κ3 N3,O4,O5)calcium(II)] (Song et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)manganese(II)] N,N-dimethylformamide (Yan et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)nickle(II)] N,N-dimethylformamide disolvate (Li et al., 2010), diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- κ2N3,O4)copper(II) N,N-dimethylformamide disolvate (He et al., 2010) and diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)nickle(II) tetrahedrate (Fan et al., 2010). In this paper, we report the structure of a new zinc(II) complex with H2pimda obtained under hydrothermal conditions.

As illustrated in Fig. 1, the title complex is isomorphous with its Ni(II) analogue (Fan et al., 2010). Similar structural descriptions can be applied to the present isomorphous complex. The ZnII atom is six-coordinated by two N,O-bidentate H2pimda ligands and two water molecules in a distorted octahedral geometry. The dihedral angle between the two imidazole rings is 77.8 (5)°. In the crystal structure, the three-dimensional supramolecular network is stabilized by extensive O—H···O and N—H···O hydrogen bonds involving the uncoordinated and coordinated water molecules, the carboxy groups and the protonated N atoms of the imidazole rings (Table 1). The propyl groups of the H2pimda ligands are disordered each over two sites, with refined occupancies of 0.752 (5): 0.248 (5) and 0.519 (7):0.481 (7).

Related literature top

For the potential uses and diverse structural types of metal complexes with imidazole-4,5-dicarboxylic acid, see: Li et al. (2006); Zou et al. (2006). For our previous work based on 2-propyl-1H-imidazole-4,5-dicarboxylic acid, see: Fan et al. (2010); He et al. (2010); Li et al. (2010); Song et al.(2010); Yan et al. (2010).

Experimental top

A mixture of Zn(NO3)2 (0.5 mmol, 0.09 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml of H2O solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433 K for 4 d. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

C- and N-bound H atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 0.97 (CH2) and 0.96 (CH3) Å, N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N). H atoms of the water molecules were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). The propyl groups of the H2pimda ligands are splited into two sets of sites, with refined occupancies of 0.752 (5):0.248 (5) and 0.519 (7):0.481 (7). One of the water molecules is half-occupied.

Structure description top

Recently, our research group has shown great interest in the solid-state coordination chemistry of N-heterocyclic carboxylic acids, such as 2-propyl-1H-imidazole-4,5-dicarboxylic acid (H3pimda) ligand as a derivative of imidazole-4,5-dicarboxylic acid (H3idc). The efficient N,O-donors have been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-κ3 N3,O4,O5)calcium(II)] (Song et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)manganese(II)] N,N-dimethylformamide (Yan et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)nickle(II)] N,N-dimethylformamide disolvate (Li et al., 2010), diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- κ2N3,O4)copper(II) N,N-dimethylformamide disolvate (He et al., 2010) and diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)nickle(II) tetrahedrate (Fan et al., 2010). In this paper, we report the structure of a new zinc(II) complex with H2pimda obtained under hydrothermal conditions.

As illustrated in Fig. 1, the title complex is isomorphous with its Ni(II) analogue (Fan et al., 2010). Similar structural descriptions can be applied to the present isomorphous complex. The ZnII atom is six-coordinated by two N,O-bidentate H2pimda ligands and two water molecules in a distorted octahedral geometry. The dihedral angle between the two imidazole rings is 77.8 (5)°. In the crystal structure, the three-dimensional supramolecular network is stabilized by extensive O—H···O and N—H···O hydrogen bonds involving the uncoordinated and coordinated water molecules, the carboxy groups and the protonated N atoms of the imidazole rings (Table 1). The propyl groups of the H2pimda ligands are disordered each over two sites, with refined occupancies of 0.752 (5): 0.248 (5) and 0.519 (7):0.481 (7).

For the potential uses and diverse structural types of metal complexes with imidazole-4,5-dicarboxylic acid, see: Li et al. (2006); Zou et al. (2006). For our previous work based on 2-propyl-1H-imidazole-4,5-dicarboxylic acid, see: Fan et al. (2010); He et al. (2010); Li et al. (2010); Song et al.(2010); Yan et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. Open bonds show minor disordered sites. H atoms have been omitted for clarity.
Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato -κ2N3,O4)zinc(II) 3.5-hydrate top
Crystal data top
[Zn(C8H9N2O4)2(H2O)2]·3.5H2OZ = 2
Mr = 558.82F(000) = 582
Triclinic, P1Dx = 1.510 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4780 (18) ÅCell parameters from 3600 reflections
b = 10.5729 (18) Åθ = 1.4–28°
c = 11.3012 (19) ŵ = 1.07 mm1
α = 81.783 (2)°T = 296 K
β = 83.035 (2)°Block, colorless
γ = 86.852 (2)°0.29 × 0.24 × 0.21 mm
V = 1229.1 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4360 independent reflections
Radiation source: fine-focus sealed tube3172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scanθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1012
Tmin = 0.747, Tmax = 0.806k = 1112
6393 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.5831P]
where P = (Fo2 + 2Fc2)/3
4360 reflections(Δ/σ)max < 0.001
342 parametersΔρmax = 0.81 e Å3
24 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Zn(C8H9N2O4)2(H2O)2]·3.5H2Oγ = 86.852 (2)°
Mr = 558.82V = 1229.1 (4) Å3
Triclinic, P1Z = 2
a = 10.4780 (18) ÅMo Kα radiation
b = 10.5729 (18) ŵ = 1.07 mm1
c = 11.3012 (19) ÅT = 296 K
α = 81.783 (2)°0.29 × 0.24 × 0.21 mm
β = 83.035 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4360 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3172 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.806Rint = 0.033
6393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05624 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.07Δρmax = 0.81 e Å3
4360 reflectionsΔρmin = 0.72 e Å3
342 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.84596 (6)0.28957 (6)0.19279 (5)0.0468 (3)
O10.8745 (5)0.1862 (4)0.5169 (4)0.0652 (12)
H10.88210.15830.44500.098*
O20.8364 (4)0.1087 (4)0.6884 (4)0.0677 (12)
O30.8898 (4)0.0899 (4)0.1842 (3)0.0505 (9)
O40.8972 (4)0.1006 (4)0.2975 (3)0.0604 (11)
O50.7797 (4)0.4859 (3)0.2071 (3)0.0522 (10)
O60.6119 (4)0.6225 (4)0.1874 (4)0.0647 (11)
O70.3908 (4)0.6171 (4)0.1402 (4)0.0595 (11)
H70.46440.61560.15810.089*
O80.2581 (4)0.4768 (4)0.0987 (4)0.0590 (11)
N10.8293 (4)0.2124 (4)0.3764 (4)0.0432 (10)
N20.8107 (4)0.1425 (4)0.5690 (4)0.0521 (12)
H20.79790.14240.64560.062*
N30.6451 (4)0.2860 (4)0.1716 (4)0.0399 (10)
N40.4524 (4)0.2803 (4)0.1319 (4)0.0466 (11)
H40.38260.24990.11680.056*
C10.8351 (5)0.0371 (5)0.5118 (4)0.0412 (12)
C20.8473 (4)0.0830 (5)0.3922 (4)0.0386 (11)
C30.8102 (6)0.2472 (6)0.4847 (5)0.0561 (15)
C40.8810 (5)0.0187 (5)0.2833 (5)0.0444 (13)
C50.8477 (5)0.0920 (6)0.5795 (5)0.0517 (14)
C6A0.8065 (10)0.3828 (11)0.5113 (11)0.070 (3)0.753 (7)
H6A0.85420.43580.44530.083*0.753 (7)
H6B0.84680.38600.58360.083*0.753 (7)
C7A0.6671 (10)0.4347 (9)0.5286 (9)0.083 (3)0.753 (7)
H7A0.62330.42170.46070.100*0.753 (7)
H7B0.62220.38910.60100.100*0.753 (7)
C8A0.6658 (14)0.5762 (10)0.5390 (12)0.129 (5)0.753 (7)
H8A0.57960.60540.56400.193*0.753 (7)
H8B0.69570.62280.46230.193*0.753 (7)
H8C0.72110.59000.59730.193*0.753 (7)
C6B0.742 (4)0.367 (4)0.522 (4)0.070 (3)0.247 (7)
H6C0.68850.34790.59830.083*0.247 (7)
H6D0.68940.40720.46180.083*0.247 (7)
C7B0.852 (3)0.453 (3)0.535 (3)0.083 (3)0.247 (7)
H7C0.90830.46310.45960.100*0.247 (7)
H7D0.81550.53680.54760.100*0.247 (7)
C8B0.933 (4)0.405 (3)0.636 (3)0.129 (5)0.247 (7)
H8D0.99850.46470.63670.193*0.247 (7)
H8E0.97240.32330.62280.193*0.247 (7)
H8F0.87920.39690.71110.193*0.247 (7)
C90.5881 (5)0.4058 (5)0.1698 (4)0.0401 (12)
C100.4645 (5)0.4030 (5)0.1425 (4)0.0408 (12)
C110.5583 (5)0.2111 (5)0.1471 (5)0.0464 (13)
C120.6653 (5)0.5103 (5)0.1892 (5)0.0470 (13)
C130.3619 (5)0.5037 (6)0.1269 (5)0.0476 (14)
C14A0.560 (3)0.0677 (8)0.1631 (19)0.057 (4)0.525 (10)
H14A0.64470.03410.13640.069*0.525 (10)
H14B0.49860.03910.11570.069*0.525 (10)
C15A0.522 (2)0.0179 (12)0.3023 (15)0.079 (4)0.525 (10)
H15A0.57750.05410.35040.095*0.525 (10)
H15B0.43370.04400.32690.095*0.525 (10)
C16A0.5373 (18)0.1247 (14)0.3208 (18)0.114 (6)0.525 (10)
H16A0.61110.15000.36250.171*0.525 (10)
H16B0.54870.15540.24410.171*0.525 (10)
H16C0.46180.16020.36770.171*0.525 (10)
C14B0.590 (3)0.0766 (10)0.122 (2)0.057 (4)0.475 (10)
H14C0.67870.05340.13320.069*0.475 (10)
H14D0.57840.07000.03870.069*0.475 (10)
C15B0.4966 (14)0.0173 (14)0.2106 (15)0.079 (4)0.475 (10)
H15C0.40780.01010.20280.095*0.475 (10)
H15D0.50950.10320.18950.095*0.475 (10)
C16B0.523 (3)0.017 (2)0.3369 (18)0.114 (6)0.475 (10)
H16D0.48580.09060.38660.171*0.475 (10)
H16E0.48610.05920.36560.171*0.475 (10)
H16F0.61430.02100.34010.171*0.475 (10)
O1W0.8877 (4)0.3308 (5)0.0105 (4)0.0795 (15)
H1W0.94910.29830.03090.119*
H2W0.85110.39250.02910.119*
O2W1.0370 (4)0.3313 (4)0.2110 (4)0.0789 (14)
H3W1.08230.39000.17470.118*
H4W1.07820.27550.25250.118*
O3W0.9078 (8)0.0156 (7)0.9598 (7)0.058 (2)0.50
H5W0.97800.01460.92930.087*0.50
H6W0.91590.04411.02400.087*0.50
O4W0.7783 (6)0.1691 (6)0.8082 (4)0.123 (2)
H7W0.83230.12320.84630.185*
H8W0.76040.23790.83610.185*
O5W0.1009 (4)0.2742 (4)0.8694 (4)0.0798 (14)
H9W0.11120.34500.82450.120*
H10W0.09690.21460.82730.120*
O6W0.2574 (5)0.1562 (6)0.0392 (5)0.111 (2)
H11W0.20340.09910.04480.167*
H12W0.22300.22970.02430.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0433 (4)0.0509 (4)0.0425 (4)0.0042 (3)0.0065 (3)0.0058 (3)
O10.080 (3)0.051 (2)0.060 (3)0.000 (2)0.014 (2)0.009 (2)
O20.067 (3)0.081 (3)0.044 (2)0.009 (2)0.002 (2)0.017 (2)
O30.056 (2)0.058 (2)0.034 (2)0.0147 (18)0.0051 (16)0.0036 (17)
O40.083 (3)0.049 (2)0.050 (2)0.011 (2)0.016 (2)0.0082 (19)
O50.049 (2)0.049 (2)0.060 (2)0.0048 (18)0.0141 (18)0.0019 (18)
O60.071 (3)0.044 (2)0.081 (3)0.003 (2)0.016 (2)0.014 (2)
O70.049 (2)0.054 (2)0.074 (3)0.0143 (19)0.010 (2)0.006 (2)
O80.040 (2)0.065 (3)0.066 (3)0.0044 (19)0.0078 (19)0.011 (2)
N10.044 (3)0.046 (3)0.038 (2)0.002 (2)0.0067 (19)0.004 (2)
N20.057 (3)0.063 (3)0.035 (2)0.007 (2)0.005 (2)0.006 (2)
N30.038 (2)0.037 (2)0.043 (2)0.0037 (19)0.0076 (18)0.0008 (18)
N40.040 (3)0.049 (3)0.049 (3)0.006 (2)0.008 (2)0.003 (2)
C10.035 (3)0.048 (3)0.039 (3)0.003 (2)0.003 (2)0.000 (2)
C20.033 (3)0.043 (3)0.039 (3)0.003 (2)0.008 (2)0.002 (2)
C30.071 (4)0.052 (3)0.046 (3)0.009 (3)0.013 (3)0.007 (3)
C40.040 (3)0.052 (3)0.041 (3)0.007 (2)0.011 (2)0.007 (3)
C50.041 (3)0.062 (4)0.048 (3)0.001 (3)0.007 (3)0.007 (3)
C6A0.091 (10)0.058 (6)0.062 (5)0.003 (7)0.010 (7)0.015 (4)
C7A0.100 (8)0.062 (6)0.086 (7)0.005 (6)0.000 (6)0.015 (5)
C8A0.182 (14)0.063 (6)0.136 (11)0.022 (7)0.006 (10)0.023 (7)
C6B0.091 (10)0.058 (6)0.062 (5)0.003 (7)0.010 (7)0.015 (4)
C7B0.100 (8)0.062 (6)0.086 (7)0.005 (6)0.000 (6)0.015 (5)
C8B0.182 (14)0.063 (6)0.136 (11)0.022 (7)0.006 (10)0.023 (7)
C90.043 (3)0.039 (3)0.034 (3)0.002 (2)0.001 (2)0.004 (2)
C100.042 (3)0.040 (3)0.037 (3)0.001 (2)0.005 (2)0.004 (2)
C110.045 (3)0.042 (3)0.052 (3)0.001 (3)0.014 (2)0.001 (2)
C120.048 (3)0.047 (3)0.045 (3)0.002 (3)0.003 (2)0.005 (2)
C130.042 (3)0.057 (4)0.038 (3)0.002 (3)0.003 (2)0.006 (3)
C14A0.035 (12)0.042 (4)0.092 (13)0.007 (4)0.007 (9)0.003 (5)
C15A0.066 (7)0.050 (6)0.121 (11)0.004 (5)0.029 (7)0.005 (7)
C16A0.111 (11)0.078 (9)0.139 (13)0.004 (10)0.010 (9)0.023 (10)
C14B0.035 (12)0.042 (4)0.092 (13)0.007 (4)0.007 (9)0.003 (5)
C15B0.066 (7)0.050 (6)0.121 (11)0.004 (5)0.029 (7)0.005 (7)
C16B0.111 (11)0.078 (9)0.139 (13)0.004 (10)0.010 (9)0.023 (10)
O1W0.065 (3)0.106 (4)0.049 (2)0.039 (3)0.007 (2)0.025 (2)
O2W0.049 (3)0.085 (3)0.091 (3)0.013 (2)0.019 (2)0.042 (3)
O3W0.066 (5)0.065 (5)0.045 (4)0.005 (4)0.007 (4)0.017 (4)
O4W0.166 (6)0.143 (5)0.067 (3)0.070 (5)0.032 (4)0.053 (3)
O5W0.077 (3)0.074 (3)0.090 (3)0.022 (2)0.016 (3)0.031 (3)
O6W0.109 (5)0.104 (4)0.140 (5)0.005 (3)0.061 (4)0.048 (4)
Geometric parameters (Å, º) top
Zn1—O1W2.042 (4)C6B—H6D0.9700
Zn1—N12.108 (4)C7B—C8B1.512 (17)
Zn1—O2W2.113 (4)C7B—H7C0.9700
Zn1—O32.149 (4)C7B—H7D0.9700
Zn1—N32.149 (4)C8B—H8D0.9600
Zn1—O52.174 (4)C8B—H8E0.9600
O1—C51.301 (7)C8B—H8F0.9600
O1—H10.8200C9—C101.370 (7)
O2—C51.210 (6)C9—C121.460 (8)
O3—C41.253 (6)C10—C131.479 (7)
O4—C41.254 (6)C11—C14A1.500 (10)
O5—C121.246 (6)C11—C14B1.502 (11)
O6—C121.282 (6)C14A—C15A1.594 (18)
O7—C131.286 (7)C14A—H14A0.9700
O7—H70.8200C14A—H14B0.9700
O8—C131.229 (7)C15A—C16A1.494 (15)
N1—C31.318 (7)C15A—H15A0.9700
N1—C21.360 (6)C15A—H15B0.9700
N2—C31.353 (7)C16A—H16A0.9600
N2—C11.363 (7)C16A—H16B0.9600
N2—H20.8600C16A—H16C0.9600
N3—C111.318 (7)C14B—C15B1.592 (18)
N3—C91.369 (6)C14B—H14C0.9700
N4—C111.311 (6)C14B—H14D0.9700
N4—C101.334 (7)C15B—C16B1.487 (17)
N4—H40.8600C15B—H15C0.9700
C1—C21.363 (7)C15B—H15D0.9700
C1—C51.474 (7)C16B—H16D0.9600
C2—C41.486 (7)C16B—H16E0.9600
C3—C6A1.504 (13)C16B—H16F0.9600
C3—C6B1.51 (4)O1W—H1W0.8363
C6A—C7A1.531 (13)O1W—H2W0.8393
C6A—H6A0.9700O2W—H3W0.8323
C6A—H6B0.9700O2W—H4W0.8337
C7A—C8A1.517 (13)O3W—H5W0.8402
C7A—H7A0.9700O3W—H6W0.8405
C7A—H7B0.9700O4W—H7W0.8420
C8A—H8A0.9600O4W—H8W0.8374
C8A—H8B0.9600O5W—H9W0.8466
C8A—H8C0.9600O5W—H10W0.8485
C6B—C7B1.539 (17)O6W—H11W0.8409
C6B—H6C0.9700O6W—H12W0.8416
O1W—Zn1—N1167.71 (16)C6B—C7B—H7C108.4
O1W—Zn1—O2W88.74 (19)C8B—C7B—H7D108.4
N1—Zn1—O2W87.04 (16)C6B—C7B—H7D108.4
O1W—Zn1—O390.84 (16)H7C—C7B—H7D107.5
N1—Zn1—O377.98 (14)C7B—C8B—H8D109.5
O2W—Zn1—O394.19 (17)C7B—C8B—H8E109.5
O1W—Zn1—N389.81 (17)H8D—C8B—H8E109.5
N1—Zn1—N396.47 (16)C7B—C8B—H8F109.5
O2W—Zn1—N3169.05 (16)H8D—C8B—H8F109.5
O3—Zn1—N396.68 (15)H8E—C8B—H8F109.5
O1W—Zn1—O591.52 (16)N3—C9—C10109.4 (5)
N1—Zn1—O5100.14 (15)N3—C9—C12118.4 (5)
O2W—Zn1—O591.72 (16)C10—C9—C12132.1 (5)
O3—Zn1—O5173.69 (14)N4—C10—C9103.1 (4)
N3—Zn1—O577.47 (15)N4—C10—C13124.6 (5)
C5—O1—H1109.5C9—C10—C13132.3 (5)
C4—O3—Zn1115.7 (3)N4—C11—N3108.1 (5)
C12—O5—Zn1114.6 (3)N4—C11—C14A121.7 (13)
C13—O7—H7109.5N3—C11—C14A128.5 (14)
C3—N1—C2106.5 (4)N4—C11—C14B128.3 (15)
C3—N1—Zn1141.4 (4)N3—C11—C14B122.8 (15)
C2—N1—Zn1112.0 (3)O5—C12—O6123.2 (5)
C3—N2—C1108.5 (4)O5—C12—C9118.4 (5)
C3—N2—H2125.8O6—C12—C9118.3 (5)
C1—N2—H2125.8O8—C13—O7124.2 (5)
C11—N3—C9106.7 (4)O8—C13—C10119.6 (5)
C11—N3—Zn1142.0 (3)O7—C13—C10116.2 (5)
C9—N3—Zn1110.9 (3)C11—C14A—C15A108.3 (10)
C11—N4—C10112.7 (5)C11—C14A—H14A110.0
C11—N4—H4123.6C15A—C14A—H14A110.0
C10—N4—H4123.6C11—C14A—H14B110.0
N2—C1—C2105.1 (4)C15A—C14A—H14B110.0
N2—C1—C5121.5 (5)H14A—C14A—H14B108.4
C2—C1—C5133.4 (5)C16A—C15A—C14A108.5 (13)
N1—C2—C1110.1 (4)C16A—C15A—H15A110.0
N1—C2—C4117.9 (4)C14A—C15A—H15A110.0
C1—C2—C4131.9 (5)C16A—C15A—H15B110.0
N1—C3—N2109.8 (5)C14A—C15A—H15B110.0
N1—C3—C6A125.1 (7)H15A—C15A—H15B108.4
N2—C3—C6A124.6 (7)C11—C14B—C15B108.7 (12)
N1—C3—C6B128.2 (18)C11—C14B—H14C109.9
N2—C3—C6B117.2 (18)C15B—C14B—H14C109.9
O3—C4—O4125.6 (5)C11—C14B—H14D109.9
O3—C4—C2116.3 (5)C15B—C14B—H14D109.9
O4—C4—C2118.1 (5)H14C—C14B—H14D108.3
O2—C5—O1121.8 (5)C16B—C15B—C14B110.1 (19)
O2—C5—C1121.2 (6)C16B—C15B—H15C109.6
O1—C5—C1117.0 (5)C14B—C15B—H15C109.6
C3—C6A—C7A110.2 (9)C16B—C15B—H15D109.6
C3—C6A—H6A109.6C14B—C15B—H15D109.6
C7A—C6A—H6A109.6H15C—C15B—H15D108.1
C3—C6A—H6B109.6C15B—C16B—H16D109.5
C7A—C6A—H6B109.6C15B—C16B—H16E109.5
H6A—C6A—H6B108.1H16D—C16B—H16E109.5
C8A—C7A—C6A109.4 (10)C15B—C16B—H16F109.5
C8A—C7A—H7A109.8H16D—C16B—H16F109.5
C6A—C7A—H7A109.8H16E—C16B—H16F109.5
C8A—C7A—H7B109.8Zn1—O1W—H1W125.4
C6A—C7A—H7B109.8Zn1—O1W—H2W121.6
H7A—C7A—H7B108.2H1W—O1W—H2W112.2
C3—C6B—C7B104 (3)Zn1—O2W—H3W129.7
C3—C6B—H6C110.9Zn1—O2W—H4W116.4
C7B—C6B—H6C110.9H3W—O2W—H4W113.1
C3—C6B—H6D110.9H5W—O3W—H6W111.6
C7B—C6B—H6D110.9H7W—O4W—H8W111.8
H6C—C6B—H6D109.0H9W—O5W—H10W110.3
C8B—C7B—C6B115 (3)H11W—O6W—H12W111.4
C8B—C7B—H7C108.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.682.502 (6)180
O7—H7···O60.821.632.445 (6)176
N2—H2···O4W0.861.882.737 (6)171
N4—H4···O6W0.862.032.863 (6)162
O1W—H1W···O5Wi0.841.862.675 (6)164
O1W—H2W···O8ii0.841.892.720 (5)170
O2W—H3W···O8iii0.832.132.910 (6)155
O2W—H4W···O2iv0.832.002.802 (6)161
O3W—H5W···O3iv0.841.982.795 (8)162
O3W—H6W···O3v0.841.922.743 (8)165
O4W—H7W···O3W0.841.812.633 (9)163
O4W—H8W···O7vi0.842.162.877 (6)143
O5W—H9W···O5vi0.852.142.865 (6)144
O5W—H10W···O4vii0.851.982.812 (6)169
O6W—H11W···O3Wvii0.841.742.574 (10)174
O6W—H12W···O5Wviii0.842.272.789 (7)120
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y, z+1; (v) x, y, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y, z+1; (viii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Zn(C8H9N2O4)2(H2O)2]·3.5H2O
Mr558.82
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.4780 (18), 10.5729 (18), 11.3012 (19)
α, β, γ (°)81.783 (2), 83.035 (2), 86.852 (2)
V3)1229.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.29 × 0.24 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.747, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
6393, 4360, 3172
Rint0.033
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.160, 1.07
No. of reflections4360
No. of parameters342
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.72

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.682.502 (6)180
O7—H7···O60.821.632.445 (6)176
N2—H2···O4W0.861.882.737 (6)171
N4—H4···O6W0.862.032.863 (6)162
O1W—H1W···O5Wi0.841.862.675 (6)164
O1W—H2W···O8ii0.841.892.720 (5)170
O2W—H3W···O8iii0.832.132.910 (6)155
O2W—H4W···O2iv0.832.002.802 (6)161
O3W—H5W···O3iv0.841.982.795 (8)162
O3W—H6W···O3v0.841.922.743 (8)165
O4W—H7W···O3W0.841.812.633 (9)163
O4W—H8W···O7vi0.842.162.877 (6)143
O5W—H9W···O5vi0.852.142.865 (6)144
O5W—H10W···O4vii0.851.982.812 (6)169
O6W—H11W···O3Wvii0.841.742.574 (10)174
O6W—H12W···O5Wviii0.842.272.789 (7)120
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y, z+1; (v) x, y, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y, z+1; (viii) x, y, z1.
 

Acknowledgements

This work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003-018(c)], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), the Guangdong Province Key Project in the Field of Social Development [grant No. A2009011-007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Foundation (No. 9252408801000002).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, C.-J., Hu, S., Li, W., Lam, C.-K., Zheng, Y.-Z. & Tong, M.-L. (2006). Eur. J. Inorg. Chem. pp. 1931–1935.  Web of Science CSD CrossRef Google Scholar
First citationLi, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, R.-Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542–2546.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds