metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(Di­phenyl­phosphan­yl)benzene­thiol­ato-κ2P,S](pyridine-2-thiol­ato-κS)(tri­phenyl­phosphine-κP)palladium(II)

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico
*Correspondence e-mail: simonho@unam.mx, damor@unam.mx

(Received 6 August 2010; accepted 19 August 2010; online 28 August 2010)

In the title compound, [Pd(C5H4NS)(C18H14PS)(C18H15P)], the PdII atom has a slightly distorted square-planar environment. Two coordination sites are occupied by a P,S-chelating 2-(diphenyl­phosphan­yl)benzene­thiol­ate ligand and the other two by a P atom from a triphenyl­phosphine ligand and an S atom from a pyridine-2-thiol­ate ligand, exhibiting a trans arrangement of the two P-donor atoms. In the crystal structure, weak intra- and inter­molecular C—H⋯π and ππ inter­actions are observed. The pyridyl ring is equally disordered over two positions.

Related literature

For general background to non-symmetric chelating ligands, see: Braunstein & Naud (2001[Braunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. 40, 680-699.]); Dilworth et al. (2000[Dilworth, J. R., Morales, D. & Zheng, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 3007-3015.]); Dilworth & Weatley (2000[Dilworth, J. R. & Weatley, N. (2000). Coord. Chem. Rev. 199, 89-158.]); Serrano-Becerra et al. (2010[Serrano-Becerra, J. M., Hernández-Ortega, S. & Morales-Morales, D. (2010). Inorg. Chim. Acta, 363, 1306-1310.]); Solano-Prado et al. (2010[Solano-Prado, M. A., Estudiante-Negrete, F. & Morales-Morales, D. (2010). Polyhedron, 29, 502-600.]). For a related structure, see: Benefiel et al. (1984[Benefiel, A., Roundhill, D. M., Fultz, W. C. & Rheingold, A. L. (1984). Inorg. Chem. 23, 3316-3324.]). For the synthesis of transition metal complexes with P,S-non-symmetric ligands, see: Canseco-González et al. (2003[Canseco-González, D., Gómez-Benítez, D., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2003). J. Organomet. Chem. 679, 101-109.], 2004[Canseco-González, D., Gómez-Benítez, D., Baldovino-Pantaleón, O., Hernández-Ortega, S. & Morales-Morales, D. (2004). J. Organomet. Chem. 689, 174-180.]); Fierro-Arias et al. (2008[Fierro-Arias, J., Morales-Morales, D. & Hernández-Ortega, S. (2008). Acta Cryst. E64, m1196.]); Gómez-Benítez et al. (2003[Gómez-Benítez, V., Hernández-Ortega, S. & Morales-Morales, D. (2003). Inorg. Chim. Acta, 346, 256-260.], 2007a[Gómez-Benítez, V., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007a). Inorg. Chim. Acta, 360, 2128-2138.],b[Gómez-Benítez, V., Toscano, R. A. & Morales-Morales, D. (2007b). Inorg. Chem. Commun. 10, 1-6.]); Hernández-Ortega & Morales-Morales (2008[Hernández-Ortega, S. & Morales-Morales, D. (2008). Acta Cryst. E64, m1465.]); Morales-Morales et al. (2002a[Morales-Morales, D., Redon, R., Zheng, Y. & Dilworth, J. R. (2002a). Inorg. Chim. Acta, 328, 39-44.],b[Morales-Morales, D., Rodríguez-Morales, S., Dilworth, J. R., Sousa-Pedrares, A. & Zheng, Y. (2002b). Inorg. Chim. Acta, 332, 101-107.]); Ríos-Moreno et al. (2005[Ríos-Moreno, G., Toscano, R. A., Redon, R., Nakano, H., Okuyama, Y. & Morales-Morales, D. (2005). Inorg. Chim. Acta, 358, 303-309.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C5H4NS)(C18H14PS)(C18H15P)]

  • Mr = 772.14

  • Triclinic, [P \overline 1]

  • a = 11.399 (5) Å

  • b = 12.178 (5) Å

  • c = 13.467 (5) Å

  • α = 83.623 (5)°

  • β = 76.379 (5)°

  • γ = 75.135 (5)°

  • V = 1753.5 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 298 K

  • 0.34 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.780, Tmax = 0.963

  • 14855 measured reflections

  • 6429 independent reflections

  • 4588 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.123

  • S = 1.02

  • 6429 reflections

  • 470 parameters

  • 186 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—P1 2.2585 (15)
Pd1—P2 2.3575 (15)
Pd1—S1 2.2999 (15)
Pd1—S2 2.3374 (15)

Table 2
Intra- and inter­molecular C—H⋯π and ππ inter­actions (Å)

H/centroid centroid distance
N37,C38–C42 C19–C24 3.93 (2)
N37A,C38,C39A–C42A C7–C12 4.00 (2)
C31–C36 C31i–C36i 3.76 (2)
H24 C25–C30 3.17
H30 C31–C36 3.11
H36 C19–C24 3.20
H29 C31ii–C36ii 3.06
Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nonsymmetric chelating ligands have had a renaissance in recent years due to the potential properties they may confer to the compounds they form (Dilworth & Weatley, 2000). Thus, steric and electronic effects can be modified easily due in part to the pronounced chemical differences among the donor atoms in these ligands (Serrano-Becerra et al., 2010; Solano-Prado et al., 2010). Properties such as hemilability (Braunstein & Naud, 2001) have been invoked to explain the often observed enhanced reactivities of these metallic complexes, turning these species very attractive for their potential applications in homogeneous catalysis and metal mediated organic synthesis (Dilworth et al., 2000). Thus, given our continuous interest in the synthesis of transition metal complexes bearing P,S-nonsymmetric hybrid ligands (Canseco-González et al., 2003, 2004; Fierro-Arias et al., 2008; Gómez-Benítez et al., 2003, 2007a,b; Hernández-Ortega & Morales-Morales, 2008; Morales-Morales et al., 2002a,b; Ríos-Moreno et al., 2005), we report here the structure of the title complex.

The title palladium complex (Fig. 1) consists of a diphenylphosphinobenzenethiolate ligand coordinated in a bidentated manner, a triphenylphosphine ligand arranged in a trans configuration with respect to the P atom of the P,S-chelating ligand and a pyridin-2-thiolate ligand coordinated by the S atom. The Pd—S distances observed are different (0.04 Å) (Table 1), while the Pd—P distance in the triphenylphosphine ligand are slightly longer than that observed in the diphenylphosphine fragment of the P,S-ligand (0.1 Å), due to the preferred bite angle of the chelate ligand. The disordered pyridyl ring of the pyridin-2-thiolate ligand and the phenyl rings (C7–C12 and C19–C24) exhibits important intramolecular face–to–face ππ interactions [centroid–centroid distances = 4.00 (2) and 3.93 (2) Å]. Additionally, the crystal packing is also supported by intermolecular C—H···π and ππ interactions (Table 2).

Related literature top

For general background to non-symmetric chelating ligands, see: Braunstein & Naud (2001); Dilworth et al. (2000); Dilworth & Weatley (2000); Serrano-Becerra et al. (2010); Solano-Prado et al. (2010). For a related structure, see: Benefiel et al. (1984). For the synthesis of transition metal complexes with P,S-non-symmetric ligands, see: Canseco-González et al. (2003, 2004); Fierro-Arias et al. (2008); Gómez-Benítez et al. (2003, 2007a,b); Hernández-Ortega & Morales-Morales (2008); Morales-Morales et al. (2002a,b); Ríos-Moreno et al. (2005).

Experimental top

The title compound was synthesized from the metathetical reaction of triphenylphosphine-2-(diphenylphosphine)benzenethiolate palladium(II) chloride [κ2-(SC6H4-2-PPh2)Pd(PPh3)Cl] (100 mg, 143 mmol) with lead 2-mercaptopirydine [Pb(C5H4N-2-S)2] (31 mg, 72 mmol) in a 2:1 molar ratio. The title compound was obtained as a bright yellow microcrystalline powder in a 92% (101 mg) yield.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and with Uiso(H) = 1.2Ueq(C). The pyridyl ring is disordered and was refined in two positions each with an occupancy factor of 0.50 (2).

Structure description top

Nonsymmetric chelating ligands have had a renaissance in recent years due to the potential properties they may confer to the compounds they form (Dilworth & Weatley, 2000). Thus, steric and electronic effects can be modified easily due in part to the pronounced chemical differences among the donor atoms in these ligands (Serrano-Becerra et al., 2010; Solano-Prado et al., 2010). Properties such as hemilability (Braunstein & Naud, 2001) have been invoked to explain the often observed enhanced reactivities of these metallic complexes, turning these species very attractive for their potential applications in homogeneous catalysis and metal mediated organic synthesis (Dilworth et al., 2000). Thus, given our continuous interest in the synthesis of transition metal complexes bearing P,S-nonsymmetric hybrid ligands (Canseco-González et al., 2003, 2004; Fierro-Arias et al., 2008; Gómez-Benítez et al., 2003, 2007a,b; Hernández-Ortega & Morales-Morales, 2008; Morales-Morales et al., 2002a,b; Ríos-Moreno et al., 2005), we report here the structure of the title complex.

The title palladium complex (Fig. 1) consists of a diphenylphosphinobenzenethiolate ligand coordinated in a bidentated manner, a triphenylphosphine ligand arranged in a trans configuration with respect to the P atom of the P,S-chelating ligand and a pyridin-2-thiolate ligand coordinated by the S atom. The Pd—S distances observed are different (0.04 Å) (Table 1), while the Pd—P distance in the triphenylphosphine ligand are slightly longer than that observed in the diphenylphosphine fragment of the P,S-ligand (0.1 Å), due to the preferred bite angle of the chelate ligand. The disordered pyridyl ring of the pyridin-2-thiolate ligand and the phenyl rings (C7–C12 and C19–C24) exhibits important intramolecular face–to–face ππ interactions [centroid–centroid distances = 4.00 (2) and 3.93 (2) Å]. Additionally, the crystal packing is also supported by intermolecular C—H···π and ππ interactions (Table 2).

For general background to non-symmetric chelating ligands, see: Braunstein & Naud (2001); Dilworth et al. (2000); Dilworth & Weatley (2000); Serrano-Becerra et al. (2010); Solano-Prado et al. (2010). For a related structure, see: Benefiel et al. (1984). For the synthesis of transition metal complexes with P,S-non-symmetric ligands, see: Canseco-González et al. (2003, 2004); Fierro-Arias et al. (2008); Gómez-Benítez et al. (2003, 2007a,b); Hernández-Ortega & Morales-Morales (2008); Morales-Morales et al. (2002a,b); Ríos-Moreno et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Only the H atoms involved in C—H···π interactions are shown. Dashed lines denote C—H···π and ππ interactions. The second parts of the disordered atoms have been omitted for clarity.
[2-(Diphenylphosphanyl)benzenethiolato-κ2P,S](pyridine-2- thiolato-κS)(triphenylphosphine-κP)palladium(II) top
Crystal data top
[Pd(C5H4NS)(C18H14PS)(C18H15P)]Z = 2
Mr = 772.14F(000) = 788
Triclinic, P1Dx = 1.462 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 11.399 (5) ÅCell parameters from 3920 reflections
b = 12.178 (5) Åθ = 2.2–24.6°
c = 13.467 (5) ŵ = 0.77 mm1
α = 83.623 (5)°T = 298 K
β = 76.379 (5)°Prism, yellow
γ = 75.135 (5)°0.34 × 0.06 × 0.05 mm
V = 1753.5 (12) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6429 independent reflections
Radiation source: fine-focus sealed tube4588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 25.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.780, Tmax = 0.963k = 1414
14855 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.5024P]
where P = (Fo2 + 2Fc2)/3
6429 reflections(Δ/σ)max = 0.038
470 parametersΔρmax = 0.71 e Å3
186 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Pd(C5H4NS)(C18H14PS)(C18H15P)]γ = 75.135 (5)°
Mr = 772.14V = 1753.5 (12) Å3
Triclinic, P1Z = 2
a = 11.399 (5) ÅMo Kα radiation
b = 12.178 (5) ŵ = 0.77 mm1
c = 13.467 (5) ÅT = 298 K
α = 83.623 (5)°0.34 × 0.06 × 0.05 mm
β = 76.379 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6429 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4588 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.963Rint = 0.046
14855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053186 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.71 e Å3
6429 reflectionsΔρmin = 0.30 e Å3
470 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.26508 (3)0.20691 (3)0.25871 (3)0.03896 (13)
S10.41538 (12)0.10047 (11)0.34128 (10)0.0527 (3)
S20.10300 (12)0.29994 (11)0.17836 (10)0.0513 (3)
P10.21862 (11)0.04240 (10)0.23856 (9)0.0383 (3)
P20.31291 (12)0.37713 (11)0.28524 (10)0.0435 (3)
C10.3252 (4)0.0722 (4)0.2934 (3)0.0416 (11)
C20.4067 (4)0.0419 (4)0.3403 (4)0.0442 (12)
C30.4853 (5)0.1262 (5)0.3891 (4)0.0609 (15)
H30.53920.10680.42250.073*
C40.4824 (6)0.2371 (5)0.3874 (5)0.0697 (17)
H40.53480.29300.42030.084*
C50.4042 (5)0.2682 (5)0.3384 (5)0.0681 (16)
H50.40500.34460.33700.082*
C60.3249 (5)0.1864 (4)0.2916 (4)0.0546 (13)
H60.27110.20690.25880.065*
C70.2388 (4)0.0109 (4)0.1058 (3)0.0400 (11)
C80.3553 (5)0.0422 (4)0.0520 (4)0.0492 (12)
H80.41970.06980.08640.059*
C90.3772 (5)0.0547 (5)0.0516 (4)0.0603 (15)
H90.45610.09020.08680.072*
C100.2838 (7)0.0154 (5)0.1027 (4)0.0710 (17)
H100.29900.02330.17270.085*
C110.1676 (6)0.0357 (5)0.0511 (4)0.0708 (17)
H110.10330.06060.08590.085*
C120.1447 (5)0.0509 (4)0.0533 (4)0.0529 (13)
H120.06600.08800.08760.063*
C130.0628 (4)0.0290 (4)0.3020 (3)0.0449 (12)
C140.0115 (5)0.0538 (5)0.2790 (4)0.0682 (16)
H140.05560.10310.22760.082*
C150.1055 (6)0.0635 (6)0.3322 (5)0.083 (2)
H150.13940.11940.31630.100*
C160.1711 (6)0.0075 (6)0.4073 (5)0.0814 (19)
H160.24940.00010.44280.098*
C170.1224 (5)0.0892 (5)0.4307 (5)0.0714 (17)
H170.16750.13810.48200.086*
C180.0057 (5)0.0999 (4)0.3782 (4)0.0556 (13)
H180.02700.15620.39490.067*
C190.2835 (5)0.5004 (4)0.1960 (4)0.0511 (13)
C200.1634 (6)0.5559 (5)0.1907 (5)0.0710 (17)
H200.09850.52800.23200.085*
C210.1352 (7)0.6508 (5)0.1270 (6)0.084 (2)
H210.05300.68780.12680.101*
C220.2296 (8)0.6888 (6)0.0650 (5)0.089 (2)
H220.21240.75350.02220.107*
C230.3497 (8)0.6337 (6)0.0642 (5)0.093 (2)
H230.41360.65940.01900.111*
C240.3780 (6)0.5397 (5)0.1301 (4)0.0683 (16)
H240.46040.50330.12980.082*
C250.4744 (4)0.3612 (4)0.2925 (4)0.0440 (11)
C260.5669 (5)0.2975 (5)0.2206 (4)0.0632 (15)
H260.54610.26210.17170.076*
C270.6903 (6)0.2867 (5)0.2217 (5)0.0710 (17)
H270.75210.24470.17260.085*
C280.7229 (5)0.3366 (5)0.2934 (5)0.0685 (16)
H280.80620.32830.29390.082*
C290.6308 (5)0.3994 (5)0.3650 (4)0.0653 (15)
H290.65210.43440.41390.078*
C300.5090 (5)0.4110 (4)0.3649 (4)0.0490 (12)
H300.44800.45300.41450.059*
C310.2270 (4)0.4299 (4)0.4100 (4)0.0460 (12)
C320.2156 (5)0.3516 (5)0.4923 (4)0.0588 (14)
H320.24600.27420.48240.071*
C330.1589 (6)0.3888 (6)0.5892 (5)0.0779 (19)
H330.15390.33620.64470.093*
C340.1106 (5)0.5011 (7)0.6040 (5)0.078 (2)
H340.07130.52500.66940.093*
C350.1194 (5)0.5791 (6)0.5236 (6)0.0740 (18)
H350.08550.65600.53390.089*
C360.1780 (5)0.5440 (5)0.4277 (4)0.0572 (14)
H360.18520.59780.37330.069*
C380.1818 (5)0.3228 (4)0.0538 (4)0.0555 (12)
N370.3081 (7)0.2875 (18)0.0324 (10)0.068 (3)0.50 (2)
C390.1267 (10)0.4052 (14)0.0117 (8)0.064 (3)0.50 (2)
H390.04480.44520.01010.077*0.50 (2)
C400.1895 (14)0.4282 (14)0.1058 (8)0.071 (3)0.50 (2)
H400.14990.48120.14990.086*0.50 (2)
C410.3102 (14)0.3744 (16)0.1364 (9)0.076 (3)0.50 (2)
H410.35250.38190.20400.092*0.50 (2)
C420.3674 (10)0.3094 (16)0.0654 (11)0.077 (3)0.50 (2)
H420.45230.27770.08450.092*0.50 (2)
N37A0.3023 (8)0.2694 (18)0.0152 (9)0.067 (3)0.50 (2)
C39A0.1072 (10)0.3708 (15)0.0149 (7)0.064 (3)0.50 (2)
H39A0.02130.39060.00820.077*0.50 (2)
C40A0.1566 (14)0.3893 (16)0.1138 (7)0.073 (3)0.50 (2)
H40A0.10530.42650.15770.088*0.50 (2)
C41A0.2798 (14)0.3544 (16)0.1503 (8)0.077 (3)0.50 (2)
H41A0.31650.37430.21690.092*0.50 (2)
C42A0.3480 (11)0.2893 (16)0.0863 (9)0.072 (3)0.50 (2)
H42A0.43110.25620.11310.086*0.50 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0445 (2)0.0354 (2)0.0403 (2)0.01175 (16)0.01242 (16)0.00360 (15)
S10.0589 (8)0.0490 (8)0.0591 (8)0.0123 (7)0.0298 (7)0.0047 (6)
S20.0449 (8)0.0520 (8)0.0570 (8)0.0081 (6)0.0146 (6)0.0037 (6)
P10.0431 (7)0.0367 (7)0.0380 (7)0.0127 (6)0.0100 (5)0.0038 (5)
P20.0466 (8)0.0403 (7)0.0475 (8)0.0142 (6)0.0124 (6)0.0046 (6)
C10.043 (3)0.043 (3)0.037 (3)0.012 (2)0.003 (2)0.001 (2)
C20.046 (3)0.042 (3)0.043 (3)0.007 (2)0.010 (2)0.000 (2)
C30.063 (4)0.061 (4)0.063 (4)0.014 (3)0.026 (3)0.002 (3)
C40.070 (4)0.051 (4)0.079 (4)0.003 (3)0.023 (3)0.020 (3)
C50.073 (4)0.037 (3)0.092 (5)0.011 (3)0.024 (4)0.015 (3)
C60.061 (3)0.042 (3)0.064 (3)0.019 (3)0.017 (3)0.003 (3)
C70.045 (3)0.038 (3)0.039 (3)0.018 (2)0.006 (2)0.003 (2)
C80.054 (3)0.048 (3)0.048 (3)0.017 (3)0.008 (2)0.005 (2)
C90.061 (4)0.065 (4)0.052 (3)0.024 (3)0.011 (3)0.019 (3)
C100.100 (5)0.080 (4)0.039 (3)0.035 (4)0.009 (3)0.012 (3)
C110.094 (5)0.080 (4)0.048 (3)0.028 (4)0.027 (3)0.002 (3)
C120.053 (3)0.059 (3)0.051 (3)0.015 (3)0.014 (3)0.011 (3)
C130.048 (3)0.048 (3)0.039 (3)0.014 (2)0.008 (2)0.000 (2)
C140.072 (4)0.076 (4)0.064 (4)0.039 (3)0.006 (3)0.006 (3)
C150.076 (5)0.101 (5)0.085 (5)0.054 (4)0.006 (4)0.002 (4)
C160.055 (4)0.103 (5)0.081 (5)0.031 (4)0.003 (3)0.007 (4)
C170.058 (4)0.076 (4)0.064 (4)0.008 (3)0.007 (3)0.001 (3)
C180.057 (3)0.051 (3)0.056 (3)0.010 (3)0.010 (3)0.004 (3)
C190.073 (4)0.042 (3)0.046 (3)0.020 (3)0.020 (3)0.005 (2)
C200.068 (4)0.055 (4)0.094 (5)0.021 (3)0.028 (4)0.012 (3)
C210.100 (5)0.056 (4)0.106 (6)0.015 (4)0.054 (5)0.011 (4)
C220.136 (7)0.056 (4)0.072 (5)0.014 (5)0.030 (5)0.006 (3)
C230.124 (7)0.072 (5)0.071 (5)0.033 (5)0.002 (4)0.012 (4)
C240.076 (4)0.059 (4)0.061 (4)0.011 (3)0.005 (3)0.001 (3)
C250.044 (3)0.037 (3)0.052 (3)0.013 (2)0.010 (2)0.003 (2)
C260.056 (4)0.074 (4)0.064 (4)0.021 (3)0.008 (3)0.024 (3)
C270.058 (4)0.071 (4)0.074 (4)0.014 (3)0.006 (3)0.013 (3)
C280.054 (4)0.072 (4)0.084 (4)0.016 (3)0.025 (3)0.001 (4)
C290.056 (4)0.083 (4)0.067 (4)0.023 (3)0.022 (3)0.012 (3)
C300.049 (3)0.054 (3)0.046 (3)0.014 (3)0.012 (2)0.006 (2)
C310.039 (3)0.044 (3)0.058 (3)0.011 (2)0.010 (2)0.011 (3)
C320.063 (4)0.053 (3)0.055 (3)0.016 (3)0.001 (3)0.004 (3)
C330.092 (5)0.088 (5)0.055 (4)0.035 (4)0.001 (3)0.016 (3)
C340.057 (4)0.105 (6)0.076 (5)0.032 (4)0.008 (3)0.044 (4)
C350.064 (4)0.060 (4)0.100 (5)0.014 (3)0.006 (4)0.040 (4)
C360.054 (3)0.054 (3)0.069 (4)0.017 (3)0.012 (3)0.015 (3)
C380.053 (2)0.056 (3)0.063 (3)0.012 (2)0.024 (2)0.001 (2)
N370.056 (3)0.068 (6)0.080 (4)0.014 (4)0.015 (3)0.005 (4)
C390.055 (4)0.077 (6)0.060 (4)0.011 (4)0.021 (3)0.003 (4)
C400.066 (5)0.089 (6)0.063 (4)0.019 (4)0.025 (4)0.008 (4)
C410.066 (5)0.092 (6)0.071 (4)0.022 (4)0.012 (4)0.001 (4)
C420.061 (4)0.078 (6)0.082 (5)0.011 (4)0.008 (3)0.003 (5)
N37A0.054 (3)0.067 (6)0.081 (4)0.017 (4)0.018 (3)0.007 (5)
C39A0.055 (4)0.077 (6)0.060 (4)0.013 (4)0.022 (3)0.007 (4)
C40A0.064 (4)0.091 (6)0.066 (3)0.018 (4)0.024 (4)0.010 (4)
C41A0.067 (5)0.091 (6)0.070 (4)0.020 (5)0.014 (4)0.003 (4)
C42A0.055 (4)0.077 (6)0.081 (4)0.016 (4)0.012 (3)0.001 (5)
Geometric parameters (Å, º) top
Pd1—P12.2585 (15)C21—H210.9300
Pd1—P22.3575 (15)C22—C231.359 (9)
Pd1—S12.2999 (15)C22—H220.9300
Pd1—S22.3374 (15)C23—C241.387 (8)
S1—C21.764 (5)C23—H230.9300
S2—C381.735 (6)C24—H240.9300
P1—C11.815 (5)C25—C301.382 (6)
P1—C71.819 (5)C25—C261.384 (7)
P1—C131.821 (5)C26—C271.382 (8)
P2—C251.826 (5)C26—H260.9300
P2—C311.827 (5)C27—C281.362 (8)
P2—C191.828 (5)C27—H270.9300
C1—C21.380 (6)C28—C291.375 (8)
C1—C61.394 (6)C28—H280.9300
C2—C31.394 (7)C29—C301.359 (7)
C3—C41.362 (8)C29—H290.9300
C3—H30.9300C30—H300.9300
C4—C51.371 (8)C31—C361.383 (7)
C4—H40.9300C31—C321.384 (7)
C5—C61.368 (7)C32—C331.382 (7)
C5—H50.9300C32—H320.9300
C6—H60.9300C33—C341.355 (9)
C7—C121.379 (6)C33—H330.9300
C7—C81.384 (6)C34—C351.362 (9)
C8—C91.378 (7)C34—H340.9300
C8—H80.9300C35—C361.366 (8)
C9—C101.358 (8)C35—H350.9300
C9—H90.9300C36—H360.9300
C10—C111.365 (8)C38—N371.362 (8)
C10—H100.9300C38—N37A1.365 (8)
C11—C121.393 (7)C38—C39A1.384 (9)
C11—H110.9300C38—C391.385 (9)
C12—H120.9300N37—C421.363 (9)
C13—C181.372 (7)C39—C401.339 (10)
C13—C141.383 (7)C39—H390.9300
C14—C151.385 (8)C40—C411.351 (10)
C14—H140.9300C40—H400.9300
C15—C161.355 (9)C41—C421.351 (11)
C15—H150.9300C41—H410.9300
C16—C171.353 (9)C42—H420.9300
C16—H160.9300N37A—C42A1.362 (9)
C17—C181.383 (7)C39A—C40A1.336 (10)
C17—H170.9300C39A—H39A0.9300
C18—H180.9300C40A—C41A1.346 (10)
C19—C241.377 (7)C40A—H40A0.9300
C19—C201.377 (7)C41A—C42A1.350 (11)
C20—C211.376 (8)C41A—H41A0.9300
C20—H200.9300C42A—H42A0.9300
C21—C221.348 (9)
P1—Pd1—S187.50 (5)C22—C21—H21120.8
P1—Pd1—S287.20 (5)C20—C21—H21120.8
S1—Pd1—S2174.33 (5)C21—C22—C23120.8 (7)
P1—Pd1—P2178.22 (5)C21—C22—H22119.6
S1—Pd1—P291.42 (5)C23—C22—H22119.6
S2—Pd1—P293.83 (5)C22—C23—C24120.7 (7)
C2—S1—Pd1105.60 (16)C22—C23—H23119.6
C38—S2—Pd1102.20 (18)C24—C23—H23119.6
C1—P1—C7106.4 (2)C19—C24—C23119.7 (6)
C1—P1—C13106.3 (2)C19—C24—H24120.1
C7—P1—C13106.1 (2)C23—C24—H24120.1
C1—P1—Pd1107.42 (16)C30—C25—C26118.4 (5)
C7—P1—Pd1114.19 (15)C30—C25—P2123.4 (4)
C13—P1—Pd1115.84 (16)C26—C25—P2118.2 (4)
C25—P2—C31102.7 (2)C27—C26—C25119.8 (5)
C25—P2—C19103.6 (2)C27—C26—H26120.1
C31—P2—C19104.2 (2)C25—C26—H26120.1
C25—P2—Pd1114.30 (16)C28—C27—C26121.1 (6)
C31—P2—Pd1110.55 (16)C28—C27—H27119.5
C19—P2—Pd1119.64 (16)C26—C27—H27119.5
C2—C1—C6120.2 (4)C27—C28—C29119.0 (5)
C2—C1—P1117.0 (4)C27—C28—H28120.5
C6—C1—P1122.8 (4)C29—C28—H28120.5
C1—C2—C3119.3 (5)C30—C29—C28120.7 (5)
C1—C2—S1122.4 (4)C30—C29—H29119.6
C3—C2—S1118.3 (4)C28—C29—H29119.6
C4—C3—C2119.5 (5)C29—C30—C25121.0 (5)
C4—C3—H3120.3C29—C30—H30119.5
C2—C3—H3120.3C25—C30—H30119.5
C3—C4—C5121.6 (5)C36—C31—C32118.3 (5)
C3—C4—H4119.2C36—C31—P2123.6 (4)
C5—C4—H4119.2C32—C31—P2118.1 (4)
C6—C5—C4119.7 (5)C33—C32—C31119.8 (5)
C6—C5—H5120.1C33—C32—H32120.1
C4—C5—H5120.1C31—C32—H32120.1
C5—C6—C1119.7 (5)C34—C33—C32120.6 (6)
C5—C6—H6120.1C34—C33—H33119.7
C1—C6—H6120.1C32—C33—H33119.7
C12—C7—C8118.5 (4)C33—C34—C35120.3 (6)
C12—C7—P1121.5 (4)C33—C34—H34119.9
C8—C7—P1119.5 (4)C35—C34—H34119.9
C9—C8—C7121.0 (5)C34—C35—C36119.9 (6)
C9—C8—H8119.5C34—C35—H35120.1
C7—C8—H8119.5C36—C35—H35120.1
C10—C9—C8120.1 (5)C35—C36—C31121.2 (6)
C10—C9—H9119.9C35—C36—H36119.4
C8—C9—H9119.9C31—C36—H36119.4
C9—C10—C11120.0 (5)N37—C38—C39A126.8 (8)
C9—C10—H10120.0N37A—C38—C39A117.8 (7)
C11—C10—H10120.0N37—C38—C39118.1 (7)
C10—C11—C12120.4 (6)N37A—C38—C39115.0 (8)
C10—C11—H11119.8N37—C38—S2117.8 (6)
C12—C11—H11119.8N37A—C38—S2124.1 (5)
C7—C12—C11119.9 (5)C39A—C38—S2115.3 (6)
C7—C12—H12120.0C39—C38—S2120.7 (6)
C11—C12—H12120.0C38—N37—C42116.3 (7)
C18—C13—C14118.0 (5)C40—C39—C38121.1 (8)
C18—C13—P1119.7 (4)C40—C39—H39119.4
C14—C13—P1122.3 (4)C38—C39—H39119.4
C13—C14—C15120.1 (6)C39—C40—C41119.9 (8)
C13—C14—H14119.9C39—C40—H40120.1
C15—C14—H14119.9C41—C40—H40120.0
C16—C15—C14120.7 (6)C42—C41—C40117.6 (8)
C16—C15—H15119.6C42—C41—H41121.2
C14—C15—H15119.6C40—C41—H41121.2
C17—C16—C15119.9 (6)C41—C42—N37124.0 (8)
C17—C16—H16120.0C41—C42—H42118.0
C15—C16—H16120.0N37—C42—H42118.0
C16—C17—C18120.0 (6)C42A—N37A—C38117.1 (7)
C16—C17—H17120.0C40A—C39A—C38121.1 (8)
C18—C17—H17120.0C40A—C39A—H39A119.5
C13—C18—C17121.2 (5)C38—C39A—H39A119.5
C13—C18—H18119.4C39A—C40A—C41A120.6 (8)
C17—C18—H18119.4C39A—C40A—H40A119.7
C24—C19—C20117.4 (5)C41A—C40A—H40A119.7
C24—C19—P2122.5 (4)C40A—C41A—C42A117.3 (8)
C20—C19—P2120.1 (4)C40A—C41A—H41A121.4
C21—C20—C19122.8 (6)C42A—C41A—H41A121.4
C21—C20—H20118.6C41A—C42A—N37A123.9 (8)
C19—C20—H20118.6C41A—C42A—H42A118.1
C22—C21—C20118.4 (7)N37A—C42A—H42A118.1
P1—Pd1—S1—C20.08 (17)C31—P2—C19—C2056.4 (5)
P2—Pd1—S1—C2178.66 (17)Pd1—P2—C19—C2067.8 (5)
P1—Pd1—S2—C3899.05 (19)C24—C19—C20—C213.4 (9)
P2—Pd1—S2—C3882.41 (19)P2—C19—C20—C21178.3 (5)
S1—Pd1—P1—C11.59 (15)C19—C20—C21—C222.1 (10)
S2—Pd1—P1—C1179.60 (15)C20—C21—C22—C231.0 (11)
S1—Pd1—P1—C7119.32 (18)C21—C22—C23—C242.5 (11)
S2—Pd1—P1—C762.67 (17)C20—C19—C24—C231.8 (8)
S1—Pd1—P1—C13116.98 (18)P2—C19—C24—C23179.9 (5)
S2—Pd1—P1—C1361.03 (18)C22—C23—C24—C191.1 (10)
S1—Pd1—P2—C2529.13 (18)C31—P2—C25—C3016.2 (5)
S2—Pd1—P2—C25153.00 (18)C19—P2—C25—C3092.1 (4)
S1—Pd1—P2—C3186.20 (18)Pd1—P2—C25—C30136.0 (4)
S2—Pd1—P2—C3191.67 (18)C31—P2—C25—C26164.9 (4)
S1—Pd1—P2—C19152.8 (2)C19—P2—C25—C2686.8 (4)
S2—Pd1—P2—C1929.3 (2)Pd1—P2—C25—C2645.1 (4)
C7—P1—C1—C2126.1 (4)C30—C25—C26—C271.1 (8)
C13—P1—C1—C2121.2 (4)P2—C25—C26—C27177.9 (4)
Pd1—P1—C1—C23.4 (4)C25—C26—C27—C280.9 (9)
C7—P1—C1—C655.5 (4)C26—C27—C28—C290.6 (10)
C13—P1—C1—C657.2 (4)C27—C28—C29—C300.5 (9)
Pd1—P1—C1—C6178.2 (4)C28—C29—C30—C250.8 (9)
C6—C1—C2—C32.4 (7)C26—C25—C30—C291.0 (8)
P1—C1—C2—C3176.1 (4)P2—C25—C30—C29177.9 (4)
C6—C1—C2—S1177.7 (4)C25—P2—C31—C3695.0 (5)
P1—C1—C2—S13.8 (5)C19—P2—C31—C3612.8 (5)
Pd1—S1—C2—C12.2 (4)Pd1—P2—C31—C36142.6 (4)
Pd1—S1—C2—C3177.7 (4)C25—P2—C31—C3281.7 (4)
C1—C2—C3—C41.6 (8)C19—P2—C31—C32170.5 (4)
S1—C2—C3—C4178.5 (4)Pd1—P2—C31—C3240.7 (4)
C2—C3—C4—C50.2 (9)C36—C31—C32—C331.4 (8)
C3—C4—C5—C61.3 (9)P2—C31—C32—C33175.5 (4)
C4—C5—C6—C10.6 (9)C31—C32—C33—C342.2 (9)
C2—C1—C6—C51.3 (8)C32—C33—C34—C351.2 (10)
P1—C1—C6—C5177.1 (4)C33—C34—C35—C360.6 (9)
C1—P1—C7—C12154.0 (4)C34—C35—C36—C311.3 (9)
C13—P1—C7—C1241.1 (5)C32—C31—C36—C350.3 (8)
Pd1—P1—C7—C1287.7 (4)P2—C31—C36—C35177.0 (4)
C1—P1—C7—C834.1 (4)Pd1—S2—C38—N371.2 (12)
C13—P1—C7—C8147.0 (4)Pd1—S2—C38—N37A15.2 (13)
Pd1—P1—C7—C884.2 (4)Pd1—S2—C38—C39A175.7 (9)
C12—C7—C8—C90.1 (7)Pd1—S2—C38—C39159.9 (10)
P1—C7—C8—C9172.0 (4)N37A—C38—N37—C4264 (3)
C7—C8—C9—C100.4 (8)C39A—C38—N37—C425 (3)
C8—C9—C10—C110.6 (9)C39—C38—N37—C4219 (2)
C9—C10—C11—C121.8 (9)S2—C38—N37—C42178.3 (12)
C8—C7—C12—C111.0 (7)N37—C38—C39—C4017 (2)
P1—C7—C12—C11173.0 (4)N37A—C38—C39—C400 (2)
C10—C11—C12—C72.1 (9)C39A—C38—C39—C40102 (2)
C1—P1—C13—C18102.0 (4)S2—C38—C39—C40175.9 (10)
C7—P1—C13—C18145.1 (4)C38—C39—C40—C413 (2)
Pd1—P1—C13—C1817.2 (5)C39—C40—C41—C428 (2)
C1—P1—C13—C1475.3 (5)C40—C41—C42—N376 (2)
C7—P1—C13—C1437.6 (5)C38—N37—C42—C418 (3)
Pd1—P1—C13—C14165.5 (4)N37—C38—N37A—C42A115 (5)
C18—C13—C14—C150.0 (8)C39A—C38—N37A—C42A15 (2)
P1—C13—C14—C15177.4 (5)C39—C38—N37A—C42A10 (2)
C13—C14—C15—C160.1 (10)S2—C38—N37A—C42A174.8 (11)
C14—C15—C16—C170.2 (11)N37—C38—C39A—C40A1 (2)
C15—C16—C17—C180.2 (10)N37A—C38—C39A—C40A16 (2)
C14—C13—C18—C170.0 (8)C39—C38—C39A—C40A72.5 (19)
P1—C13—C18—C17177.4 (4)S2—C38—C39A—C40A177.8 (10)
C16—C17—C18—C130.1 (9)C38—C39A—C40A—C41A5 (2)
C25—P2—C19—C2418.2 (5)C39A—C40A—C41A—C42A8 (2)
C31—P2—C19—C24125.4 (5)C40A—C41A—C42A—N37A9 (2)
Pd1—P2—C19—C24110.5 (4)C38—N37A—C42A—C41A3 (3)
C25—P2—C19—C20163.6 (4)

Experimental details

Crystal data
Chemical formula[Pd(C5H4NS)(C18H14PS)(C18H15P)]
Mr772.14
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.399 (5), 12.178 (5), 13.467 (5)
α, β, γ (°)83.623 (5), 76.379 (5), 75.135 (5)
V3)1753.5 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.34 × 0.06 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.780, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
14855, 6429, 4588
Rint0.046
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.123, 1.02
No. of reflections6429
No. of parameters470
No. of restraints186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.30

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pd1—P12.2585 (15)Pd1—S12.2999 (15)
Pd1—P22.3575 (15)Pd1—S22.3374 (15)
Intra- and intermolecular C—H···π and ππ interactions (Å) top
H/centroidcentroiddistance
N37,C38–C42C19–C243.93 (2)
N37A,C38,C39A–C42AC7–C124.00 (2)
C31–C36C31i–C36i3.76 (2)
H24C25–C303.17
H30C31–C363.11
H36C19–C243.20
H29C31ii–C36ii3.06
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.
 

Acknowledgements

The support of this research by CONACYT (F58692) and DGAPA-UNAM (IN227008) is gratefully acknowledged.

References

First citationBenefiel, A., Roundhill, D. M., Fultz, W. C. & Rheingold, A. L. (1984). Inorg. Chem. 23, 3316–3324.  CSD CrossRef CAS Web of Science Google Scholar
First citationBraunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. 40, 680–699.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanseco-González, D., Gómez-Benítez, D., Baldovino-Pantaleón, O., Hernández-Ortega, S. & Morales-Morales, D. (2004). J. Organomet. Chem. 689, 174–180.  Web of Science CSD CrossRef Google Scholar
First citationCanseco-González, D., Gómez-Benítez, D., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2003). J. Organomet. Chem. 679, 101–109.  Google Scholar
First citationDilworth, J. R., Morales, D. & Zheng, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 3007–3015.  Web of Science CSD CrossRef Google Scholar
First citationDilworth, J. R. & Weatley, N. (2000). Coord. Chem. Rev. 199, 89–158.  Web of Science CrossRef CAS Google Scholar
First citationFierro-Arias, J., Morales-Morales, D. & Hernández-Ortega, S. (2008). Acta Cryst. E64, m1196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGómez-Benítez, V., Hernández-Ortega, S. & Morales-Morales, D. (2003). Inorg. Chim. Acta, 346, 256–260.  Web of Science CSD CrossRef CAS Google Scholar
First citationGómez-Benítez, V., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007a). Inorg. Chim. Acta, 360, 2128–2138.  Google Scholar
First citationGómez-Benítez, V., Toscano, R. A. & Morales-Morales, D. (2007b). Inorg. Chem. Commun. 10, 1–6.  Google Scholar
First citationHernández-Ortega, S. & Morales-Morales, D. (2008). Acta Cryst. E64, m1465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorales-Morales, D., Redon, R., Zheng, Y. & Dilworth, J. R. (2002a). Inorg. Chim. Acta, 328, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorales-Morales, D., Rodríguez-Morales, S., Dilworth, J. R., Sousa-Pedrares, A. & Zheng, Y. (2002b). Inorg. Chim. Acta, 332, 101–107.  Web of Science CSD CrossRef CAS Google Scholar
First citationRíos-Moreno, G., Toscano, R. A., Redon, R., Nakano, H., Okuyama, Y. & Morales-Morales, D. (2005). Inorg. Chim. Acta, 358, 303–309.  Google Scholar
First citationSerrano-Becerra, J. M., Hernández-Ortega, S. & Morales-Morales, D. (2010). Inorg. Chim. Acta, 363, 1306–1310.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolano-Prado, M. A., Estudiante-Negrete, F. & Morales-Morales, D. (2010). Polyhedron, 29, 502–600.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds