metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acridine-κN)di­bromidoplatinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 7 August 2010; accepted 17 August 2010; online 21 August 2010)

In the title complex, [PtBr2(C13H9N)2], the PtII ion is four-coordinated in a slightly distorted square-planar environment by two N atoms from two acridine ligands and two Br atoms. The Pt atom is located on an inversion centre, and thus the asymmetric unit contains one half of the complex and the PtN2Br2 unit is exactly planar. The dihedral angle between the PtN2Br2 unit and acridine ligand is 78.98 (9)°. In the crystal structure, the complex mol­ecules are arranged in two distinct chains along [110] and [[\overline{1}]10]. In the chains, inter­molecular ππ inter­actions between the pyridyl and benzene rings connect the complex mol­ecules, with a centroid–centroid distance of 3.631 (4) Å.

Related literature

For the crystal structure of [PtCl2(acridine)2], see: Ha (2010[Ha, K. (2010). Z. Kristallogr. New Cryst. Struct. 225, 323-324.]). For the formation of polymorphs of acridine using dicarb­oxy­lic acids, see: Mei & Wolf (2004[Mei, X. & Wolf, C. (2004). Cryst. Growth Des. 4, 1099-1103.]).

[Scheme 1]

Experimental

Crystal data
  • [PtBr2(C13H9N)2]

  • Mr = 713.33

  • Monoclinic, C 2/c

  • a = 16.0256 (9) Å

  • b = 8.6845 (5) Å

  • c = 17.0646 (10) Å

  • β = 115.017 (1)°

  • V = 2152.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.25 mm−1

  • T = 200 K

  • 0.35 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.601, Tmax = 1.000

  • 6467 measured reflections

  • 2091 independent reflections

  • 1672 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.070

  • S = 1.00

  • 2091 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 2.19 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N1 2.058 (4)
Pt1—Br1 2.4385 (7)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PtBr2(acr)2] (acr = acridine), is isomorphous with the chlorido analogue [PtCl2(acr)2] (Ha, 2010). In the complex, the PtII ion is four-coordinated in an essentially square-planar environment by two N atoms from two acridine ligands and two Br atoms (Table 1 and Fig. 1). The Pt atom is located on an inversion centre, and thus the asymmetric unit contains one half of the complex and the PtN2Br2 unit is exactly planar. The nearly planar acridine ligands, with a maximum deviation of 0.072 (6) Å (C11) from the least-squares plane, are parallel. The dihedral angle between the PtN2Br2 unit and acridine ligand is 78.98 (9)°. The Br atoms are in a trans arrangement and almost perpendicular to the acridine planes, with the bond angle N1—Pt1—Br1 = 88.65 (14)°. In the crystal structure, the complex molecules are arranged in two distinct chains along [1 1 0] and [1 1 0] (Fig. 2). In the chains, intermolecular ππ interactions between the pyridyl and benzene rings connect the complex molecules, with a centroid–centroid distance of 3.631 (4) Å, and the dihedral angle between the ring planes is 1.2 (3)°. The packing pattern is considerably similar to that of the most stable polymorph of acridine (Mei & Wolf, 2004).

Related literature top

For the crystal structure of [PtCl2(acridine)2], see: Ha (2010). For the formation of polymorphs of acridine using dicarboxylic acids, see: Mei & Wolf (2004).

Experimental top

To a solution of K2PtBr4 (0.203 g, 0.342 mmol) in H2O (30 ml) was added acridine (0.131 g, 0.730 mmol) and the mixture was refluxed for 3 h. The precipitate was then separated by filtration, washed with H2O and EtOH and dried under vacuum to give a yellow powder (0.186 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an N,N-dimethylformamide solution at 323 K.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (2.19 e Å-3) and the deepest hole (-0.92 e Å-3) in the difference Fourier map are located 1.04 and 0.76 Å from the Pt1 atom, respectively.

Structure description top

The title complex, [PtBr2(acr)2] (acr = acridine), is isomorphous with the chlorido analogue [PtCl2(acr)2] (Ha, 2010). In the complex, the PtII ion is four-coordinated in an essentially square-planar environment by two N atoms from two acridine ligands and two Br atoms (Table 1 and Fig. 1). The Pt atom is located on an inversion centre, and thus the asymmetric unit contains one half of the complex and the PtN2Br2 unit is exactly planar. The nearly planar acridine ligands, with a maximum deviation of 0.072 (6) Å (C11) from the least-squares plane, are parallel. The dihedral angle between the PtN2Br2 unit and acridine ligand is 78.98 (9)°. The Br atoms are in a trans arrangement and almost perpendicular to the acridine planes, with the bond angle N1—Pt1—Br1 = 88.65 (14)°. In the crystal structure, the complex molecules are arranged in two distinct chains along [1 1 0] and [1 1 0] (Fig. 2). In the chains, intermolecular ππ interactions between the pyridyl and benzene rings connect the complex molecules, with a centroid–centroid distance of 3.631 (4) Å, and the dihedral angle between the ring planes is 1.2 (3)°. The packing pattern is considerably similar to that of the most stable polymorph of acridine (Mei & Wolf, 2004).

For the crystal structure of [PtCl2(acridine)2], see: Ha (2010). For the formation of polymorphs of acridine using dicarboxylic acids, see: Mei & Wolf (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code: (i) 1-x, 1-y, 1-z.]
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. H atoms have been omitted for clarity.
Bis(acridine-κN)dibromidoplatinum(II) top
Crystal data top
[PtBr2(C13H9N)2]F(000) = 1344
Mr = 713.33Dx = 2.202 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3125 reflections
a = 16.0256 (9) Åθ = 2.7–26.0°
b = 8.6845 (5) ŵ = 10.25 mm1
c = 17.0646 (10) ÅT = 200 K
β = 115.017 (1)°Rod, yellow
V = 2152.1 (2) Å30.35 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2091 independent reflections
Radiation source: fine-focus sealed tube1672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1919
Tmin = 0.601, Tmax = 1.000k = 1010
6467 measured reflectionsl = 1421
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0286P)2]
where P = (Fo2 + 2Fc2)/3
2091 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 2.19 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
[PtBr2(C13H9N)2]V = 2152.1 (2) Å3
Mr = 713.33Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.0256 (9) ŵ = 10.25 mm1
b = 8.6845 (5) ÅT = 200 K
c = 17.0646 (10) Å0.35 × 0.06 × 0.04 mm
β = 115.017 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2091 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1672 reflections with I > 2σ(I)
Tmin = 0.601, Tmax = 1.000Rint = 0.048
6467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.00Δρmax = 2.19 e Å3
2091 reflectionsΔρmin = 0.92 e Å3
142 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.50000.50000.50000.02062 (12)
Br10.51478 (4)0.44407 (8)0.36640 (5)0.03216 (18)
N10.3748 (3)0.3887 (5)0.4493 (3)0.0218 (11)
C10.3686 (4)0.2391 (6)0.4712 (4)0.0215 (13)
C20.4437 (4)0.1654 (6)0.5371 (4)0.0267 (15)
H20.49970.22010.56660.032*
C30.4373 (4)0.0170 (6)0.5592 (5)0.0326 (16)
H30.48910.03050.60360.039*
C40.3550 (4)0.0683 (7)0.5172 (4)0.0299 (15)
H40.35190.17250.53280.036*
C50.2809 (4)0.0004 (6)0.4549 (5)0.0300 (15)
H50.22520.05690.42750.036*
C60.2850 (4)0.1547 (7)0.4295 (4)0.0256 (14)
C70.2099 (4)0.2251 (6)0.3653 (4)0.0243 (14)
H70.15460.16880.33580.029*
C80.2149 (4)0.3780 (7)0.3437 (4)0.0232 (14)
C90.1382 (4)0.4572 (7)0.2798 (5)0.0339 (17)
H90.08240.40310.24830.041*
C100.1441 (4)0.6080 (7)0.2638 (4)0.0334 (16)
H100.09210.65980.22200.040*
C110.2273 (4)0.6896 (7)0.3088 (5)0.0347 (16)
H110.23050.79560.29680.042*
C120.3023 (4)0.6182 (7)0.3687 (4)0.0283 (15)
H120.35740.67500.39840.034*
C130.2995 (4)0.4596 (6)0.3878 (4)0.0232 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01485 (17)0.02395 (18)0.0197 (2)0.00426 (13)0.00406 (14)0.00171 (15)
Br10.0278 (3)0.0431 (4)0.0263 (4)0.0104 (3)0.0121 (3)0.0085 (3)
N10.017 (2)0.024 (3)0.023 (3)0.0023 (19)0.007 (2)0.004 (2)
C10.019 (3)0.026 (3)0.020 (4)0.001 (2)0.009 (3)0.002 (3)
C20.022 (3)0.030 (3)0.024 (4)0.005 (3)0.005 (3)0.002 (3)
C30.029 (3)0.033 (4)0.033 (4)0.004 (3)0.011 (3)0.002 (3)
C40.034 (4)0.024 (3)0.034 (4)0.003 (3)0.016 (3)0.000 (3)
C50.031 (3)0.030 (3)0.035 (4)0.005 (3)0.020 (3)0.003 (3)
C60.021 (3)0.030 (3)0.028 (4)0.001 (3)0.012 (3)0.004 (3)
C70.015 (3)0.032 (3)0.024 (4)0.005 (2)0.005 (3)0.004 (3)
C80.017 (3)0.031 (3)0.020 (4)0.002 (2)0.006 (3)0.004 (3)
C90.022 (3)0.039 (4)0.032 (4)0.002 (3)0.003 (3)0.002 (3)
C100.028 (4)0.044 (4)0.022 (4)0.004 (3)0.004 (3)0.005 (3)
C110.039 (4)0.033 (4)0.028 (4)0.000 (3)0.010 (3)0.003 (3)
C120.019 (3)0.033 (3)0.027 (4)0.003 (3)0.003 (3)0.004 (3)
C130.016 (3)0.030 (4)0.020 (4)0.005 (2)0.005 (3)0.006 (3)
Geometric parameters (Å, º) top
Pt1—N12.058 (4)C6—C71.380 (8)
Pt1—Br12.4385 (7)C7—C81.389 (8)
N1—C131.366 (7)C7—H70.9500
N1—C11.367 (7)C8—C91.428 (8)
C1—C21.406 (8)C8—C131.430 (7)
C1—C61.426 (7)C9—C101.349 (9)
C2—C31.359 (8)C9—H90.9500
C2—H20.9500C10—C111.415 (8)
C3—C41.415 (9)C10—H100.9500
C3—H30.9500C11—C121.355 (8)
C4—C51.349 (9)C11—H110.9500
C4—H40.9500C12—C131.420 (8)
C5—C61.425 (8)C12—H120.9500
C5—H50.9500
N1—Pt1—N1i180.00 (16)C7—C6—C5121.6 (5)
N1—Pt1—Br1i91.35 (14)C7—C6—C1119.2 (5)
N1i—Pt1—Br1i88.65 (14)C5—C6—C1119.2 (5)
N1—Pt1—Br188.65 (14)C6—C7—C8120.3 (5)
N1i—Pt1—Br191.35 (14)C6—C7—H7119.8
Br1i—Pt1—Br1180.0C8—C7—H7119.8
C13—N1—C1119.7 (5)C7—C8—C9122.4 (5)
C13—N1—Pt1119.9 (4)C7—C8—C13118.8 (5)
C1—N1—Pt1120.1 (4)C9—C8—C13118.8 (5)
N1—C1—C2120.9 (5)C10—C9—C8120.7 (6)
N1—C1—C6120.9 (5)C10—C9—H9119.7
C2—C1—C6118.1 (5)C8—C9—H9119.7
C3—C2—C1120.9 (6)C9—C10—C11120.4 (6)
C3—C2—H2119.5C9—C10—H10119.8
C1—C2—H2119.5C11—C10—H10119.8
C2—C3—C4121.3 (6)C12—C11—C10120.8 (6)
C2—C3—H3119.3C12—C11—H11119.6
C4—C3—H3119.3C10—C11—H11119.6
C5—C4—C3119.4 (6)C11—C12—C13120.9 (5)
C5—C4—H4120.3C11—C12—H12119.6
C3—C4—H4120.3C13—C12—H12119.6
C4—C5—C6121.0 (6)N1—C13—C12120.7 (5)
C4—C5—H5119.5N1—C13—C8120.9 (5)
C6—C5—H5119.5C12—C13—C8118.3 (5)
Br1i—Pt1—N1—C13104.3 (4)C5—C6—C7—C8178.0 (6)
Br1—Pt1—N1—C1375.7 (4)C1—C6—C7—C82.1 (9)
Br1i—Pt1—N1—C181.7 (4)C6—C7—C8—C9177.9 (6)
Br1—Pt1—N1—C198.3 (4)C6—C7—C8—C131.2 (9)
C13—N1—C1—C2177.0 (6)C7—C8—C9—C10176.4 (6)
Pt1—N1—C1—C28.9 (8)C13—C8—C9—C102.7 (10)
C13—N1—C1—C61.2 (8)C8—C9—C10—C111.4 (10)
Pt1—N1—C1—C6172.8 (4)C9—C10—C11—C120.1 (11)
N1—C1—C2—C3179.6 (6)C10—C11—C12—C130.2 (10)
C6—C1—C2—C31.3 (9)C1—N1—C13—C12175.2 (6)
C1—C2—C3—C40.4 (10)Pt1—N1—C13—C1210.8 (8)
C2—C3—C4—C51.0 (10)C1—N1—C13—C82.1 (9)
C3—C4—C5—C61.3 (10)Pt1—N1—C13—C8171.9 (4)
C4—C5—C6—C7179.5 (6)C11—C12—C13—N1178.9 (6)
C4—C5—C6—C10.4 (10)C11—C12—C13—C81.5 (9)
N1—C1—C6—C70.9 (9)C7—C8—C13—N11.0 (9)
C2—C1—C6—C7179.2 (6)C9—C8—C13—N1179.9 (6)
N1—C1—C6—C5179.2 (6)C7—C8—C13—C12176.4 (6)
C2—C1—C6—C50.9 (9)C9—C8—C13—C122.7 (9)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[PtBr2(C13H9N)2]
Mr713.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)16.0256 (9), 8.6845 (5), 17.0646 (10)
β (°) 115.017 (1)
V3)2152.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)10.25
Crystal size (mm)0.35 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.601, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6467, 2091, 1672
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.070, 1.00
No. of reflections2091
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.19, 0.92

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—N12.058 (4)Pt1—Br12.4385 (7)
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2010). Z. Kristallogr. New Cryst. Struct. 225, 323–324.  CAS Google Scholar
First citationMei, X. & Wolf, C. (2004). Cryst. Growth Des. 4, 1099–1103.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds