metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(2-bromo­benzoato-κO)bis­­(N,N-di­ethyl­nicotinamide-κN1)cobalt(II)

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Hitit University, 19030 Ulukavak, Çorum, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 6 August 2010; accepted 13 August 2010; online 18 August 2010)

In the mononuclear title compound, [Co(C7H4BrO2)2(C10H14N2O)2(H2O)2], the CoII ion is located on a crystallographic inversion center. The asymmetric unit is completed by one 2-bromo­benzoate anion, one diethyl­nicotinamide (DENA) ligand and one coordinated water mol­ecule; all ligands are monodentate. The four O atoms in the equatorial plane around CoII form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms of the DENA ligands in axial positions. The dihedral angle between the carboxyl­ate group and the attached benzene ring is 84.7 (1)°; the pyridine and benzene rings are oriented at a dihedral angle of 43.64 (6)°. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek, Dal, Tercan, Aybirdi et al. (2009[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m1051-m1052.]); Hökelek et al. (2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m545-m546.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m533-m534.],c[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m513-m514.],d[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m481-m482.],e[Hökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009e). Acta Cryst. E65, m766-m767.]); Necefoğlu et al. (2010[Necefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m556-m557.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H4BrO2)2(C10H14N2O)2(H2O)2]

  • Mr = 851.43

  • Monoclinic, P 21 /n

  • a = 13.0106 (2) Å

  • b = 10.3513 (2) Å

  • c = 14.9580 (3) Å

  • β = 114.311 (1)°

  • V = 1835.86 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.70 mm−1

  • T = 100 K

  • 0.31 × 0.28 × 0.23 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.489, Tmax = 0.576

  • 16787 measured reflections

  • 4528 independent reflections

  • 3700 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.04

  • 4528 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O3i 0.82 (3) 1.94 (3) 2.757 (2) 174 (3)
O4—H42⋯O1ii 0.78 (3) 1.90 (3) 2.644 (2) 159 (2)
C4—H4⋯O1iii 0.93 2.56 3.184 (3) 125
C10—H10⋯O2iv 0.93 2.44 3.368 (2) 174
C12—H12⋯O3v 0.93 2.33 3.259 (2) 179
C16—H16A⋯O3vi 0.97 2.57 3.506 (2) 163
C16—H16B⋯O1i 0.97 2.52 3.460 (3) 164
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a mononuclear complex, in which the CoII ion is located on a crystallographic inversion center. The asymmetric unit contains one 2-bromobenzoate (BB) anion, one diethylnicotinamide (DENA) ligand and one coordinated water molecule, all ligands are monodentate (Fig. 1). The crystal structures of some DENA complexes of CoII, NiII, MnII and ZnII ions, [Co(C8H7O2)2(C10H14N2O)2(H2O)2], (II) (Necefoğlu et al., 2010), [Co(C9H10NO2)2(C10H14N2O)2(H2O)2], (III) (Hökelek, Dal, Tercan, Aybirdi et al., 2009), [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Ni(C7H4BrO2)2(C10H14N2O)2(H2O)2], (V) (Hökelek et al., 2009e), [Mn(C7H4BrO2)2(C10H14N2O)2(H2O)2], (VI) (Hökelek et al., 2009b), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VII) (Hökelek et al., 2009c) and [Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2], (VIII) (Hökelek et al., 2009d) have been reported before.

The four O atoms (O2, O4 and symmetry-related atoms O2', O4') in the equatorial plane around the CoII ion form a slightly distorted square-planar arrangement. The slightly distorted octahedral coordination is completed by the two pyridyl N atoms of DENA ligands (N1, N1') in axial positions (Fig. 1). The near equality of C1—O1 [1.242 (2) Å] and C1—O2 [1.264 (2) Å] in the carboxylate group indicates a delocalized bonding arrangement rather than localized single and double bonds. The average Co—O bond length is 2.092 (1) Å (Table 1), and the CoII ion is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.3436 (1) Å. The dihedral angle between the planar carboxylate moiety and the benzene ring A (C2—C7) is 84.7 (1)°, while that between rings A and B (N1/C8—C12) is 43.64 (6)°.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network (Fig. 2).

Related literature top

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek, Dal, Tercan, Aybirdi et al. (2009); Hökelek et al. (2009a,b,c,d,e); Necefoğlu et al. (2010).

Experimental top

The title compound was prepared by the reaction of CoSO4 × 7 H2O (1.40 g, 5 mmol) in H2O (40 ml) and diethylnicotinamide (1.78 g, 10 mmol) in H2O (20 ml) with sodium 2-bromobenzoate (2.23 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving pink single crystals (yield; 3.065 g, 72%).

Refinement top

Atoms H41 and H42 (for H2O) were located from a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a mononuclear complex, in which the CoII ion is located on a crystallographic inversion center. The asymmetric unit contains one 2-bromobenzoate (BB) anion, one diethylnicotinamide (DENA) ligand and one coordinated water molecule, all ligands are monodentate (Fig. 1). The crystal structures of some DENA complexes of CoII, NiII, MnII and ZnII ions, [Co(C8H7O2)2(C10H14N2O)2(H2O)2], (II) (Necefoğlu et al., 2010), [Co(C9H10NO2)2(C10H14N2O)2(H2O)2], (III) (Hökelek, Dal, Tercan, Aybirdi et al., 2009), [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Ni(C7H4BrO2)2(C10H14N2O)2(H2O)2], (V) (Hökelek et al., 2009e), [Mn(C7H4BrO2)2(C10H14N2O)2(H2O)2], (VI) (Hökelek et al., 2009b), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VII) (Hökelek et al., 2009c) and [Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2], (VIII) (Hökelek et al., 2009d) have been reported before.

The four O atoms (O2, O4 and symmetry-related atoms O2', O4') in the equatorial plane around the CoII ion form a slightly distorted square-planar arrangement. The slightly distorted octahedral coordination is completed by the two pyridyl N atoms of DENA ligands (N1, N1') in axial positions (Fig. 1). The near equality of C1—O1 [1.242 (2) Å] and C1—O2 [1.264 (2) Å] in the carboxylate group indicates a delocalized bonding arrangement rather than localized single and double bonds. The average Co—O bond length is 2.092 (1) Å (Table 1), and the CoII ion is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.3436 (1) Å. The dihedral angle between the planar carboxylate moiety and the benzene ring A (C2—C7) is 84.7 (1)°, while that between rings A and B (N1/C8—C12) is 43.64 (6)°.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network (Fig. 2).

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek, Dal, Tercan, Aybirdi et al. (2009); Hökelek et al. (2009a,b,c,d,e); Necefoğlu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (') 1-x, -y, -z.]
[Figure 2] Fig. 2. Partial packing diagram, viewed down the baxis, with the aaxis horizontal and the c axis vertical. Hydrogen bonds are shown as dashed lines.
Diaquabis(2-bromobenzoato-κO)bis(N,N- diethylnicotinamide-κN1)cobalt(II) top
Crystal data top
[Co(C7H4BrO2)2(C10H14N2O)2(H2O)2]F(000) = 866
Mr = 851.43Dx = 1.540 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6465 reflections
a = 13.0106 (2) Åθ = 2.5–28.3°
b = 10.3513 (2) ŵ = 2.70 mm1
c = 14.9580 (3) ÅT = 100 K
β = 114.311 (1)°Block, pink
V = 1835.86 (6) Å30.31 × 0.28 × 0.23 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4528 independent reflections
Radiation source: fine-focus sealed tube3700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.489, Tmax = 0.576k = 1313
16787 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.7345P]
where P = (Fo2 + 2Fc2)/3
4528 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Co(C7H4BrO2)2(C10H14N2O)2(H2O)2]V = 1835.86 (6) Å3
Mr = 851.43Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.0106 (2) ŵ = 2.70 mm1
b = 10.3513 (2) ÅT = 100 K
c = 14.9580 (3) Å0.31 × 0.28 × 0.23 mm
β = 114.311 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4528 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3700 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 0.576Rint = 0.029
16787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.60 e Å3
4528 reflectionsΔρmin = 0.32 e Å3
233 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.178480 (15)0.14223 (2)0.071476 (14)0.02693 (7)
Co10.50000.00000.00000.01023 (8)
O10.36578 (13)0.11744 (14)0.13111 (11)0.0287 (3)
H410.603 (2)0.226 (3)0.0534 (18)0.037 (7)*
H420.6254 (19)0.163 (2)0.0114 (19)0.030 (7)*
O20.46952 (9)0.04937 (13)0.12000 (8)0.0152 (3)
O30.93287 (10)0.11547 (13)0.39609 (9)0.0169 (3)
O40.61748 (10)0.15516 (14)0.03719 (10)0.0142 (3)
N10.64001 (11)0.12268 (15)0.09116 (10)0.0132 (3)
N20.98258 (12)0.00503 (16)0.29417 (11)0.0164 (3)
C10.40749 (14)0.00794 (18)0.15390 (13)0.0150 (4)
C20.38447 (14)0.06833 (18)0.22975 (13)0.0158 (4)
C30.28874 (15)0.1439 (2)0.20361 (13)0.0187 (4)
C40.27047 (16)0.2238 (2)0.27075 (15)0.0247 (4)
H40.20630.27510.25120.030*
C50.34959 (17)0.2251 (2)0.36688 (15)0.0275 (5)
H50.33940.27900.41230.033*
C60.44413 (16)0.1466 (2)0.39613 (15)0.0264 (5)
H60.49580.14560.46140.032*
C70.46161 (15)0.0693 (2)0.32779 (14)0.0217 (4)
H70.52560.01760.34760.026*
C80.72933 (13)0.07013 (18)0.16504 (12)0.0138 (4)
H80.72950.01850.17520.017*
C90.82096 (13)0.14176 (18)0.22667 (12)0.0129 (3)
C100.82087 (13)0.27504 (19)0.21376 (12)0.0153 (4)
H100.88000.32600.25550.018*
C110.72976 (14)0.32932 (19)0.13661 (13)0.0164 (4)
H110.72750.41770.12480.020*
C120.64230 (13)0.25033 (18)0.07735 (13)0.0156 (4)
H120.58220.28780.02540.019*
C130.91718 (13)0.08168 (18)0.31162 (12)0.0132 (4)
C140.97403 (16)0.0414 (2)0.19635 (14)0.0267 (5)
H14A0.92420.01880.14830.032*
H14B1.04790.03450.19540.032*
C150.92981 (17)0.1775 (3)0.16739 (17)0.0392 (6)
H15A0.93210.19920.10580.059*
H15B0.97590.23710.21690.059*
H15C0.85350.18250.16110.059*
C161.08067 (14)0.0566 (2)0.37816 (13)0.0189 (4)
H16A1.06330.06040.43530.023*
H16B1.09610.14380.36340.023*
C171.18452 (15)0.0267 (2)0.40117 (15)0.0256 (5)
H17A1.24610.00750.45750.038*
H17B1.20420.02680.34600.038*
H17C1.16890.11340.41460.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02492 (10)0.03337 (14)0.02163 (10)0.00625 (9)0.00871 (7)0.00300 (9)
Co10.01015 (13)0.01029 (18)0.00981 (15)0.00021 (13)0.00367 (11)0.00054 (14)
O10.0486 (9)0.0161 (8)0.0359 (8)0.0111 (7)0.0320 (7)0.0081 (7)
O20.0167 (5)0.0160 (7)0.0148 (6)0.0032 (5)0.0084 (5)0.0023 (6)
O30.0195 (6)0.0154 (7)0.0119 (6)0.0016 (5)0.0027 (5)0.0017 (5)
O40.0166 (5)0.0111 (7)0.0152 (6)0.0006 (5)0.0069 (5)0.0005 (6)
N10.0139 (6)0.0131 (8)0.0122 (7)0.0000 (6)0.0049 (5)0.0001 (6)
N20.0163 (6)0.0176 (9)0.0131 (7)0.0036 (6)0.0040 (5)0.0003 (7)
C10.0163 (7)0.0141 (10)0.0157 (8)0.0017 (7)0.0076 (6)0.0007 (8)
C20.0208 (8)0.0127 (10)0.0178 (9)0.0038 (8)0.0119 (7)0.0002 (8)
C30.0222 (8)0.0189 (10)0.0177 (9)0.0027 (8)0.0109 (7)0.0003 (8)
C40.0302 (9)0.0212 (11)0.0310 (11)0.0018 (9)0.0209 (8)0.0018 (10)
C50.0403 (11)0.0244 (12)0.0278 (11)0.0071 (10)0.0240 (9)0.0107 (10)
C60.0286 (9)0.0330 (13)0.0193 (9)0.0096 (9)0.0116 (8)0.0070 (10)
C70.0191 (8)0.0245 (12)0.0218 (9)0.0035 (8)0.0089 (7)0.0021 (9)
C80.0167 (7)0.0112 (9)0.0133 (8)0.0005 (7)0.0059 (6)0.0002 (7)
C90.0138 (7)0.0132 (9)0.0110 (8)0.0004 (7)0.0044 (6)0.0006 (8)
C100.0155 (7)0.0143 (10)0.0149 (8)0.0044 (7)0.0051 (6)0.0042 (8)
C110.0199 (8)0.0108 (9)0.0169 (9)0.0002 (7)0.0060 (7)0.0006 (8)
C120.0137 (7)0.0160 (10)0.0150 (8)0.0015 (7)0.0037 (6)0.0023 (8)
C130.0133 (7)0.0100 (9)0.0135 (8)0.0024 (7)0.0026 (6)0.0004 (7)
C140.0255 (9)0.0390 (14)0.0146 (9)0.0125 (10)0.0071 (7)0.0024 (10)
C150.0280 (10)0.0483 (16)0.0315 (12)0.0094 (11)0.0023 (9)0.0222 (12)
C160.0179 (8)0.0189 (11)0.0161 (9)0.0066 (8)0.0033 (7)0.0018 (8)
C170.0181 (8)0.0306 (12)0.0242 (10)0.0013 (9)0.0049 (7)0.0041 (9)
Geometric parameters (Å, º) top
Br1—C31.9053 (18)C6—C71.388 (3)
Co1—O22.0559 (12)C6—H60.9300
Co1—O2i2.0559 (12)C7—H70.9300
Co1—O4i2.1272 (13)C8—H80.9300
Co1—N1i2.1783 (14)C9—C81.384 (2)
O1—C11.242 (2)C9—C101.393 (3)
O2—C11.264 (2)C9—C131.503 (2)
O3—C131.244 (2)C10—C111.388 (2)
O4—Co12.1272 (13)C10—H100.9300
O4—H410.82 (3)C11—H110.9300
O4—H420.78 (3)C12—C111.385 (2)
N1—C121.340 (2)C12—H120.9300
N1—C81.345 (2)C14—C151.516 (3)
N1—Co12.1783 (14)C14—H14A0.9700
N2—C131.334 (2)C14—H14B0.9700
N2—C141.470 (2)C15—H15A0.9600
N2—C161.474 (2)C15—H15B0.9600
C2—C11.510 (2)C15—H15C0.9600
C2—C71.395 (2)C16—C171.518 (3)
C3—C21.384 (3)C16—H16A0.9700
C3—C41.395 (3)C16—H16B0.9700
C4—C51.381 (3)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C6—C51.386 (3)
O2—Co1—O2i180.00 (5)C6—C7—C2120.88 (18)
O2—Co1—O487.71 (5)C6—C7—H7119.6
O2i—Co1—O492.29 (5)N1—C8—C9123.11 (17)
O2—Co1—O4i92.29 (5)N1—C8—H8118.4
O2i—Co1—O4i87.71 (5)C9—C8—H8118.4
O2—Co1—N190.60 (5)C8—C9—C10119.13 (15)
O2i—Co1—N189.40 (5)C8—C9—C13122.05 (16)
O2—Co1—N1i89.40 (5)C10—C9—C13118.68 (15)
O2i—Co1—N1i90.60 (5)C9—C10—H10121.1
O4i—Co1—O4180.00 (7)C11—C10—C9117.90 (16)
O4—Co1—N187.18 (5)C11—C10—H10121.1
O4i—Co1—N192.82 (5)C10—C11—H11120.4
O4—Co1—N1i92.82 (5)C12—C11—C10119.25 (18)
O4i—Co1—N1i87.18 (5)C12—C11—H11120.4
N1i—Co1—N1180.00 (13)N1—C12—C11123.24 (16)
C1—O2—Co1128.18 (12)N1—C12—H12118.4
Co1—O4—H41121.8 (17)C11—C12—H12118.4
Co1—O4—H42100.9 (18)O3—C13—N2122.44 (15)
H42—O4—H41109 (2)O3—C13—C9118.27 (15)
C8—N1—Co1119.70 (12)N2—C13—C9119.29 (15)
C12—N1—Co1122.99 (11)N2—C14—C15112.75 (18)
C12—N1—C8117.32 (15)N2—C14—H14A109.0
C13—N2—C14125.02 (15)N2—C14—H14B109.0
C13—N2—C16118.37 (15)C15—C14—H14A109.0
C14—N2—C16116.09 (14)C15—C14—H14B109.0
O1—C1—O2126.67 (17)H14A—C14—H14B107.8
O1—C1—C2118.94 (15)C14—C15—H15A109.5
O2—C1—C2114.40 (16)C14—C15—H15B109.5
C3—C2—C1121.13 (16)C14—C15—H15C109.5
C3—C2—C7117.86 (17)H15A—C15—H15B109.5
C7—C2—C1120.95 (16)H15A—C15—H15C109.5
C2—C3—Br1119.59 (14)H15B—C15—H15C109.5
C2—C3—C4122.13 (17)N2—C16—C17111.41 (16)
C4—C3—Br1118.26 (14)N2—C16—H16A109.3
C3—C4—H4120.6N2—C16—H16B109.3
C5—C4—C3118.71 (19)C17—C16—H16A109.3
C5—C4—H4120.6C17—C16—H16B109.3
C4—C5—C6120.46 (18)H16A—C16—H16B108.0
C4—C5—H5119.8C16—C17—H17A109.5
C6—C5—H5119.8C16—C17—H17B109.5
C5—C6—C7119.88 (18)C16—C17—H17C109.5
C5—C6—H6120.1H17A—C17—H17B109.5
C7—C6—H6120.1H17A—C17—H17C109.5
C2—C7—H7119.6H17B—C17—H17C109.5
O4—Co1—O2—C1175.42 (14)C3—C2—C1—O186.0 (2)
O4i—Co1—O2—C14.58 (14)C3—C2—C1—O294.2 (2)
N1—Co1—O2—C188.27 (14)C7—C2—C1—O196.9 (2)
N1i—Co1—O2—C191.73 (14)C7—C2—C1—O282.9 (2)
Co1—O2—C1—O112.3 (3)C1—C2—C7—C6175.44 (17)
Co1—O2—C1—C2167.89 (11)C3—C2—C7—C61.8 (3)
C8—N1—Co1—O261.76 (13)Br1—C3—C2—C14.6 (2)
C8—N1—Co1—O2i118.24 (13)Br1—C3—C4—C5179.62 (15)
C8—N1—Co1—O425.92 (13)Br1—C3—C2—C7178.19 (14)
C8—N1—Co1—O4i154.08 (13)C2—C3—C4—C51.4 (3)
C12—N1—Co1—O2118.37 (14)C4—C3—C2—C1174.33 (17)
C12—N1—Co1—O2i61.63 (14)C4—C3—C2—C72.9 (3)
C12—N1—Co1—O4153.95 (14)C3—C4—C5—C61.2 (3)
C12—N1—Co1—O4i26.05 (14)C7—C6—C5—C42.2 (3)
Co1—N1—C8—C9179.40 (13)C5—C6—C7—C20.7 (3)
Co1—N1—C12—C11178.31 (13)C10—C9—C8—N11.4 (3)
C8—N1—C12—C111.8 (3)C13—C9—C8—N1177.05 (15)
C12—N1—C8—C90.7 (2)C8—C9—C10—C112.4 (3)
C14—N2—C13—O3174.95 (18)C13—C9—C10—C11178.18 (15)
C14—N2—C13—C94.8 (3)C8—C9—C13—O3114.69 (19)
C16—N2—C13—O33.6 (3)C8—C9—C13—N265.5 (2)
C16—N2—C13—C9176.22 (15)C10—C9—C13—O361.0 (2)
C13—N2—C14—C15110.3 (2)C10—C9—C13—N2118.79 (19)
C13—N2—C16—C1788.6 (2)C9—C10—C11—C121.4 (3)
C16—N2—C14—C1578.2 (2)N1—C12—C11—C100.8 (3)
C14—N2—C16—C1783.5 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O3ii0.82 (3)1.94 (3)2.757 (2)174 (3)
O4—H42···O1i0.78 (3)1.90 (3)2.644 (2)159 (2)
C4—H4···O1iii0.932.563.184 (3)125
C10—H10···O2iv0.932.443.368 (2)174
C12—H12···O3v0.932.333.259 (2)179
C16—H16A···O3vi0.972.573.506 (2)163
C16—H16B···O1ii0.972.523.460 (3)164
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x1/2, y1/2, z1/2; (vi) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C7H4BrO2)2(C10H14N2O)2(H2O)2]
Mr851.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.0106 (2), 10.3513 (2), 14.9580 (3)
β (°) 114.311 (1)
V3)1835.86 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.70
Crystal size (mm)0.31 × 0.28 × 0.23
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.489, 0.576
No. of measured, independent and
observed [I > 2σ(I)] reflections
16787, 4528, 3700
Rint0.029
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.04
No. of reflections4528
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O3i0.82 (3)1.94 (3)2.757 (2)174 (3)
O4—H42···O1ii0.78 (3)1.90 (3)2.644 (2)159 (2)
C4—H4···O1iii0.932.563.184 (3)125
C10—H10···O2iv0.932.443.368 (2)174
C12—H12···O3v0.932.333.259 (2)179
C16—H16A···O3vi0.972.573.506 (2)163
C16—H16B···O1i0.972.523.460 (3)164
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x1/2, y1/2, z1/2; (vi) x+2, y, z+1.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for use of the X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m1051–m1052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m545–m546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m533–m534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m513–m514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m481–m482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009e). Acta Cryst. E65, m766–m767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m556–m557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds