metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(tert-Butyl­imido)bis­­(η5-cyclo­penta­dien­yl)pyridine­zirconium(IV)

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: katharina.kaleta@catalysis.de

(Received 10 August 2010; accepted 19 August 2010; online 28 August 2010)

The title compound, [Zr(C5H5)2(C4H9N)(C5H5N)], was obtained from the reaction of (C5H5)2Zr(py)(η2-Me3SiC2SiMe3) (py is pyridine) and tBuN=C=NtBu alongside the formation of (C5H5)2Zr(CNtBu)(η2-Me3SiC2SiMe3). The zirconium atom is coordinated in a distorted tetra­hedral geometry by two cyclo­penta­dienyl ligands, a pyridine ligand, and a tert-butyl­imido ligand via a Zr=N double bond. The tert-butyl group is disordered over two positions in a 0.634 (5):0.366 (5) ratio.

Related literature

For other metallocene complexes (C5H5)CpM(L)(NtBu) (Cp = C5H5, C5Me5; M = Ti, L = py; M = Zr, L = py, thf (thf is tetrahydrofuran), exo-norbornene oxide) with an M=N double bond, see: Blum et al. (2003[Blum, S. A., Walsh, P. J. & Bergman, R. G. (2003). J. Am. Chem. Soc. 125, 14276-14277.], 2005[Blum, S. A., Rivera, V. A., Ruck, R. T., Michael, F. E. & Bergman, R. G. (2005). Organometallics, 24, 1647-1659.]); Dunn et al. (1997[Dunn, S. C., Mountford, P. & Robson, D. A. (1997). J. Chem. Soc. Dalton Trans. pp. 293-304.]); Krska et al. (1998[Krska, S. W., Zuckerman, R. L. & Bergman, R. G. (1998). J. Am. Chem. Soc. 120, 11828-11829.]); Walsh et al. (1988[Walsh, P. J., Hollander, F. J. & Bergman, R. G. (1988). J. Am. Chem. Soc. 110, 8729-8731.], 1993[Walsh, P. J., Hollander, F. J. & Bergman, R. G. (1993). Organometallics, 12, 3705-3723.]); Zuckerman et al. (2000[Zuckerman, R. L., Krska, S. W. & Bergman, R. G. (2000). J. Am. Chem. Soc. 122, 751-761.]). For the structure of (rac-ebthi)Zr(py)(NtBu) (ebthi = ethyl­enebis(η5-tetra­hydro­inden­yl)), see: Hoyt et al. (2004[Hoyt, H. M., Michael, F. E. & Bergman, R. G. (2004). J. Am. Chem. Soc. 126, 1018-1019.]). For the preparation of the starting material (C5H5)2Zr(py)(η2-Me3SiC2SiMe3), see: Rosenthal et al. (1995[Rosenthal, U., Ohff, A., Baumann, W., Tillack, A., Görls, H., Burlakov, V. V. & Shur, V. B. (1995). Z. Anorg. Allg. Chem. 621, 77-83.]). For the characterization of the by-product (C5H5)2Zr(CNtBu)(η2-Me3SiC2SiMe3) of the above-described reaction, see: Bach et al. (2007[Bach, M. A., Beweries, T., Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2007). Organometallics, 26, 4592-4597.]).

[Scheme 1]

Experimental

Crystal data
  • [Zr(C5H5)2(C4H9N)(C5H5N)]

  • Mr = 371.62

  • Orthorhombic, P 21 21 21

  • a = 9.3946 (2) Å

  • b = 13.6156 (4) Å

  • c = 14.4126 (3) Å

  • V = 1843.56 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 200 K

  • 0.50 × 0.50 × 0.35 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.730, Tmax = 0.896

  • 35444 measured reflections

  • 4990 independent reflections

  • 4752 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.03

  • 4990 reflections

  • 181 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 216 Friedel pairs

  • Flack parameter: −0.03 (4)

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We studied the reaction of several carbodiimides with metallocene precursors as (C5H5)2M(η2-Me3SiC2SiMe3) (M = Ti, Zr) to synthesize and characterize new metallacycles with heteroatoms. In this case the reaction revealed a C—N bond cleavage which resulted in two products. Additionally to (C5H5)2Zr(py)(NtBu) the complex (C5H5)2Zr(CNtBu)(η2-Me3SiC2SiMe3) was found which was described by Bach et al. (2007).

The title compound consists of a zirconium center coordinated by two cyclopentadienyl ligands, a stabilizing pyridine and a tert-butyl imido ligand. The geometry at the zirconium atom is distorted tetrahedral (main deviations from the expected value of 109.47° are obtained in N1—Zr1—N2 95.64 (6)° and Cp—Zr1—Cp 123.9°). Bond lengths and angles can be compared to the thf stabilized complex (C5H5)2Zr(thf)(NtBu) described by Walsh et al. (1993). The bond lengths Zr1—N1 with 1.843 (2) Å and N1—C1 with 1.434 (3) Å are not significantly different compared to those of (C5H5)2Zr(thf)(NtBu) (Zr—N 1.826 (4) and N—C 1.449 (6) Å). In the title compound the Zr1—N1—C1 angle of 168.93 (13)° is about 5° smaller than the corresponding angle found for the almost linear tert-butyl imido ligand in (C5H5)2Zr(thf)(NtBu).

Related literature top

For other metallocene complexes (C5H5)CpM(L)(NtBu) (Cp = C5H5, C5Me5; M = Ti, L = py; M = Zr, L = py, thf, exo-norbornene oxide) with an MN double bond, see: Blum et al. (2003, 2005); Dunn et al. (1997); Krska et al. (1998); Walsh et al. (1988, 1993); Zuckerman et al. (2000). For the structure of (rac-ebthi)Zr(py)(NtBu) (ebthi = ethylenebis(η5-tetrahydroindenyl)), see: Hoyt et al. (2004). For the preparation of the starting material (C5H5)2Zr(py)(η2-Me3SiC2SiMe3), see: Rosenthal et al. (1995). For the reaction of the starting material with carbodiimides, see: Bach et al. (2007).

Experimental top

To a solution of 235 mg (0.5 mmol) (C5H5)2Zr(py)(η2-Me3SiC2SiMe3) in 10 ml of n-hexane was added dropwise 0.1 ml (0.5 mmol) of tBuN=C=NtBu. The reaction mixture was allowed to stand for 16 h. During this period the solution turned red and yellow crystals were formed which were isolated, washed with cold n-hexane and dried in vacuo. Yield: 46% (85 mg, 0.229 mmol).

Refinement top

All H atoms were placed in idealized positions with d(C—H) = 0.98 (CH3) and 0.95 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH.

Structure description top

We studied the reaction of several carbodiimides with metallocene precursors as (C5H5)2M(η2-Me3SiC2SiMe3) (M = Ti, Zr) to synthesize and characterize new metallacycles with heteroatoms. In this case the reaction revealed a C—N bond cleavage which resulted in two products. Additionally to (C5H5)2Zr(py)(NtBu) the complex (C5H5)2Zr(CNtBu)(η2-Me3SiC2SiMe3) was found which was described by Bach et al. (2007).

The title compound consists of a zirconium center coordinated by two cyclopentadienyl ligands, a stabilizing pyridine and a tert-butyl imido ligand. The geometry at the zirconium atom is distorted tetrahedral (main deviations from the expected value of 109.47° are obtained in N1—Zr1—N2 95.64 (6)° and Cp—Zr1—Cp 123.9°). Bond lengths and angles can be compared to the thf stabilized complex (C5H5)2Zr(thf)(NtBu) described by Walsh et al. (1993). The bond lengths Zr1—N1 with 1.843 (2) Å and N1—C1 with 1.434 (3) Å are not significantly different compared to those of (C5H5)2Zr(thf)(NtBu) (Zr—N 1.826 (4) and N—C 1.449 (6) Å). In the title compound the Zr1—N1—C1 angle of 168.93 (13)° is about 5° smaller than the corresponding angle found for the almost linear tert-butyl imido ligand in (C5H5)2Zr(thf)(NtBu).

For other metallocene complexes (C5H5)CpM(L)(NtBu) (Cp = C5H5, C5Me5; M = Ti, L = py; M = Zr, L = py, thf, exo-norbornene oxide) with an MN double bond, see: Blum et al. (2003, 2005); Dunn et al. (1997); Krska et al. (1998); Walsh et al. (1988, 1993); Zuckerman et al. (2000). For the structure of (rac-ebthi)Zr(py)(NtBu) (ebthi = ethylenebis(η5-tetrahydroindenyl)), see: Hoyt et al. (2004). For the preparation of the starting material (C5H5)2Zr(py)(η2-Me3SiC2SiMe3), see: Rosenthal et al. (1995). For the reaction of the starting material with carbodiimides, see: Bach et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-labelling scheme. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level.
(tert-Butylimido)bis(η5-cyclopentadienyl)pyridinezirconium(IV) top
Crystal data top
[Zr(C5H5)2(C4H9N)(C5H5N)]F(000) = 768
Mr = 371.62Dx = 1.339 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11751 reflections
a = 9.3946 (2) Åθ = 2.0–29.6°
b = 13.6156 (4) ŵ = 0.60 mm1
c = 14.4126 (3) ÅT = 200 K
V = 1843.56 (8) Å3Prism, yellow
Z = 40.50 × 0.50 × 0.35 mm
Data collection top
Stoe IPDS II
diffractometer
4990 independent reflections
Radiation source: fine-focus sealed tube4752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 29.2°, θmin = 2.1°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 1212
Tmin = 0.730, Tmax = 0.896k = 1818
35444 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.043P)2 + 0.044P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4990 reflectionsΔρmax = 0.45 e Å3
181 parametersΔρmin = 0.38 e Å3
16 restraintsAbsolute structure: Flack (1983), 2169 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
[Zr(C5H5)2(C4H9N)(C5H5N)]V = 1843.56 (8) Å3
Mr = 371.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.3946 (2) ŵ = 0.60 mm1
b = 13.6156 (4) ÅT = 200 K
c = 14.4126 (3) Å0.50 × 0.50 × 0.35 mm
Data collection top
Stoe IPDS II
diffractometer
4990 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
4752 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.896Rint = 0.025
35444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.45 e Å3
S = 1.03Δρmin = 0.38 e Å3
4990 reflectionsAbsolute structure: Flack (1983), 2169 Friedel pairs
181 parametersAbsolute structure parameter: 0.03 (4)
16 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C2A0.0298 (4)0.5132 (4)0.2054 (4)0.0710 (13)*0.634 (5)
H2A10.01980.56910.24770.107*0.634 (5)
H2A20.11180.47340.22410.107*0.634 (5)
H2A30.04410.53730.14200.107*0.634 (5)
C3A0.1191 (6)0.4163 (4)0.3089 (2)0.0765 (14)*0.634 (5)
H3A10.12430.47330.35020.115*0.634 (5)
H3A20.20620.37720.31520.115*0.634 (5)
H3A30.03660.37600.32560.115*0.634 (5)
C4A0.0964 (5)0.3633 (3)0.1445 (3)0.0690 (13)*0.634 (5)
H4A10.18460.32530.14930.103*0.634 (5)
H4A20.08410.38620.08060.103*0.634 (5)
H4A30.01550.32190.16200.103*0.634 (5)
C2B0.0023 (10)0.4490 (9)0.1272 (6)0.095 (3)*0.366 (5)
H2B10.05280.42620.07170.143*0.366 (5)
H2B20.03480.51530.11620.143*0.366 (5)
H2B30.07690.40440.14080.143*0.366 (5)
C3B0.0215 (10)0.4865 (7)0.2929 (5)0.081 (3)*0.366 (5)
H3B10.00460.55560.28430.122*0.366 (5)
H3B20.08060.47990.34860.122*0.366 (5)
H3B30.06500.44700.30010.122*0.366 (5)
C4B0.1428 (12)0.3436 (3)0.2234 (6)0.078 (2)*0.366 (5)
H4B10.19740.32000.17000.117*0.366 (5)
H4B20.05560.30470.22970.117*0.366 (5)
H4B30.20030.33700.27980.117*0.366 (5)
C10.1041 (2)0.45092 (16)0.20903 (15)0.0500 (5)
C150.6237 (2)0.54813 (15)0.02869 (15)0.0469 (4)
H150.65090.61420.04030.056*
C160.7109 (3)0.49094 (19)0.02490 (19)0.0627 (7)
H160.79640.51720.04980.075*
C170.6736 (3)0.39523 (18)0.04233 (19)0.0737 (9)
H170.73320.35380.07840.088*
C180.5476 (3)0.36108 (19)0.00621 (19)0.0722 (9)
H180.51810.29550.01810.087*
C190.4643 (3)0.42177 (15)0.04710 (15)0.0493 (5)
H190.37760.39700.07170.059*
N10.22557 (16)0.51038 (11)0.18718 (11)0.0361 (3)
N20.50127 (18)0.51501 (12)0.06570 (11)0.0383 (3)
Zr10.363638 (15)0.605190 (11)0.172085 (11)0.03033 (5)
C50.16807 (18)0.72069 (14)0.12010 (16)0.0645 (8)
H50.07710.70760.14620.077*
C60.2709 (2)0.78328 (13)0.15691 (17)0.0720 (9)
H60.26250.82040.21250.086*
C70.3884 (2)0.78188 (13)0.09794 (17)0.0748 (9)
H70.47410.81790.10620.090*
C80.3582 (2)0.71844 (15)0.02469 (14)0.0712 (8)
H80.41970.70360.02570.085*
C90.2220 (2)0.68063 (15)0.03839 (14)0.0680 (8)
H90.17430.63550.00110.082*
C100.5757 (3)0.54733 (18)0.27310 (18)0.0803 (10)
H100.62320.48950.25320.096*
C110.4565 (3)0.5510 (2)0.32905 (16)0.0944 (12)
H110.40760.49610.35440.113*
C120.4209 (3)0.6485 (3)0.34173 (13)0.0959 (13)
H120.34310.67240.37730.115*
C130.5180 (3)0.7050 (2)0.29362 (17)0.0829 (10)
H130.51880.77470.29030.099*
C140.6137 (2)0.64251 (19)0.25120 (15)0.0731 (8)
H140.69190.66160.21360.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (11)0.0494 (12)0.0596 (12)0.0060 (8)0.0131 (9)0.0040 (9)
C150.0433 (10)0.0462 (10)0.0513 (11)0.0066 (9)0.0127 (9)0.0041 (8)
C160.0615 (14)0.0656 (15)0.0611 (14)0.0170 (12)0.0308 (12)0.0123 (12)
C170.099 (2)0.0582 (14)0.0644 (15)0.0300 (15)0.0443 (14)0.0062 (13)
C180.116 (2)0.0389 (11)0.0612 (15)0.0142 (13)0.0411 (16)0.0014 (10)
C190.0687 (14)0.0346 (10)0.0447 (11)0.0026 (8)0.0199 (10)0.0011 (7)
N10.0355 (7)0.0365 (7)0.0364 (8)0.0017 (6)0.0066 (6)0.0008 (6)
N20.0418 (8)0.0357 (8)0.0374 (8)0.0065 (6)0.0085 (6)0.0022 (6)
Zr10.02958 (7)0.03000 (7)0.03142 (7)0.00527 (6)0.00094 (6)0.00138 (6)
C50.0433 (12)0.0566 (14)0.093 (2)0.0242 (10)0.0149 (11)0.0296 (13)
C60.0713 (16)0.0367 (11)0.108 (3)0.0212 (11)0.0257 (16)0.0057 (13)
C70.0670 (17)0.0398 (11)0.118 (3)0.0089 (11)0.0268 (17)0.0228 (14)
C80.0676 (14)0.0726 (16)0.0735 (16)0.0295 (14)0.0231 (15)0.0402 (14)
C90.0630 (15)0.0719 (17)0.0690 (17)0.0214 (13)0.0124 (13)0.0270 (14)
C100.0732 (19)0.095 (2)0.0723 (19)0.0222 (17)0.0423 (17)0.0064 (17)
C110.104 (3)0.127 (3)0.0521 (15)0.015 (2)0.0394 (19)0.020 (2)
C120.086 (2)0.163 (4)0.0385 (14)0.002 (2)0.0050 (13)0.0307 (18)
C130.081 (2)0.092 (2)0.0749 (19)0.0029 (18)0.0192 (16)0.0435 (18)
C140.0516 (15)0.101 (2)0.0671 (16)0.0002 (13)0.0210 (12)0.0239 (15)
Geometric parameters (Å, º) top
C2A—C11.518 (3)C19—N21.343 (3)
C2A—H2A10.9800C19—H190.9500
C2A—H2A20.9800N1—Zr11.8428 (16)
C2A—H2A30.9800N2—Zr12.3517 (16)
C3A—C11.521 (3)Zr1—C52.5318 (16)
C3A—H3A10.9800Zr1—C112.534 (2)
C3A—H3A20.9800Zr1—C92.5570 (17)
C3A—H3A30.9800Zr1—C122.5719 (19)
C4A—C11.514 (3)Zr1—C62.5857 (17)
C4A—H4A10.9800Zr1—C102.590 (2)
C4A—H4A20.9800Zr1—C82.6255 (17)
C4A—H4A30.9800Zr1—C72.6428 (17)
C2B—C11.519 (3)Zr1—C132.649 (2)
C2B—H2B10.9800Zr1—C142.6602 (19)
C2B—H2B20.9800C5—C61.3933
C2B—H2B30.9800C5—C91.3933
C3B—C11.516 (3)C5—H50.9500
C3B—H3B10.9800C6—C71.3933
C3B—H3B20.9800C6—H60.9500
C3B—H3B30.9800C7—C81.3933
C4B—C11.519 (3)C7—H70.9500
C4B—H4B10.9800C8—C91.3933
C4B—H4B20.9800C8—H80.9500
C4B—H4B30.9800C9—H90.9500
C1—N11.434 (3)C10—C111.3807
C15—N21.346 (3)C10—C141.3807
C15—C161.369 (3)C10—H100.9500
C15—H150.9500C11—C121.3807
C16—C171.373 (3)C11—H110.9500
C16—H160.9500C12—C131.3807
C17—C181.374 (3)C12—H120.9500
C17—H170.9500C13—C141.3807
C18—C191.373 (3)C13—H130.9500
C18—H180.9500C14—H140.9500
C1—C2A—H2A1109.5C5—Zr1—C10155.98 (8)
C1—C2A—H2A2109.5C9—Zr1—C10161.08 (8)
H2A1—C2A—H2A2109.5C12—Zr1—C1051.29 (7)
C1—C2A—H2A3109.5C6—Zr1—C10126.29 (8)
H2A1—C2A—H2A3109.5N1—Zr1—C8119.55 (7)
H2A2—C2A—H2A3109.5N2—Zr1—C877.87 (6)
C1—C3A—H3A1109.5C5—Zr1—C851.80 (6)
C1—C3A—H3A2109.5C11—Zr1—C8154.14 (8)
H3A1—C3A—H3A2109.5C12—Zr1—C8129.69 (9)
C1—C3A—H3A3109.5C6—Zr1—C851.26 (6)
H3A1—C3A—H3A3109.5C10—Zr1—C8130.42 (8)
H3A2—C3A—H3A3109.5N1—Zr1—C7138.37 (7)
C1—C4A—H4A1109.5N2—Zr1—C799.39 (6)
C1—C4A—H4A2109.5C5—Zr1—C751.60 (6)
H4A1—C4A—H4A2109.5C11—Zr1—C7126.55 (9)
C1—C4A—H4A3109.5C9—Zr1—C751.36 (6)
H4A1—C4A—H4A3109.5C12—Zr1—C799.06 (10)
H4A2—C4A—H4A3109.5C10—Zr1—C7115.87 (8)
C1—C2B—H2B1109.5N1—Zr1—C13131.80 (8)
C1—C2B—H2B2109.5N2—Zr1—C13113.45 (7)
H2B1—C2B—H2B2109.5C5—Zr1—C13105.91 (8)
C1—C2B—H2B3109.5C11—Zr1—C1351.00 (7)
H2B1—C2B—H2B3109.5C9—Zr1—C13125.24 (8)
H2B2—C2B—H2B3109.5C6—Zr1—C1376.06 (8)
C1—C3B—H3B1109.5C10—Zr1—C1350.46 (7)
C1—C3B—H3B2109.5C8—Zr1—C13104.14 (9)
H3B1—C3B—H3B2109.5C7—Zr1—C1375.64 (9)
C1—C3B—H3B3109.5N1—Zr1—C14134.81 (8)
H3B1—C3B—H3B3109.5N2—Zr1—C1483.90 (7)
H3B2—C3B—H3B3109.5C5—Zr1—C14130.47 (7)
C1—C4B—H4B1109.5C11—Zr1—C1450.87 (7)
C1—C4B—H4B2109.5C9—Zr1—C14134.89 (8)
H4B1—C4B—H4B2109.5C12—Zr1—C1450.52 (7)
C1—C4B—H4B3109.5C6—Zr1—C1498.89 (7)
H4B1—C4B—H4B3109.5C8—Zr1—C14104.58 (8)
H4B2—C4B—H4B3109.5C7—Zr1—C1485.50 (8)
N1—C1—C4A110.4 (2)C6—C5—C9108.0
N1—C1—C3B113.7 (4)C6—C5—Zr176.34 (7)
C4A—C1—C3B135.8 (5)C9—C5—Zr175.11 (6)
N1—C1—C2A109.7 (2)C6—C5—H5126.0
C4A—C1—C2A112.3 (3)C9—C5—H5126.0
C3B—C1—C2A54.9 (4)Zr1—C5—H5114.8
N1—C1—C2B109.9 (5)C7—C6—C5108.0
C4A—C1—C2B58.6 (5)C7—C6—Zr176.82 (6)
C3B—C1—C2B107.6 (6)C5—C6—Zr172.08 (7)
C2A—C1—C2B57.3 (5)C7—C6—H6126.0
N1—C1—C4B112.5 (4)C5—C6—H6126.0
C4A—C1—C4B48.5 (4)Zr1—C6—H6117.1
C3B—C1—C4B108.7 (6)C8—C7—C6108.0
C2A—C1—C4B137.7 (5)C8—C7—Zr173.98 (6)
C2B—C1—C4B103.9 (6)C6—C7—Zr172.29 (6)
N1—C1—C3A108.0 (3)C8—C7—H7126.0
C4A—C1—C3A109.9 (3)C6—C7—H7126.0
C3B—C1—C3A52.6 (4)Zr1—C7—H7119.6
C2A—C1—C3A106.4 (3)C7—C8—C9108.0
C2B—C1—C3A142.0 (5)C7—C8—Zr175.35 (7)
C4B—C1—C3A63.3 (4)C9—C8—Zr171.71 (6)
N2—C15—C16123.0 (2)C7—C8—H8126.0
N2—C15—H15118.5C9—C8—H8126.0
C16—C15—H15118.5Zr1—C8—H8118.8
C15—C16—C17119.4 (2)C8—C9—C5108.0
C15—C16—H16120.3C8—C9—Zr177.14 (7)
C17—C16—H16120.3C5—C9—Zr173.11 (7)
C16—C17—C18118.2 (2)C8—C9—H9126.0
C16—C17—H17120.9C5—C9—H9126.0
C18—C17—H17120.9Zr1—C9—H9115.9
C19—C18—C17119.9 (2)C11—C10—C14108.0
C19—C18—H18120.0C11—C10—Zr172.15 (8)
C17—C18—H18120.0C14—C10—Zr177.58 (9)
N2—C19—C18122.2 (2)C11—C10—H10126.0
N2—C19—H19118.9C14—C10—H10126.0
C18—C19—H19118.9Zr1—C10—H10116.3
C1—N1—Zr1168.93 (13)C10—C11—C12108.0
C19—N2—C15117.30 (17)C12—C11—Zr175.82 (9)
C19—N2—Zr1118.78 (14)C10—C11—H11126.0
C15—N2—Zr1123.60 (14)C12—C11—H11126.0
N1—Zr1—N295.64 (6)Zr1—C11—H11113.9
N1—Zr1—C587.67 (7)C13—C12—C11108.0
N2—Zr1—C5122.03 (7)C13—C12—Zr177.79 (8)
N1—Zr1—C1186.16 (8)C11—C12—Zr172.82 (9)
N2—Zr1—C11103.93 (9)C13—C12—H12126.0
C5—Zr1—C11134.01 (9)C11—C12—H12126.0
N1—Zr1—C990.23 (7)Zr1—C12—H12115.5
N2—Zr1—C990.26 (6)C12—C13—C14108.0
N1—Zr1—C12101.27 (8)C12—C13—Zr171.59 (8)
N2—Zr1—C12128.65 (8)C14—C13—Zr175.37 (7)
C5—Zr1—C12106.90 (9)C12—C13—H13126.0
C9—Zr1—C12137.15 (9)C14—C13—H13126.0
N1—Zr1—C6115.46 (7)Zr1—C13—H13118.9
N2—Zr1—C6128.29 (6)C13—C14—C10108.0
C11—Zr1—C6117.67 (9)C13—C14—Zr174.49 (8)
C9—Zr1—C652.00 (6)C10—C14—Zr171.97 (8)
C12—Zr1—C686.33 (9)C13—C14—H14126.0
N1—Zr1—C10105.18 (8)C10—C14—H14126.0
N2—Zr1—C1077.57 (8)Zr1—C14—H14119.4

Experimental details

Crystal data
Chemical formula[Zr(C5H5)2(C4H9N)(C5H5N)]
Mr371.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)9.3946 (2), 13.6156 (4), 14.4126 (3)
V3)1843.56 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.50 × 0.50 × 0.35
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.730, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
35444, 4990, 4752
Rint0.025
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.03
No. of reflections4990
No. of parameters181
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38
Absolute structureFlack (1983), 2169 Friedel pairs
Absolute structure parameter0.03 (4)

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank our technical staff, in particular Regina Jesse, for assistance. This work was supported by the Deutsche Forschungsgemeinschaft (project No. RO1269/7–2).

References

First citationBach, M. A., Beweries, T., Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2007). Organometallics, 26, 4592–4597.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlum, S. A., Rivera, V. A., Ruck, R. T., Michael, F. E. & Bergman, R. G. (2005). Organometallics, 24, 1647–1659.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlum, S. A., Walsh, P. J. & Bergman, R. G. (2003). J. Am. Chem. Soc. 125, 14276–14277.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDunn, S. C., Mountford, P. & Robson, D. A. (1997). J. Chem. Soc. Dalton Trans. pp. 293–304.  CSD CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHoyt, H. M., Michael, F. E. & Bergman, R. G. (2004). J. Am. Chem. Soc. 126, 1018–1019.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrska, S. W., Zuckerman, R. L. & Bergman, R. G. (1998). J. Am. Chem. Soc. 120, 11828–11829.  Web of Science CSD CrossRef CAS Google Scholar
First citationRosenthal, U., Ohff, A., Baumann, W., Tillack, A., Görls, H., Burlakov, V. V. & Shur, V. B. (1995). Z. Anorg. Allg. Chem. 621, 77–83.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWalsh, P. J., Hollander, F. J. & Bergman, R. G. (1988). J. Am. Chem. Soc. 110, 8729–8731.  CSD CrossRef CAS Web of Science Google Scholar
First citationWalsh, P. J., Hollander, F. J. & Bergman, R. G. (1993). Organometallics, 12, 3705–3723.  CSD CrossRef CAS Web of Science Google Scholar
First citationZuckerman, R. L., Krska, S. W. & Bergman, R. G. (2000). J. Am. Chem. Soc. 122, 751–761.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds