organic compounds
2-Amino-5-bromopyridinium 6-oxo-1,6-dihydropyridine-2-carboxylate monohydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the 5H6BrN2+·C6H4NO3−·H2O, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxylate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The ion pairs are further connected via O—H⋯O, N—H⋯O, N—H⋯Br and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane. The water molecules self-assemble through O—H⋯O hydrogen bonds, forming one-dimensional supramolecular chains along the a axis, with graph-set notation C22(4).
of the title salt, CRelated literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of 6-hydroxypicolinic acid, see: Sun et al. (2004); Soares-Santos et al. (2003). For a related structure, see: Sawada & Ohashi (1998). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810030916/is2585sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810030916/is2585Isup2.hkl
A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (86 mg, Aldrich) and 6-hydroxypicolinic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.
All hydrogen atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.9404–0.9428 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C, N, O). 1482 Friedel pairs were used to determine the absolute configuration.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 6-hydroxypioclinic acid has interesting characteristics: firstly, it was characterized by a similar enol-keto α-position migrating easily to the basic pyridine N atom; secondly, the multiple coordination sites such as the carbonyl oxygen, the amide nitrogen and carboxylate oxygen atoms are able to coordinate with various metal ions (Sun et al., 2004; Soares-Santos et al., 2003). In order to study some interesting hydrogen bonding interactions of these compounds, the synthesis and structure of the title salt is presented here.
due to the labile hydrogen atom of -OH group inThe
(Fig. 1), contains a 2-amino-5-bromopyridinium cation, a 6-oxo-1,6-dihydropyridine-2-carboxylate anion and a water molecule. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.019 (3) Å for atom N1. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [C1—N1—C5 = 122.7 (3)°] is subtented at the protonated N1 atom. The anion exists in the keto-enol of the -CONH moiety. Similar form is also observed in the of 2-oxo-1,2-dihydropyridine-6-carboxylic acid (Sawada & Ohashi, 1998).In the crystal packing, (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N—H···O hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via O—H···O, N—H···O, N—H···Br and C—H···O (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the bc plane. The water molecules self-assemble through O1W—H2W···O1W hydrogen bonds, forming one-dimensional supramolecular chains along the a axis, with graph-set notation C22(4) (Fig. 3).
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of 6-hydroxypicolinic acid, see: Sun et al. (2004); Soares-Santos et al. (2003). For a related structure, see: Sawada & Ohashi (1998). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) 2D networks parallel to the bc-plane. H atoms not involved in the intermolecular interactions have been omitted for clarity. | |
Fig. 3. One-dimensional supramolecular chain made up of water molecules. |
C5H6BrN2+·C6H4NO3−·H2O | F(000) = 664 |
Mr = 330.15 | Dx = 1.718 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4297 reflections |
a = 3.8616 (1) Å | θ = 2.6–27.5° |
b = 15.8227 (2) Å | µ = 3.23 mm−1 |
c = 20.8961 (3) Å | T = 296 K |
V = 1276.77 (4) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.18 × 0.12 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3718 independent reflections |
Radiation source: fine-focus sealed tube | 3105 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
φ and ω scans | θmax = 30.1°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −5→5 |
Tmin = 0.400, Tmax = 0.694 | k = −22→19 |
8884 measured reflections | l = −20→29 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.036P)2 + 0.5546P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
3718 reflections | Δρmax = 0.37 e Å−3 |
172 parameters | Δρmin = −0.32 e Å−3 |
3 restraints | Absolute structure: Flack (1983), 1482 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.011 (12) |
C5H6BrN2+·C6H4NO3−·H2O | V = 1276.77 (4) Å3 |
Mr = 330.15 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 3.8616 (1) Å | µ = 3.23 mm−1 |
b = 15.8227 (2) Å | T = 296 K |
c = 20.8961 (3) Å | 0.35 × 0.18 × 0.12 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3718 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3105 reflections with I > 2σ(I) |
Tmin = 0.400, Tmax = 0.694 | Rint = 0.022 |
8884 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.097 | Δρmax = 0.37 e Å−3 |
S = 1.09 | Δρmin = −0.32 e Å−3 |
3718 reflections | Absolute structure: Flack (1983), 1482 Friedel pairs |
172 parameters | Absolute structure parameter: 0.011 (12) |
3 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.68523 (9) | 0.02155 (2) | 0.832419 (15) | 0.04315 (11) | |
N1 | 0.9529 (7) | 0.01356 (17) | 1.02199 (12) | 0.0358 (5) | |
H1B | 1.0573 | −0.0221 | 1.0463 | 0.043* | |
N2 | 0.8795 (10) | 0.09857 (18) | 1.10959 (13) | 0.0490 (8) | |
H2A | 0.9800 | 0.0609 | 1.1327 | 0.059* | |
H2B | 0.8067 | 0.1446 | 1.1268 | 0.059* | |
C1 | 0.9123 (9) | −0.00566 (19) | 0.95935 (15) | 0.0357 (7) | |
H1A | 0.9939 | −0.0570 | 0.9437 | 0.043* | |
C2 | 0.7526 (7) | 0.04972 (19) | 0.91899 (14) | 0.0347 (7) | |
C3 | 0.6342 (9) | 0.1270 (2) | 0.94344 (16) | 0.0408 (7) | |
H3A | 0.5271 | 0.1657 | 0.9164 | 0.049* | |
C4 | 0.6750 (10) | 0.14591 (18) | 1.00655 (15) | 0.0384 (7) | |
H4A | 0.5981 | 0.1974 | 1.0227 | 0.046* | |
C5 | 0.8371 (10) | 0.08579 (19) | 1.04763 (14) | 0.0363 (6) | |
O1 | 0.1449 (9) | 0.24380 (15) | 0.84486 (11) | 0.0517 (7) | |
O2 | 0.1646 (8) | 0.08864 (15) | 0.59255 (11) | 0.0525 (6) | |
O3 | 0.3456 (8) | 0.03807 (15) | 0.68650 (11) | 0.0529 (7) | |
N3 | 0.1458 (8) | 0.17784 (15) | 0.74829 (11) | 0.0337 (5) | |
H3B | 0.2465 | 0.1354 | 0.7660 | 0.040* | |
C6 | 0.0674 (9) | 0.24462 (19) | 0.78634 (16) | 0.0374 (7) | |
C7 | −0.0997 (9) | 0.3135 (2) | 0.75378 (17) | 0.0427 (8) | |
H7A | −0.1583 | 0.3621 | 0.7764 | 0.051* | |
C8 | −0.1722 (11) | 0.3084 (2) | 0.69074 (17) | 0.0438 (7) | |
H8A | −0.2841 | 0.3532 | 0.6708 | 0.053* | |
C9 | −0.0818 (10) | 0.2363 (2) | 0.65430 (15) | 0.0398 (7) | |
H9A | −0.1321 | 0.2333 | 0.6108 | 0.048* | |
C10 | 0.0787 (9) | 0.1721 (2) | 0.68434 (14) | 0.0351 (7) | |
C11 | 0.2065 (10) | 0.09186 (19) | 0.65253 (14) | 0.0378 (7) | |
O1W | 0.5862 (19) | 0.3110 (3) | 0.51273 (19) | 0.133 (2) | |
H1W | 0.4451 | 0.3496 | 0.4906 | 0.159* | |
H2W | 0.7111 | 0.2778 | 0.4832 | 0.159* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04628 (18) | 0.04800 (18) | 0.03519 (15) | −0.00207 (15) | −0.00408 (15) | −0.00074 (15) |
N1 | 0.0457 (14) | 0.0297 (12) | 0.0319 (11) | 0.0062 (12) | −0.0001 (11) | 0.0035 (11) |
N2 | 0.076 (2) | 0.0353 (13) | 0.0355 (13) | 0.0094 (15) | −0.0032 (15) | 0.0006 (12) |
C1 | 0.0412 (16) | 0.0307 (15) | 0.0353 (14) | 0.0010 (12) | 0.0025 (13) | −0.0024 (12) |
C2 | 0.0359 (19) | 0.0369 (14) | 0.0312 (13) | −0.0034 (12) | 0.0007 (12) | −0.0003 (12) |
C3 | 0.0340 (18) | 0.0442 (17) | 0.0443 (16) | 0.0034 (14) | −0.0016 (15) | 0.0061 (14) |
C4 | 0.0444 (16) | 0.0276 (13) | 0.0432 (16) | 0.0049 (14) | 0.0015 (17) | 0.0124 (12) |
C5 | 0.0387 (16) | 0.0338 (14) | 0.0365 (14) | 0.0010 (14) | 0.0007 (15) | −0.0001 (12) |
O1 | 0.0781 (19) | 0.0436 (13) | 0.0334 (11) | −0.0015 (14) | −0.0032 (13) | −0.0099 (10) |
O2 | 0.0727 (17) | 0.0530 (13) | 0.0318 (10) | 0.0202 (14) | −0.0018 (13) | −0.0070 (10) |
O3 | 0.0790 (19) | 0.0410 (13) | 0.0388 (11) | 0.0190 (13) | −0.0049 (13) | −0.0051 (10) |
N3 | 0.0465 (15) | 0.0257 (11) | 0.0288 (11) | 0.0039 (11) | −0.0007 (12) | 0.0035 (9) |
C6 | 0.0464 (18) | 0.0300 (15) | 0.0357 (15) | −0.0040 (13) | 0.0034 (14) | −0.0069 (13) |
C7 | 0.044 (2) | 0.0346 (16) | 0.0492 (18) | 0.0092 (14) | 0.0090 (16) | −0.0031 (14) |
C8 | 0.0439 (18) | 0.0401 (16) | 0.0475 (17) | 0.0097 (17) | 0.0011 (17) | 0.0005 (14) |
C9 | 0.0464 (18) | 0.0403 (17) | 0.0327 (15) | 0.0047 (14) | 0.0000 (13) | 0.0055 (13) |
C10 | 0.0374 (16) | 0.0370 (15) | 0.0308 (14) | 0.0004 (13) | 0.0030 (12) | −0.0009 (12) |
C11 | 0.0475 (18) | 0.0330 (14) | 0.0329 (14) | 0.0045 (14) | 0.0000 (14) | −0.0007 (11) |
O1W | 0.216 (7) | 0.109 (3) | 0.074 (2) | −0.002 (4) | −0.033 (4) | 0.026 (2) |
Br1—C2 | 1.881 (3) | O2—C11 | 1.265 (4) |
N1—C5 | 1.339 (4) | O3—C11 | 1.231 (4) |
N1—C1 | 1.353 (4) | N3—C6 | 1.356 (4) |
N1—H1B | 0.8600 | N3—C10 | 1.364 (4) |
N2—C5 | 1.321 (4) | N3—H3B | 0.8600 |
N2—H2A | 0.8600 | C6—C7 | 1.438 (5) |
N2—H2B | 0.8600 | C7—C8 | 1.349 (5) |
C1—C2 | 1.364 (4) | C7—H7A | 0.9300 |
C1—H1A | 0.9300 | C8—C9 | 1.415 (5) |
C2—C3 | 1.402 (5) | C8—H8A | 0.9300 |
C3—C4 | 1.361 (5) | C9—C10 | 1.345 (5) |
C3—H3A | 0.9300 | C9—H9A | 0.9300 |
C4—C5 | 1.426 (4) | C10—C11 | 1.516 (4) |
C4—H4A | 0.9300 | O1W—H1W | 0.9404 |
O1—C6 | 1.259 (4) | O1W—H2W | 0.9428 |
C5—N1—C1 | 122.7 (3) | C6—N3—H3B | 117.2 |
C5—N1—H1B | 118.6 | C10—N3—H3B | 117.2 |
C1—N1—H1B | 118.6 | O1—C6—N3 | 120.5 (3) |
C5—N2—H2A | 120.0 | O1—C6—C7 | 125.0 (3) |
C5—N2—H2B | 120.0 | N3—C6—C7 | 114.4 (3) |
H2A—N2—H2B | 120.0 | C8—C7—C6 | 120.6 (3) |
N1—C1—C2 | 120.4 (3) | C8—C7—H7A | 119.7 |
N1—C1—H1A | 119.8 | C6—C7—H7A | 119.7 |
C2—C1—H1A | 119.8 | C7—C8—C9 | 121.5 (3) |
C1—C2—C3 | 118.9 (3) | C7—C8—H8A | 119.2 |
C1—C2—Br1 | 120.3 (2) | C9—C8—H8A | 119.2 |
C3—C2—Br1 | 120.8 (2) | C10—C9—C8 | 118.1 (3) |
C4—C3—C2 | 120.4 (3) | C10—C9—H9A | 121.0 |
C4—C3—H3A | 119.8 | C8—C9—H9A | 121.0 |
C2—C3—H3A | 119.8 | C9—C10—N3 | 119.7 (3) |
C3—C4—C5 | 119.2 (3) | C9—C10—C11 | 125.3 (3) |
C3—C4—H4A | 120.4 | N3—C10—C11 | 115.0 (3) |
C5—C4—H4A | 120.4 | O3—C11—O2 | 126.8 (3) |
N2—C5—N1 | 118.8 (3) | O3—C11—C10 | 117.9 (3) |
N2—C5—C4 | 122.9 (3) | O2—C11—C10 | 115.3 (3) |
N1—C5—C4 | 118.4 (3) | H1W—O1W—H2W | 109.7 |
C6—N3—C10 | 125.7 (3) | ||
C5—N1—C1—C2 | 0.9 (5) | O1—C6—C7—C8 | 180.0 (4) |
N1—C1—C2—C3 | 0.6 (5) | N3—C6—C7—C8 | 1.1 (5) |
N1—C1—C2—Br1 | −178.3 (2) | C6—C7—C8—C9 | −1.1 (6) |
C1—C2—C3—C4 | −0.7 (5) | C7—C8—C9—C10 | 0.2 (6) |
Br1—C2—C3—C4 | 178.1 (3) | C8—C9—C10—N3 | 0.7 (5) |
C2—C3—C4—C5 | −0.5 (5) | C8—C9—C10—C11 | −177.5 (3) |
C1—N1—C5—N2 | 178.2 (3) | C6—N3—C10—C9 | −0.8 (5) |
C1—N1—C5—C4 | −2.2 (5) | C6—N3—C10—C11 | 177.6 (3) |
C3—C4—C5—N2 | −178.5 (4) | C9—C10—C11—O3 | −179.1 (4) |
C3—C4—C5—N1 | 1.9 (5) | N3—C10—C11—O3 | 2.6 (5) |
C10—N3—C6—O1 | −179.1 (4) | C9—C10—C11—O2 | 2.6 (6) |
C10—N3—C6—C7 | −0.1 (5) | N3—C10—C11—O2 | −175.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O2i | 0.86 | 1.79 | 2.640 (4) | 171 |
O1W—H1W···O2ii | 0.94 | 2.17 | 2.730 (5) | 117 |
N2—H2A···O3i | 0.86 | 2.04 | 2.896 (4) | 172 |
N2—H2B···O1iii | 0.86 | 1.96 | 2.819 (4) | 173 |
O1W—H2W···O1Wii | 0.94 | 2.02 | 2.782 (9) | 137 |
N3—H3B···Br1 | 0.86 | 2.84 | 3.681 (3) | 168 |
C3—H3A···O1 | 0.93 | 2.44 | 3.351 (4) | 167 |
Symmetry codes: (i) −x+3/2, −y, z+1/2; (ii) x+1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C5H6BrN2+·C6H4NO3−·H2O |
Mr | 330.15 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 3.8616 (1), 15.8227 (2), 20.8961 (3) |
V (Å3) | 1276.77 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.23 |
Crystal size (mm) | 0.35 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.400, 0.694 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8884, 3718, 3105 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.097, 1.09 |
No. of reflections | 3718 |
No. of parameters | 172 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.32 |
Absolute structure | Flack (1983), 1482 Friedel pairs |
Absolute structure parameter | 0.011 (12) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O2i | 0.8600 | 1.7900 | 2.640 (4) | 171.00 |
O1W—H1W···O2ii | 0.9400 | 2.1700 | 2.730 (5) | 117.00 |
N2—H2A···O3i | 0.8600 | 2.0400 | 2.896 (4) | 172.00 |
N2—H2B···O1iii | 0.8600 | 1.9600 | 2.819 (4) | 173.00 |
O1W—H2W···O1Wii | 0.9400 | 2.0200 | 2.782 (9) | 137.00 |
N3—H3B···Br1 | 0.8600 | 2.8400 | 3.681 (3) | 168.00 |
C3—H3A···O1 | 0.9300 | 2.4400 | 3.351 (4) | 167.00 |
Symmetry codes: (i) −x+3/2, −y, z+1/2; (ii) x+1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford: Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Sawada, K. & Ohashi, Y. (1998). Acta Cryst. C54, 1491–1493. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soares-Santos, P. C. R., Nogueira, H. I. S., Rocha, J., Félix, V., Drew, M. G. B., Sá Ferreira, R. A., Carlos, L. D. & Trindade, T. (2003). Polyhedron, 22, 3529–3539. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, C. Y., Zheng, X. J. & Jin, L. P. (2004). Z. Anorg. Allg. Chem. 630, 1342–1347. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 6-hydroxypioclinic acid has interesting characteristics: firstly, it was characterized by a similar enol-keto tautomerism due to the labile hydrogen atom of -OH group in α-position migrating easily to the basic pyridine N atom; secondly, the multiple coordination sites such as the carbonyl oxygen, the amide nitrogen and carboxylate oxygen atoms are able to coordinate with various metal ions (Sun et al., 2004; Soares-Santos et al., 2003). In order to study some interesting hydrogen bonding interactions of these compounds, the synthesis and structure of the title salt is presented here.
The asymmetric unit, (Fig. 1), contains a 2-amino-5-bromopyridinium cation, a 6-oxo-1,6-dihydropyridine-2-carboxylate anion and a water molecule. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.019 (3) Å for atom N1. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [C1—N1—C5 = 122.7 (3)°] is subtented at the protonated N1 atom. The anion exists in the keto-enol tautomerism of the -CONH moiety. Similar form is also observed in the crystal structure of 2-oxo-1,2-dihydropyridine-6-carboxylic acid (Sawada & Ohashi, 1998).
In the crystal packing, (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N—H···O hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via O—H···O, N—H···O, N—H···Br and C—H···O (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the bc plane. The water molecules self-assemble through O1W—H2W···O1W hydrogen bonds, forming one-dimensional supramolecular chains along the a axis, with graph-set notation C22(4) (Fig. 3).