organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-bromo­pyridinium 6-oxo-1,6-di­hydro­pyridine-2-carboxyl­ate monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 29 July 2010; accepted 3 August 2010; online 11 August 2010)

In the crystal structure of the title salt, C5H6BrN2+·C6H4NO3·H2O, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The ion pairs are further connected via O—H⋯O, N—H⋯O, N—H⋯Br and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane. The water mol­ecules self-assemble through O—H⋯O hydrogen bonds, forming one-dimensional supra­molecular chains along the a axis, with graph-set notation C22(4).

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For details of 6-hy­droxy­picolinic acid, see: Sun et al. (2004[Sun, C. Y., Zheng, X. J. & Jin, L. P. (2004). Z. Anorg. Allg. Chem. 630, 1342-1347.]); Soares-Santos et al. (2003[Soares-Santos, P. C. R., Nogueira, H. I. S., Rocha, J., Félix, V., Drew, M. G. B., Sá Ferreira, R. A., Carlos, L. D. & Trindade, T. (2003). Polyhedron, 22, 3529-3539.]). For a related structure, see: Sawada & Ohashi (1998[Sawada, K. & Ohashi, Y. (1998). Acta Cryst. C54, 1491-1493.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford: Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6BrN2+·C6H4NO3·H2O

  • Mr = 330.15

  • Orthorhombic, P 21 21 21

  • a = 3.8616 (1) Å

  • b = 15.8227 (2) Å

  • c = 20.8961 (3) Å

  • V = 1276.77 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.23 mm−1

  • T = 296 K

  • 0.35 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.400, Tmax = 0.694

  • 8884 measured reflections

  • 3718 independent reflections

  • 3105 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.097

  • S = 1.09

  • 3718 reflections

  • 172 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1482 Friedel pairs

  • Flack parameter: 0.011 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2i 0.86 1.79 2.640 (4) 171
O1W—H1W⋯O2ii 0.94 2.17 2.730 (5) 117
N2—H2A⋯O3i 0.86 2.04 2.896 (4) 172
N2—H2B⋯O1iii 0.86 1.96 2.819 (4) 173
O1W—H2W⋯O1Wii 0.94 2.02 2.782 (9) 137
N3—H3B⋯Br1 0.86 2.84 3.681 (3) 168
C3—H3A⋯O1 0.93 2.44 3.351 (4) 167
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 6-hydroxypioclinic acid has interesting characteristics: firstly, it was characterized by a similar enol-keto tautomerism due to the labile hydrogen atom of -OH group in α-position migrating easily to the basic pyridine N atom; secondly, the multiple coordination sites such as the carbonyl oxygen, the amide nitrogen and carboxylate oxygen atoms are able to coordinate with various metal ions (Sun et al., 2004; Soares-Santos et al., 2003). In order to study some interesting hydrogen bonding interactions of these compounds, the synthesis and structure of the title salt is presented here.

The asymmetric unit, (Fig. 1), contains a 2-amino-5-bromopyridinium cation, a 6-oxo-1,6-dihydropyridine-2-carboxylate anion and a water molecule. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.019 (3) Å for atom N1. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [C1—N1—C5 = 122.7 (3)°] is subtented at the protonated N1 atom. The anion exists in the keto-enol tautomerism of the -CONH moiety. Similar form is also observed in the crystal structure of 2-oxo-1,2-dihydropyridine-6-carboxylic acid (Sawada & Ohashi, 1998).

In the crystal packing, (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N—H···O hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via O—H···O, N—H···O, N—H···Br and C—H···O (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the bc plane. The water molecules self-assemble through O1W—H2W···O1W hydrogen bonds, forming one-dimensional supramolecular chains along the a axis, with graph-set notation C22(4) (Fig. 3).

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of 6-hydroxypicolinic acid, see: Sun et al. (2004); Soares-Santos et al. (2003). For a related structure, see: Sawada & Ohashi (1998). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (86 mg, Aldrich) and 6-hydroxypicolinic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.9404–0.9428 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C, N, O). 1482 Friedel pairs were used to determine the absolute configuration.

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 6-hydroxypioclinic acid has interesting characteristics: firstly, it was characterized by a similar enol-keto tautomerism due to the labile hydrogen atom of -OH group in α-position migrating easily to the basic pyridine N atom; secondly, the multiple coordination sites such as the carbonyl oxygen, the amide nitrogen and carboxylate oxygen atoms are able to coordinate with various metal ions (Sun et al., 2004; Soares-Santos et al., 2003). In order to study some interesting hydrogen bonding interactions of these compounds, the synthesis and structure of the title salt is presented here.

The asymmetric unit, (Fig. 1), contains a 2-amino-5-bromopyridinium cation, a 6-oxo-1,6-dihydropyridine-2-carboxylate anion and a water molecule. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.019 (3) Å for atom N1. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [C1—N1—C5 = 122.7 (3)°] is subtented at the protonated N1 atom. The anion exists in the keto-enol tautomerism of the -CONH moiety. Similar form is also observed in the crystal structure of 2-oxo-1,2-dihydropyridine-6-carboxylic acid (Sawada & Ohashi, 1998).

In the crystal packing, (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N—H···O hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via O—H···O, N—H···O, N—H···Br and C—H···O (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the bc plane. The water molecules self-assemble through O1W—H2W···O1W hydrogen bonds, forming one-dimensional supramolecular chains along the a axis, with graph-set notation C22(4) (Fig. 3).

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of 6-hydroxypicolinic acid, see: Sun et al. (2004); Soares-Santos et al. (2003). For a related structure, see: Sawada & Ohashi (1998). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) 2D networks parallel to the bc-plane. H atoms not involved in the intermolecular interactions have been omitted for clarity.
[Figure 3] Fig. 3. One-dimensional supramolecular chain made up of water molecules.
2-Amino-5-bromopyridinium 6-oxo-1,6-dihydropyridine-2-carboxylate monohydrate top
Crystal data top
C5H6BrN2+·C6H4NO3·H2OF(000) = 664
Mr = 330.15Dx = 1.718 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4297 reflections
a = 3.8616 (1) Åθ = 2.6–27.5°
b = 15.8227 (2) ŵ = 3.23 mm1
c = 20.8961 (3) ÅT = 296 K
V = 1276.77 (4) Å3Block, colourless
Z = 40.35 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3718 independent reflections
Radiation source: fine-focus sealed tube3105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.400, Tmax = 0.694k = 2219
8884 measured reflectionsl = 2029
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.036P)2 + 0.5546P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3718 reflectionsΔρmax = 0.37 e Å3
172 parametersΔρmin = 0.32 e Å3
3 restraintsAbsolute structure: Flack (1983), 1482 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (12)
Crystal data top
C5H6BrN2+·C6H4NO3·H2OV = 1276.77 (4) Å3
Mr = 330.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.8616 (1) ŵ = 3.23 mm1
b = 15.8227 (2) ÅT = 296 K
c = 20.8961 (3) Å0.35 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3105 reflections with I > 2σ(I)
Tmin = 0.400, Tmax = 0.694Rint = 0.022
8884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.37 e Å3
S = 1.09Δρmin = 0.32 e Å3
3718 reflectionsAbsolute structure: Flack (1983), 1482 Friedel pairs
172 parametersAbsolute structure parameter: 0.011 (12)
3 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68523 (9)0.02155 (2)0.832419 (15)0.04315 (11)
N10.9529 (7)0.01356 (17)1.02199 (12)0.0358 (5)
H1B1.05730.02211.04630.043*
N20.8795 (10)0.09857 (18)1.10959 (13)0.0490 (8)
H2A0.98000.06091.13270.059*
H2B0.80670.14461.12680.059*
C10.9123 (9)0.00566 (19)0.95935 (15)0.0357 (7)
H1A0.99390.05700.94370.043*
C20.7526 (7)0.04972 (19)0.91899 (14)0.0347 (7)
C30.6342 (9)0.1270 (2)0.94344 (16)0.0408 (7)
H3A0.52710.16570.91640.049*
C40.6750 (10)0.14591 (18)1.00655 (15)0.0384 (7)
H4A0.59810.19741.02270.046*
C50.8371 (10)0.08579 (19)1.04763 (14)0.0363 (6)
O10.1449 (9)0.24380 (15)0.84486 (11)0.0517 (7)
O20.1646 (8)0.08864 (15)0.59255 (11)0.0525 (6)
O30.3456 (8)0.03807 (15)0.68650 (11)0.0529 (7)
N30.1458 (8)0.17784 (15)0.74829 (11)0.0337 (5)
H3B0.24650.13540.76600.040*
C60.0674 (9)0.24462 (19)0.78634 (16)0.0374 (7)
C70.0997 (9)0.3135 (2)0.75378 (17)0.0427 (8)
H7A0.15830.36210.77640.051*
C80.1722 (11)0.3084 (2)0.69074 (17)0.0438 (7)
H8A0.28410.35320.67080.053*
C90.0818 (10)0.2363 (2)0.65430 (15)0.0398 (7)
H9A0.13210.23330.61080.048*
C100.0787 (9)0.1721 (2)0.68434 (14)0.0351 (7)
C110.2065 (10)0.09186 (19)0.65253 (14)0.0378 (7)
O1W0.5862 (19)0.3110 (3)0.51273 (19)0.133 (2)
H1W0.44510.34960.49060.159*
H2W0.71110.27780.48320.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04628 (18)0.04800 (18)0.03519 (15)0.00207 (15)0.00408 (15)0.00074 (15)
N10.0457 (14)0.0297 (12)0.0319 (11)0.0062 (12)0.0001 (11)0.0035 (11)
N20.076 (2)0.0353 (13)0.0355 (13)0.0094 (15)0.0032 (15)0.0006 (12)
C10.0412 (16)0.0307 (15)0.0353 (14)0.0010 (12)0.0025 (13)0.0024 (12)
C20.0359 (19)0.0369 (14)0.0312 (13)0.0034 (12)0.0007 (12)0.0003 (12)
C30.0340 (18)0.0442 (17)0.0443 (16)0.0034 (14)0.0016 (15)0.0061 (14)
C40.0444 (16)0.0276 (13)0.0432 (16)0.0049 (14)0.0015 (17)0.0124 (12)
C50.0387 (16)0.0338 (14)0.0365 (14)0.0010 (14)0.0007 (15)0.0001 (12)
O10.0781 (19)0.0436 (13)0.0334 (11)0.0015 (14)0.0032 (13)0.0099 (10)
O20.0727 (17)0.0530 (13)0.0318 (10)0.0202 (14)0.0018 (13)0.0070 (10)
O30.0790 (19)0.0410 (13)0.0388 (11)0.0190 (13)0.0049 (13)0.0051 (10)
N30.0465 (15)0.0257 (11)0.0288 (11)0.0039 (11)0.0007 (12)0.0035 (9)
C60.0464 (18)0.0300 (15)0.0357 (15)0.0040 (13)0.0034 (14)0.0069 (13)
C70.044 (2)0.0346 (16)0.0492 (18)0.0092 (14)0.0090 (16)0.0031 (14)
C80.0439 (18)0.0401 (16)0.0475 (17)0.0097 (17)0.0011 (17)0.0005 (14)
C90.0464 (18)0.0403 (17)0.0327 (15)0.0047 (14)0.0000 (13)0.0055 (13)
C100.0374 (16)0.0370 (15)0.0308 (14)0.0004 (13)0.0030 (12)0.0009 (12)
C110.0475 (18)0.0330 (14)0.0329 (14)0.0045 (14)0.0000 (14)0.0007 (11)
O1W0.216 (7)0.109 (3)0.074 (2)0.002 (4)0.033 (4)0.026 (2)
Geometric parameters (Å, º) top
Br1—C21.881 (3)O2—C111.265 (4)
N1—C51.339 (4)O3—C111.231 (4)
N1—C11.353 (4)N3—C61.356 (4)
N1—H1B0.8600N3—C101.364 (4)
N2—C51.321 (4)N3—H3B0.8600
N2—H2A0.8600C6—C71.438 (5)
N2—H2B0.8600C7—C81.349 (5)
C1—C21.364 (4)C7—H7A0.9300
C1—H1A0.9300C8—C91.415 (5)
C2—C31.402 (5)C8—H8A0.9300
C3—C41.361 (5)C9—C101.345 (5)
C3—H3A0.9300C9—H9A0.9300
C4—C51.426 (4)C10—C111.516 (4)
C4—H4A0.9300O1W—H1W0.9404
O1—C61.259 (4)O1W—H2W0.9428
C5—N1—C1122.7 (3)C6—N3—H3B117.2
C5—N1—H1B118.6C10—N3—H3B117.2
C1—N1—H1B118.6O1—C6—N3120.5 (3)
C5—N2—H2A120.0O1—C6—C7125.0 (3)
C5—N2—H2B120.0N3—C6—C7114.4 (3)
H2A—N2—H2B120.0C8—C7—C6120.6 (3)
N1—C1—C2120.4 (3)C8—C7—H7A119.7
N1—C1—H1A119.8C6—C7—H7A119.7
C2—C1—H1A119.8C7—C8—C9121.5 (3)
C1—C2—C3118.9 (3)C7—C8—H8A119.2
C1—C2—Br1120.3 (2)C9—C8—H8A119.2
C3—C2—Br1120.8 (2)C10—C9—C8118.1 (3)
C4—C3—C2120.4 (3)C10—C9—H9A121.0
C4—C3—H3A119.8C8—C9—H9A121.0
C2—C3—H3A119.8C9—C10—N3119.7 (3)
C3—C4—C5119.2 (3)C9—C10—C11125.3 (3)
C3—C4—H4A120.4N3—C10—C11115.0 (3)
C5—C4—H4A120.4O3—C11—O2126.8 (3)
N2—C5—N1118.8 (3)O3—C11—C10117.9 (3)
N2—C5—C4122.9 (3)O2—C11—C10115.3 (3)
N1—C5—C4118.4 (3)H1W—O1W—H2W109.7
C6—N3—C10125.7 (3)
C5—N1—C1—C20.9 (5)O1—C6—C7—C8180.0 (4)
N1—C1—C2—C30.6 (5)N3—C6—C7—C81.1 (5)
N1—C1—C2—Br1178.3 (2)C6—C7—C8—C91.1 (6)
C1—C2—C3—C40.7 (5)C7—C8—C9—C100.2 (6)
Br1—C2—C3—C4178.1 (3)C8—C9—C10—N30.7 (5)
C2—C3—C4—C50.5 (5)C8—C9—C10—C11177.5 (3)
C1—N1—C5—N2178.2 (3)C6—N3—C10—C90.8 (5)
C1—N1—C5—C42.2 (5)C6—N3—C10—C11177.6 (3)
C3—C4—C5—N2178.5 (4)C9—C10—C11—O3179.1 (4)
C3—C4—C5—N11.9 (5)N3—C10—C11—O32.6 (5)
C10—N3—C6—O1179.1 (4)C9—C10—C11—O22.6 (6)
C10—N3—C6—C70.1 (5)N3—C10—C11—O2175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.861.792.640 (4)171
O1W—H1W···O2ii0.942.172.730 (5)117
N2—H2A···O3i0.862.042.896 (4)172
N2—H2B···O1iii0.861.962.819 (4)173
O1W—H2W···O1Wii0.942.022.782 (9)137
N3—H3B···Br10.862.843.681 (3)168
C3—H3A···O10.932.443.351 (4)167
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC5H6BrN2+·C6H4NO3·H2O
Mr330.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)3.8616 (1), 15.8227 (2), 20.8961 (3)
V3)1276.77 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.23
Crystal size (mm)0.35 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.400, 0.694
No. of measured, independent and
observed [I > 2σ(I)] reflections
8884, 3718, 3105
Rint0.022
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.097, 1.09
No. of reflections3718
No. of parameters172
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.32
Absolute structureFlack (1983), 1482 Friedel pairs
Absolute structure parameter0.011 (12)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.86001.79002.640 (4)171.00
O1W—H1W···O2ii0.94002.17002.730 (5)117.00
N2—H2A···O3i0.86002.04002.896 (4)172.00
N2—H2B···O1iii0.86001.96002.819 (4)173.00
O1W—H2W···O1Wii0.94002.02002.782 (9)137.00
N3—H3B···Br10.86002.84003.681 (3)168.00
C3—H3A···O10.93002.44003.351 (4)167.00
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford: Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationSawada, K. & Ohashi, Y. (1998). Acta Cryst. C54, 1491–1493.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoares-Santos, P. C. R., Nogueira, H. I. S., Rocha, J., Félix, V., Drew, M. G. B., Sá Ferreira, R. A., Carlos, L. D. & Trindade, T. (2003). Polyhedron, 22, 3529–3539.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C. Y., Zheng, X. J. & Jin, L. P. (2004). Z. Anorg. Allg. Chem. 630, 1342–1347.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds