metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis([μ-bis­­(di­phenyl­arsino)methane-1:2κ2As:As']nona­carbonyl-1κ3C,2κ3C,3κ3C-{tris­­[4-(methyl­sulfan­yl)phen­yl]arsine-3κAs}-triangulo-triruthenium(0)) di­chloro­methane monosolvate

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 30 July 2010; accepted 16 August 2010; online 21 August 2010)

The asymmetric unit of the title triangulo-triruthenium compound, 2[Ru3(C25H22As2)(C21H21AsS3)(CO)9]·CH2Cl2, consists of one triangulo-triruthenium complex mol­ecule and one half of a dichloro­methane mol­ecule which lies across a crystallographic inversion center, leading to the disorder of this mol­ecule over two positions of equal occupancy. The bis­(diphenyl­arsino)methane ligand bridges an Ru—Ru bond and the monodentate arsine ligand bonds to the third Ru atom. All arsine ligands are equatorial with respect to the Ru3 triangle. Each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The three methyl­sulfanyl-substituted benzene rings make dihedral angles of 70.02 (8), 82.85 (9) and 89.49 (8)° with each other. The dihedral angles between the two phenyl rings are 78.25 (9) and 86.59 (9)° for the two diphenyl­arsino groups. In the crystal, weak inter­molecular C—H⋯π inter­actions are observed.

Related literature

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985[Bruce, M. I., Shawkataly, O. bin. & Williams, M. L. (1985). J. Organomet. Chem. 287, 127-131.]); Bruce, Liddell, Hughes et al. (1988[Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 181-205.]); Bruce, Liddell, Shawkataly et al. (1988[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin., Hughes, C. A., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 207-235.]). For related structures, see: Shawkataly et al. (1998[Shawkataly, O. bin, Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211-1216.], 2004[Shawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387-394.]); Shawkataly, Khan, Sirat et al. (2010a[Shawkataly, O. bin, Khan, I. A., Sirat, S. S., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, m1047-m1048.],b[Shawkataly, O. bin, Khan, I. A., Sirat, S. S., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m1150-m1151.]); Shawkataly, Khan, Yeap & Fun (2010a[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, m30-m31.],b[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m180-m181.]). For the synthesis of bis­(diphenyl­arsino)methane, see: Bruce et al. (1983[Bruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321-343.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2[Ru3(C25H22As2)(C21H21AsS3)(CO)9]·CH2Cl2

  • Mr = 3029.01

  • Triclinic, [P \overline 1]

  • a = 10.8807 (1) Å

  • b = 12.7494 (2) Å

  • c = 20.9320 (3) Å

  • α = 94.512 (1)°

  • β = 98.721 (1)°

  • γ = 102.855 (1)°

  • V = 2779.13 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 100 K

  • 0.56 × 0.29 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.306, Tmax = 0.605

  • 117127 measured reflections

  • 20038 independent reflections

  • 17668 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.01

  • 20038 reflections

  • 679 parameters

  • H-atom parameters constrained

  • Δρmax = 1.53 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C26–C31, C32–C37, C1–C6, C14–C19 and C38–C43 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1i 0.93 2.59 3.609 (2) 134
C10—H10ACg2ii 0.93 2.91 3.788 (2) 156
C24—H24ACg3iii 0.93 2.96 3.676 (2) 136
C42—H42ACg4iv 0.93 2.81 3.641 (2) 155
C46—H46CCg5v 0.96 2.90 3.742 (2) 152
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z; (iii) x+1, y, z; (iv) x, y+1, z; (v) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L = group 15 ligand) have been reported (Bruce et al., 1985; Bruce, Liddell, Hughes et al., 1988; Bruce, Liddell, Shawkataly et al., 1988). As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of triangulo-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly et al., 1998, 2004; Shawkataly, Khan, Sirat et al., 2010a, b; Shawkataly, Khan, Yeap & Fun, 2010a, b). Herein we report the synthesis and structure of the title compound.

The asymmetry unit consists of one molecule of triangulo-triruthenium complex and half a molecule of dichloromethane solvent (Fig. 1). The dichloromethane solvent lies across a crystallographic inversion center leading to disorder of this solvent molecule over two positions. The geometric parameters of title compound are comparable to those found in related structures (Shawkataly, Khan, Sirat et al., 2010a,b; Shawkataly, Khan, Yeap & Fun, 2010a, b). The bis(diphenylarsino)methane ligand bridges the Ru1—Ru2 bond and the monodentate arsine ligand bonds to the Ru3 atom. All arsine ligands are equatorial with respect to the Ru3 triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The three arsine-substituted benzene rings make dihedral angles (C26–C31/C32–C37, C26–C31/C38–C43 and C32–C37/C38–C43) of 70.02 (8), 82.85 (9) and 89.49 (8)° with each other respectively. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) are 78.25 (9) and 86.59 (9)° for the two diphenylarsino groups respectively. The methylsulfanyl groups are nearly coplanar with the attached benzene rings [torsion angles C44–S1–C29–C30 = 10.75 (19), C45–S2–C35–C34 = -12.60 (18) and C46–S3–C41–C40 = 8.04 (18)°].

In the crystal packing, the molecules are stacked along a axis (Fig. 2). Weak intermolecular C—H···π interactions further stabilize the crystal structure (Table 1).

Related literature top

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985); Bruce, Liddell, Hughes et al. (1988); Bruce, Liddell, Shawkataly et al. (1988). For related structures, see: Shawkataly et al. (1998, 2004); Shawkataly, Khan, Sirat et al. (2010a,b); Shawkataly, Khan, Yeap & Fun (2010a,b). For the synthesis of bis(diphenylarsino)methane, see: Bruce et al. (1983). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

All manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium and distilled from sodium benzophenone ketyl under dry oxygen-free nitrogen. Tris(4-(methylsulfanyl)phenyl)arsine was prepared from arsenic trichloride and 4-(methylsulfanyl)phenylmagnesium bromide in tetrahydrofuran and bis(diphenylarsino)methane (Bruce et al., 1983) was prepared by reported procedure. The title compound was obtained by refluxing equimolar quantities of Ru3(CO)10(µ-Ph2AsCH2AsPh2) and tris(4-(methylsulfanyl)phenyl)arsine in hexane under nitrogen atmosphere. Crystals suitable for X-ray diffraction were grown by slow solvent / solvent diffusion of CH3OH into CH2Cl2.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). Rotating group model was applied for the methyl groups. The highest peak and deepest hole in the difference Fourier map are located 0.74 and 0.65 Å, respectively, from atoms Ru1 and Cl1.

Structure description top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L = group 15 ligand) have been reported (Bruce et al., 1985; Bruce, Liddell, Hughes et al., 1988; Bruce, Liddell, Shawkataly et al., 1988). As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of triangulo-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly et al., 1998, 2004; Shawkataly, Khan, Sirat et al., 2010a, b; Shawkataly, Khan, Yeap & Fun, 2010a, b). Herein we report the synthesis and structure of the title compound.

The asymmetry unit consists of one molecule of triangulo-triruthenium complex and half a molecule of dichloromethane solvent (Fig. 1). The dichloromethane solvent lies across a crystallographic inversion center leading to disorder of this solvent molecule over two positions. The geometric parameters of title compound are comparable to those found in related structures (Shawkataly, Khan, Sirat et al., 2010a,b; Shawkataly, Khan, Yeap & Fun, 2010a, b). The bis(diphenylarsino)methane ligand bridges the Ru1—Ru2 bond and the monodentate arsine ligand bonds to the Ru3 atom. All arsine ligands are equatorial with respect to the Ru3 triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The three arsine-substituted benzene rings make dihedral angles (C26–C31/C32–C37, C26–C31/C38–C43 and C32–C37/C38–C43) of 70.02 (8), 82.85 (9) and 89.49 (8)° with each other respectively. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) are 78.25 (9) and 86.59 (9)° for the two diphenylarsino groups respectively. The methylsulfanyl groups are nearly coplanar with the attached benzene rings [torsion angles C44–S1–C29–C30 = 10.75 (19), C45–S2–C35–C34 = -12.60 (18) and C46–S3–C41–C40 = 8.04 (18)°].

In the crystal packing, the molecules are stacked along a axis (Fig. 2). Weak intermolecular C—H···π interactions further stabilize the crystal structure (Table 1).

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985); Bruce, Liddell, Hughes et al. (1988); Bruce, Liddell, Shawkataly et al. (1988). For related structures, see: Shawkataly et al. (1998, 2004); Shawkataly, Khan, Sirat et al. (2010a,b); Shawkataly, Khan, Yeap & Fun (2010a,b). For the synthesis of bis(diphenylarsino)methane, see: Bruce et al. (1983). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms. Atoms with suffix A are generated by the symmetry operation (1 - x, 1 - y, -z).
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules stacking along the a axis. The solvent molecule have been omitted for clarity.
Bis([µ-bis(diphenylarsino)methane-1:2κ2As:As']nonacarbonyl- 1κ3C,2κ3C,3κ3C-{tris[4- (methylsulfanyl)phenyl]arsine-3κAs}-triangulo-triruthenium(0)) dichloromethane monosolvate top
Crystal data top
2[Ru3(C25H22As2)(C21H21AsS3)(CO)9]·CH2Cl2Z = 1
Mr = 3029.01F(000) = 1490
Triclinic, P1Dx = 1.810 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8807 (1) ÅCell parameters from 9631 reflections
b = 12.7494 (2) Åθ = 2.4–35.2°
c = 20.9320 (3) ŵ = 2.79 mm1
α = 94.512 (1)°T = 100 K
β = 98.721 (1)°Block, purple
γ = 102.855 (1)°0.56 × 0.29 × 0.20 mm
V = 2779.13 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
20038 independent reflections
Radiation source: fine-focus sealed tube17668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 32.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1615
Tmin = 0.306, Tmax = 0.605k = 1919
117127 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0279P)2 + 2.4001P]
where P = (Fo2 + 2Fc2)/3
20038 reflections(Δ/σ)max = 0.002
679 parametersΔρmax = 1.53 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
2[Ru3(C25H22As2)(C21H21AsS3)(CO)9]·CH2Cl2γ = 102.855 (1)°
Mr = 3029.01V = 2779.13 (6) Å3
Triclinic, P1Z = 1
a = 10.8807 (1) ÅMo Kα radiation
b = 12.7494 (2) ŵ = 2.79 mm1
c = 20.9320 (3) ÅT = 100 K
α = 94.512 (1)°0.56 × 0.29 × 0.20 mm
β = 98.721 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
20038 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
17668 reflections with I > 2σ(I)
Tmin = 0.306, Tmax = 0.605Rint = 0.027
117127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.01Δρmax = 1.53 e Å3
20038 reflectionsΔρmin = 1.28 e Å3
679 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.272408 (11)0.645285 (10)0.230778 (6)0.01503 (3)
Ru20.216711 (11)0.432162 (10)0.272952 (6)0.01492 (3)
Ru30.050554 (11)0.491262 (10)0.169550 (6)0.01399 (3)
As10.111284 (14)0.325798 (13)0.168266 (7)0.01466 (3)
As20.125920 (15)0.239793 (13)0.239305 (8)0.01539 (3)
As30.488230 (15)0.752248 (13)0.279266 (8)0.01564 (3)
S10.85951 (5)0.58930 (4)0.50245 (2)0.02778 (9)
S20.82705 (5)0.94466 (4)0.06532 (2)0.02522 (8)
S30.46708 (5)1.18489 (4)0.45993 (2)0.02596 (9)
O10.37182 (14)0.59457 (11)0.10436 (7)0.0281 (3)
O20.18120 (13)0.69186 (12)0.35930 (7)0.0282 (3)
O30.14505 (14)0.81485 (11)0.17632 (7)0.0293 (3)
O40.38610 (13)0.40882 (12)0.39778 (7)0.0297 (3)
O50.43725 (13)0.43147 (12)0.19702 (7)0.0293 (3)
O60.01003 (12)0.46497 (11)0.35320 (6)0.0241 (2)
O70.19057 (13)0.36294 (11)0.08694 (6)0.0256 (3)
O80.05033 (15)0.58824 (13)0.05006 (7)0.0326 (3)
O90.07202 (13)0.63293 (11)0.25395 (7)0.0277 (3)
C10.20996 (14)0.31631 (13)0.23781 (7)0.0176 (3)
C20.27612 (16)0.39622 (15)0.24823 (8)0.0211 (3)
H2A0.27970.44750.21920.025*
C30.33693 (17)0.39948 (17)0.30216 (9)0.0262 (3)
H3A0.38070.45300.30910.031*
C40.33218 (18)0.32294 (18)0.34550 (9)0.0298 (4)
H4A0.37160.32580.38180.036*
C50.26847 (19)0.24217 (18)0.33449 (9)0.0300 (4)
H5A0.26690.19000.36300.036*
C60.20672 (16)0.23860 (15)0.28098 (8)0.0225 (3)
H6A0.16350.18460.27410.027*
C70.23627 (15)0.27070 (13)0.08947 (8)0.0180 (3)
C80.36537 (17)0.23264 (17)0.08984 (9)0.0264 (4)
H8A0.39640.23470.12880.032*
C90.44931 (19)0.19095 (19)0.03128 (10)0.0336 (4)
H9A0.53630.16540.03140.040*
C100.4035 (2)0.18778 (17)0.02634 (9)0.0315 (4)
H10A0.45950.15980.06510.038*
C110.2739 (2)0.22627 (17)0.02666 (9)0.0286 (4)
H11A0.24310.22390.06570.034*
C120.19026 (17)0.26813 (15)0.03093 (8)0.0232 (3)
H12A0.10350.29450.03050.028*
C130.03139 (15)0.20321 (13)0.17414 (8)0.0188 (3)
H13A0.01150.18230.13200.023*
H13B0.09100.14200.18570.023*
C140.08324 (15)0.14022 (14)0.30329 (8)0.0206 (3)
C150.10313 (19)0.17852 (16)0.36886 (9)0.0261 (3)
H15A0.13160.25240.38220.031*
C160.0804 (2)0.10586 (19)0.41471 (11)0.0369 (5)
H16A0.09420.13130.45870.044*
C170.0370 (2)0.00437 (19)0.39450 (12)0.0414 (5)
H17A0.02110.05260.42500.050*
C180.0172 (2)0.04314 (18)0.32887 (12)0.0386 (5)
H18A0.01160.11710.31560.046*
C190.04048 (19)0.02893 (15)0.28324 (10)0.0282 (4)
H19A0.02770.00320.23930.034*
C200.23331 (15)0.16287 (13)0.19779 (8)0.0187 (3)
C210.18807 (17)0.09077 (15)0.14123 (9)0.0228 (3)
H21A0.10320.07900.12090.027*
C220.27003 (18)0.03630 (15)0.11511 (9)0.0256 (3)
H22A0.24030.01110.07700.031*
C230.39557 (18)0.05293 (15)0.14596 (10)0.0267 (4)
H23A0.45020.01650.12850.032*
C240.44057 (17)0.12360 (15)0.20272 (10)0.0266 (4)
H24A0.52490.13380.22350.032*
C250.35995 (16)0.17917 (14)0.22860 (9)0.0222 (3)
H25A0.39040.22720.26640.027*
C260.60497 (15)0.69454 (13)0.33824 (8)0.0179 (3)
C270.55549 (16)0.63871 (14)0.38685 (8)0.0197 (3)
H27A0.46760.62180.38610.024*
C280.63538 (17)0.60794 (15)0.43627 (8)0.0219 (3)
H28A0.60100.57170.46870.026*
C290.76761 (17)0.63140 (14)0.43739 (8)0.0213 (3)
C300.81776 (17)0.68450 (16)0.38786 (9)0.0238 (3)
H30A0.90530.69870.38750.029*
C310.73621 (16)0.71633 (15)0.33882 (8)0.0222 (3)
H31A0.77010.75250.30620.027*
C320.59651 (15)0.80848 (13)0.21796 (8)0.0178 (3)
C330.64666 (17)0.73863 (14)0.17964 (9)0.0218 (3)
H33A0.63040.66530.18480.026*
C340.72016 (17)0.77792 (14)0.13421 (9)0.0223 (3)
H34A0.75470.73120.10990.027*
C350.74257 (15)0.88703 (14)0.12467 (8)0.0190 (3)
C360.69174 (15)0.95644 (13)0.16237 (8)0.0198 (3)
H36A0.70531.02920.15600.024*
C370.62117 (15)0.91777 (13)0.20920 (8)0.0188 (3)
H37A0.59020.96530.23490.023*
C380.48767 (16)0.88287 (13)0.33407 (8)0.0184 (3)
C390.58630 (17)0.92682 (14)0.38610 (9)0.0227 (3)
H39A0.65510.89480.39420.027*
C400.58315 (18)1.01828 (15)0.42624 (9)0.0241 (3)
H40A0.64911.04640.46120.029*
C410.48100 (17)1.06787 (14)0.41394 (8)0.0209 (3)
C420.38201 (18)1.02368 (15)0.36202 (9)0.0243 (3)
H42A0.31341.05590.35370.029*
C430.38508 (17)0.93201 (15)0.32264 (9)0.0231 (3)
H43A0.31810.90290.28820.028*
C441.02155 (19)0.65328 (19)0.49658 (10)0.0325 (4)
H44A1.07890.63790.53220.049*
H44B1.03100.73020.49810.049*
H44C1.04120.62590.45620.049*
C450.9014 (2)0.84077 (18)0.03799 (11)0.0369 (5)
H45A0.96140.86960.01090.055*
H45B0.83700.78130.01350.055*
H45C0.94540.81600.07490.055*
C460.6196 (2)1.22632 (18)0.51238 (10)0.0333 (4)
H46A0.62841.29700.53470.050*
H46B0.68641.22840.48700.050*
H46C0.62581.17570.54360.050*
C470.33234 (16)0.60875 (13)0.15090 (8)0.0202 (3)
C480.21287 (16)0.66581 (14)0.31181 (8)0.0211 (3)
C490.20010 (16)0.75351 (14)0.19592 (8)0.0211 (3)
C500.32480 (16)0.41959 (14)0.35019 (8)0.0211 (3)
C510.35334 (16)0.43797 (14)0.22309 (8)0.0210 (3)
C520.08354 (16)0.45379 (13)0.32111 (8)0.0194 (3)
C530.14356 (15)0.41231 (14)0.11959 (8)0.0193 (3)
C540.01435 (16)0.55206 (14)0.09543 (8)0.0204 (3)
C550.02389 (15)0.57839 (14)0.22517 (8)0.0194 (3)
Cl10.61496 (8)0.49986 (6)0.04724 (4)0.05599 (17)
C560.4702 (4)0.4354 (3)0.0093 (2)0.0350 (9)0.50
H56A0.41920.41530.04200.042*0.50
H56B0.47880.36970.01330.042*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01532 (5)0.01408 (5)0.01565 (5)0.00296 (4)0.00280 (4)0.00285 (4)
Ru20.01539 (5)0.01395 (5)0.01464 (5)0.00296 (4)0.00039 (4)0.00277 (4)
Ru30.01374 (5)0.01517 (5)0.01342 (5)0.00404 (4)0.00224 (4)0.00237 (4)
As10.01356 (6)0.01611 (7)0.01415 (7)0.00352 (5)0.00181 (5)0.00206 (5)
As20.01483 (6)0.01406 (7)0.01690 (7)0.00340 (5)0.00131 (5)0.00233 (5)
As30.01571 (7)0.01459 (7)0.01686 (7)0.00385 (5)0.00312 (5)0.00201 (5)
S10.0283 (2)0.0360 (2)0.02015 (19)0.01163 (18)0.00015 (16)0.00650 (17)
S20.0289 (2)0.0235 (2)0.0238 (2)0.00305 (16)0.01031 (16)0.00445 (16)
S30.0324 (2)0.0214 (2)0.0243 (2)0.00701 (17)0.00700 (16)0.00196 (16)
O10.0348 (7)0.0263 (7)0.0255 (6)0.0071 (5)0.0118 (5)0.0039 (5)
O20.0297 (7)0.0293 (7)0.0230 (6)0.0003 (5)0.0085 (5)0.0021 (5)
O30.0330 (7)0.0267 (7)0.0306 (7)0.0124 (6)0.0025 (5)0.0078 (5)
O40.0287 (7)0.0329 (7)0.0247 (6)0.0043 (5)0.0036 (5)0.0104 (5)
O50.0242 (6)0.0355 (7)0.0346 (7)0.0131 (5)0.0104 (5)0.0148 (6)
O60.0237 (6)0.0285 (6)0.0201 (6)0.0054 (5)0.0044 (4)0.0034 (5)
O70.0255 (6)0.0286 (7)0.0234 (6)0.0089 (5)0.0051 (5)0.0027 (5)
O80.0372 (8)0.0368 (8)0.0266 (7)0.0141 (6)0.0015 (6)0.0129 (6)
O90.0254 (6)0.0293 (7)0.0303 (7)0.0098 (5)0.0081 (5)0.0019 (5)
C10.0148 (6)0.0216 (7)0.0156 (6)0.0025 (5)0.0023 (5)0.0025 (5)
C20.0186 (7)0.0252 (8)0.0200 (7)0.0055 (6)0.0045 (5)0.0033 (6)
C30.0202 (7)0.0358 (10)0.0229 (8)0.0077 (7)0.0057 (6)0.0012 (7)
C40.0231 (8)0.0457 (12)0.0202 (8)0.0035 (8)0.0078 (6)0.0061 (8)
C50.0275 (9)0.0385 (11)0.0250 (8)0.0045 (8)0.0073 (7)0.0138 (8)
C60.0198 (7)0.0252 (8)0.0226 (8)0.0041 (6)0.0040 (6)0.0074 (6)
C70.0182 (6)0.0186 (7)0.0163 (6)0.0040 (5)0.0005 (5)0.0026 (5)
C80.0201 (7)0.0362 (10)0.0197 (7)0.0008 (7)0.0008 (6)0.0052 (7)
C90.0226 (8)0.0427 (12)0.0280 (9)0.0029 (8)0.0038 (7)0.0055 (8)
C100.0329 (9)0.0332 (10)0.0225 (8)0.0050 (8)0.0076 (7)0.0007 (7)
C110.0357 (10)0.0338 (10)0.0166 (7)0.0121 (8)0.0011 (7)0.0004 (7)
C120.0242 (8)0.0278 (9)0.0183 (7)0.0082 (6)0.0033 (6)0.0021 (6)
C130.0164 (6)0.0172 (7)0.0218 (7)0.0047 (5)0.0001 (5)0.0006 (6)
C140.0179 (7)0.0202 (7)0.0244 (8)0.0043 (6)0.0037 (6)0.0076 (6)
C150.0319 (9)0.0251 (9)0.0238 (8)0.0081 (7)0.0090 (7)0.0069 (7)
C160.0492 (12)0.0389 (11)0.0288 (10)0.0136 (10)0.0163 (9)0.0146 (9)
C170.0501 (13)0.0350 (11)0.0430 (12)0.0064 (10)0.0160 (10)0.0228 (10)
C180.0409 (11)0.0230 (9)0.0498 (13)0.0013 (8)0.0095 (10)0.0140 (9)
C190.0298 (9)0.0205 (8)0.0314 (9)0.0004 (7)0.0037 (7)0.0059 (7)
C200.0177 (6)0.0167 (7)0.0225 (7)0.0051 (5)0.0037 (5)0.0041 (6)
C210.0222 (7)0.0226 (8)0.0239 (8)0.0083 (6)0.0018 (6)0.0002 (6)
C220.0297 (9)0.0242 (8)0.0253 (8)0.0118 (7)0.0049 (7)0.0009 (7)
C230.0255 (8)0.0244 (8)0.0345 (9)0.0111 (7)0.0100 (7)0.0046 (7)
C240.0180 (7)0.0256 (9)0.0374 (10)0.0081 (6)0.0039 (7)0.0048 (7)
C250.0182 (7)0.0201 (8)0.0272 (8)0.0050 (6)0.0006 (6)0.0016 (6)
C260.0189 (7)0.0181 (7)0.0169 (7)0.0054 (5)0.0023 (5)0.0016 (5)
C270.0194 (7)0.0194 (7)0.0201 (7)0.0042 (6)0.0036 (5)0.0018 (6)
C280.0228 (7)0.0240 (8)0.0189 (7)0.0050 (6)0.0036 (6)0.0040 (6)
C290.0244 (7)0.0219 (8)0.0176 (7)0.0079 (6)0.0012 (6)0.0010 (6)
C300.0199 (7)0.0309 (9)0.0227 (8)0.0097 (6)0.0036 (6)0.0058 (7)
C310.0198 (7)0.0266 (8)0.0224 (8)0.0077 (6)0.0052 (6)0.0076 (6)
C320.0172 (6)0.0179 (7)0.0182 (7)0.0037 (5)0.0028 (5)0.0027 (5)
C330.0260 (8)0.0162 (7)0.0241 (8)0.0045 (6)0.0079 (6)0.0029 (6)
C340.0253 (8)0.0197 (8)0.0227 (8)0.0057 (6)0.0077 (6)0.0001 (6)
C350.0179 (7)0.0198 (7)0.0174 (7)0.0015 (5)0.0022 (5)0.0017 (6)
C360.0189 (7)0.0163 (7)0.0237 (7)0.0030 (5)0.0031 (6)0.0036 (6)
C370.0185 (7)0.0169 (7)0.0207 (7)0.0041 (5)0.0035 (5)0.0011 (6)
C380.0203 (7)0.0164 (7)0.0188 (7)0.0046 (5)0.0043 (5)0.0019 (5)
C390.0222 (7)0.0207 (8)0.0242 (8)0.0056 (6)0.0009 (6)0.0014 (6)
C400.0271 (8)0.0209 (8)0.0223 (8)0.0057 (6)0.0001 (6)0.0004 (6)
C410.0272 (8)0.0170 (7)0.0198 (7)0.0054 (6)0.0082 (6)0.0025 (6)
C420.0252 (8)0.0237 (8)0.0252 (8)0.0096 (6)0.0041 (6)0.0005 (6)
C430.0235 (7)0.0230 (8)0.0229 (8)0.0080 (6)0.0014 (6)0.0002 (6)
C440.0257 (9)0.0432 (12)0.0301 (9)0.0143 (8)0.0003 (7)0.0045 (8)
C450.0490 (13)0.0332 (11)0.0345 (11)0.0128 (9)0.0222 (9)0.0024 (8)
C460.0355 (10)0.0325 (10)0.0286 (9)0.0035 (8)0.0077 (8)0.0062 (8)
C470.0223 (7)0.0161 (7)0.0217 (7)0.0036 (6)0.0031 (6)0.0037 (6)
C480.0190 (7)0.0209 (8)0.0213 (7)0.0009 (6)0.0023 (6)0.0032 (6)
C490.0231 (7)0.0204 (7)0.0194 (7)0.0036 (6)0.0045 (6)0.0031 (6)
C500.0203 (7)0.0198 (7)0.0221 (7)0.0027 (6)0.0018 (6)0.0044 (6)
C510.0198 (7)0.0211 (8)0.0219 (7)0.0051 (6)0.0007 (6)0.0076 (6)
C520.0207 (7)0.0183 (7)0.0167 (7)0.0025 (6)0.0013 (5)0.0026 (5)
C530.0188 (7)0.0196 (7)0.0186 (7)0.0035 (6)0.0019 (5)0.0027 (6)
C540.0197 (7)0.0222 (8)0.0198 (7)0.0059 (6)0.0035 (5)0.0034 (6)
C550.0191 (7)0.0209 (7)0.0187 (7)0.0054 (6)0.0034 (5)0.0026 (6)
Cl10.0662 (4)0.0542 (4)0.0519 (4)0.0291 (3)0.0076 (3)0.0050 (3)
C560.040 (2)0.0269 (19)0.042 (2)0.0097 (16)0.0186 (18)0.0030 (17)
Geometric parameters (Å, º) top
Ru1—C491.8768 (17)C15—C161.397 (3)
Ru1—C481.9246 (17)C15—H15A0.9300
Ru1—C471.9445 (17)C16—C171.388 (3)
Ru1—As32.4574 (2)C16—H16A0.9300
Ru1—Ru32.8075 (2)C17—C181.391 (4)
Ru1—Ru22.8873 (2)C17—H17A0.9300
Ru2—C501.8897 (17)C18—C191.389 (3)
Ru2—C511.9335 (18)C18—H18A0.9300
Ru2—C521.9414 (17)C19—H19A0.9300
Ru2—As22.4344 (2)C20—C211.393 (2)
Ru2—Ru32.8630 (2)C20—C251.393 (2)
Ru3—C541.8993 (17)C21—C221.393 (2)
Ru3—C551.9309 (17)C21—H21A0.9300
Ru3—C531.9338 (17)C22—C231.382 (3)
Ru3—As12.4240 (2)C22—H22A0.9300
As1—C11.9314 (16)C23—C241.386 (3)
As1—C71.9431 (16)C23—H23A0.9300
As1—C131.9534 (16)C24—C251.388 (3)
As2—C201.9406 (16)C24—H24A0.9300
As2—C141.9532 (16)C25—H25A0.9300
As2—C131.9608 (16)C26—C311.391 (2)
As3—C261.9395 (16)C26—C271.393 (2)
As3—C321.9432 (16)C27—C281.387 (2)
As3—C381.9482 (16)C27—H27A0.9300
S1—C291.7560 (17)C28—C291.399 (2)
S1—C441.797 (2)C28—H28A0.9300
S2—C351.7657 (17)C29—C301.396 (2)
S2—C451.798 (2)C30—C311.398 (2)
S3—C411.7589 (17)C30—H30A0.9300
S3—C461.790 (2)C31—H31A0.9300
O1—C471.140 (2)C32—C371.391 (2)
O2—C481.149 (2)C32—C331.404 (2)
O3—C491.150 (2)C33—C341.387 (2)
O4—C501.148 (2)C33—H33A0.9300
O5—C511.147 (2)C34—C351.394 (2)
O6—C521.144 (2)C34—H34A0.9300
O7—C531.143 (2)C35—C361.397 (2)
O8—C541.142 (2)C36—C371.389 (2)
O9—C551.146 (2)C36—H36A0.9300
C1—C21.394 (2)C37—H37A0.9300
C1—C61.395 (2)C38—C391.391 (2)
C2—C31.395 (2)C38—C431.396 (2)
C2—H2A0.9300C39—C401.392 (3)
C3—C41.388 (3)C39—H39A0.9300
C3—H3A0.9300C40—C411.397 (2)
C4—C51.387 (3)C40—H40A0.9300
C4—H4A0.9300C41—C421.392 (3)
C5—C61.394 (3)C42—C431.386 (3)
C5—H5A0.9300C42—H42A0.9300
C6—H6A0.9300C43—H43A0.9300
C7—C81.382 (2)C44—H44A0.9600
C7—C121.393 (2)C44—H44B0.9600
C8—C91.400 (3)C44—H44C0.9600
C8—H8A0.9300C45—H45A0.9600
C9—C101.374 (3)C45—H45B0.9600
C9—H9A0.9300C45—H45C0.9600
C10—C111.388 (3)C46—H46A0.9600
C10—H10A0.9300C46—H46B0.9600
C11—C121.384 (2)C46—H46C0.9600
C11—H11A0.9300Cl1—C561.652 (5)
C12—H12A0.9300Cl1—C56i1.761 (5)
C13—H13A0.9700C56—Cl1i1.761 (5)
C13—H13B0.9700C56—H56A0.9599
C14—C151.388 (3)C56—H56B0.9599
C14—C191.400 (3)
C49—Ru1—C4892.55 (7)C16—C17—H17A119.8
C49—Ru1—C4792.99 (7)C18—C17—H17A119.8
C48—Ru1—C47173.85 (7)C19—C18—C17119.8 (2)
C49—Ru1—As3100.49 (5)C19—C18—H18A120.1
C48—Ru1—As391.09 (5)C17—C18—H18A120.1
C47—Ru1—As390.53 (5)C18—C19—C14120.0 (2)
C49—Ru1—Ru388.60 (5)C18—C19—H19A120.0
C48—Ru1—Ru395.13 (5)C14—C19—H19A120.0
C47—Ru1—Ru382.34 (5)C21—C20—C25119.90 (16)
As3—Ru1—Ru3168.757 (7)C21—C20—As2123.14 (12)
C49—Ru1—Ru2144.64 (5)C25—C20—As2116.92 (13)
C48—Ru1—Ru275.31 (5)C20—C21—C22119.93 (16)
C47—Ru1—Ru298.60 (5)C20—C21—H21A120.0
As3—Ru1—Ru2112.611 (6)C22—C21—H21A120.0
Ru3—Ru1—Ru260.344 (4)C23—C22—C21119.83 (18)
C50—Ru2—C5191.86 (7)C23—C22—H22A120.1
C50—Ru2—C5291.39 (7)C21—C22—H22A120.1
C51—Ru2—C52169.68 (7)C22—C23—C24120.43 (17)
C50—Ru2—As297.87 (5)C22—C23—H23A119.8
C51—Ru2—As293.44 (5)C24—C23—H23A119.8
C52—Ru2—As295.82 (5)C23—C24—C25120.09 (17)
C50—Ru2—Ru3168.52 (5)C23—C24—H24A120.0
C51—Ru2—Ru393.27 (5)C25—C24—H24A120.0
C52—Ru2—Ru381.86 (5)C24—C25—C20119.82 (17)
As2—Ru2—Ru392.069 (6)C24—C25—H25A120.1
C50—Ru2—Ru1113.64 (5)C20—C25—H25A120.1
C51—Ru2—Ru172.94 (5)C31—C26—C27118.87 (15)
C52—Ru2—Ru196.79 (5)C31—C26—As3123.38 (12)
As2—Ru2—Ru1145.613 (7)C27—C26—As3117.35 (12)
Ru3—Ru2—Ru158.448 (5)C28—C27—C26120.97 (15)
C54—Ru3—C5590.94 (7)C28—C27—H27A119.5
C54—Ru3—C5392.15 (7)C26—C27—H27A119.5
C55—Ru3—C53173.56 (7)C27—C28—C29120.10 (16)
C54—Ru3—As1103.19 (5)C27—C28—H28A120.0
C55—Ru3—As194.78 (5)C29—C28—H28A120.0
C53—Ru3—As190.01 (5)C30—C29—C28119.37 (15)
C54—Ru3—Ru1105.36 (5)C30—C29—S1124.46 (13)
C55—Ru3—Ru180.28 (5)C28—C29—S1116.17 (13)
C53—Ru3—Ru193.45 (5)C29—C30—C31119.87 (16)
As1—Ru3—Ru1151.077 (7)C29—C30—H30A120.1
C54—Ru3—Ru2163.58 (5)C31—C30—H30A120.1
C55—Ru3—Ru295.58 (5)C26—C31—C30120.78 (16)
C53—Ru3—Ru279.99 (5)C26—C31—H31A119.6
As1—Ru3—Ru291.288 (6)C30—C31—H31A119.6
Ru1—Ru3—Ru261.208 (4)C37—C32—C33118.79 (15)
C1—As1—C7104.88 (7)C37—C32—As3120.65 (12)
C1—As1—C13103.91 (7)C33—C32—As3120.51 (12)
C7—As1—C1398.75 (7)C34—C33—C32120.63 (16)
C1—As1—Ru3117.77 (5)C34—C33—H33A119.7
C7—As1—Ru3119.04 (5)C32—C33—H33A119.7
C13—As1—Ru3109.90 (5)C33—C34—C35120.42 (16)
C20—As2—C1497.80 (7)C33—C34—H34A119.8
C20—As2—C13101.07 (7)C35—C34—H34A119.8
C14—As2—C13102.17 (7)C34—C35—C36118.99 (15)
C20—As2—Ru2115.82 (5)C34—C35—S2124.43 (13)
C14—As2—Ru2120.82 (5)C36—C35—S2116.54 (13)
C13—As2—Ru2115.87 (5)C37—C36—C35120.63 (15)
C26—As3—C32101.35 (7)C37—C36—H36A119.7
C26—As3—C3899.20 (7)C35—C36—H36A119.7
C32—As3—C38102.56 (7)C36—C37—C32120.51 (15)
C26—As3—Ru1121.96 (5)C36—C37—H37A119.7
C32—As3—Ru1115.64 (5)C32—C37—H37A119.7
C38—As3—Ru1113.24 (5)C39—C38—C43118.88 (16)
C29—S1—C44103.72 (9)C39—C38—As3121.12 (12)
C35—S2—C45103.76 (9)C43—C38—As3119.97 (13)
C41—S3—C46102.37 (9)C38—C39—C40120.73 (16)
C2—C1—C6119.66 (15)C38—C39—H39A119.6
C2—C1—As1118.17 (12)C40—C39—H39A119.6
C6—C1—As1121.88 (13)C39—C40—C41120.05 (16)
C1—C2—C3120.11 (16)C39—C40—H40A120.0
C1—C2—H2A119.9C41—C40—H40A120.0
C3—C2—H2A119.9C42—C41—C40119.24 (16)
C4—C3—C2120.12 (18)C42—C41—S3116.25 (13)
C4—C3—H3A119.9C40—C41—S3124.51 (14)
C2—C3—H3A119.9C43—C42—C41120.43 (16)
C5—C4—C3119.80 (17)C43—C42—H42A119.8
C5—C4—H4A120.1C41—C42—H42A119.8
C3—C4—H4A120.1C42—C43—C38120.67 (16)
C4—C5—C6120.52 (17)C42—C43—H43A119.7
C4—C5—H5A119.7C38—C43—H43A119.7
C6—C5—H5A119.7S1—C44—H44A109.5
C5—C6—C1119.76 (17)S1—C44—H44B109.5
C5—C6—H6A120.1H44A—C44—H44B109.5
C1—C6—H6A120.1S1—C44—H44C109.5
C8—C7—C12119.96 (15)H44A—C44—H44C109.5
C8—C7—As1122.94 (12)H44B—C44—H44C109.5
C12—C7—As1117.08 (12)S2—C45—H45A109.5
C7—C8—C9119.75 (17)S2—C45—H45B109.5
C7—C8—H8A120.1H45A—C45—H45B109.5
C9—C8—H8A120.1S2—C45—H45C109.5
C10—C9—C8120.16 (18)H45A—C45—H45C109.5
C10—C9—H9A119.9H45B—C45—H45C109.5
C8—C9—H9A119.9S3—C46—H46A109.5
C9—C10—C11120.02 (17)S3—C46—H46B109.5
C9—C10—H10A120.0H46A—C46—H46B109.5
C11—C10—H10A120.0S3—C46—H46C109.5
C12—C11—C10120.23 (18)H46A—C46—H46C109.5
C12—C11—H11A119.9H46B—C46—H46C109.5
C10—C11—H11A119.9O1—C47—Ru1175.32 (15)
C11—C12—C7119.86 (17)O2—C48—Ru1171.28 (15)
C11—C12—H12A120.1O3—C49—Ru1173.42 (16)
C7—C12—H12A120.1O4—C50—Ru2177.06 (16)
As1—C13—As2111.17 (8)O5—C51—Ru2172.10 (15)
As1—C13—H13A109.4O6—C52—Ru2175.31 (14)
As2—C13—H13A109.4O7—C53—Ru3175.10 (15)
As1—C13—H13B109.4O8—C54—Ru3177.98 (16)
As2—C13—H13B109.4O9—C55—Ru3174.75 (15)
H13A—C13—H13B108.0C56—Cl1—C56i60.8 (3)
C15—C14—C19119.98 (16)Cl1—C56—C56i62.8 (3)
C15—C14—As2120.30 (13)Cl1—C56—Cl1i119.2 (2)
C19—C14—As2119.58 (14)C56i—C56—Cl1i56.5 (3)
C14—C15—C16119.89 (19)Cl1—C56—H56A107.5
C14—C15—H15A120.1C56i—C56—H56A127.4
C16—C15—H15A120.1Cl1i—C56—H56A108.3
C17—C16—C15119.9 (2)Cl1—C56—H56B106.7
C17—C16—H16A120.1C56i—C56—H56B125.3
C15—C16—H16A120.1Cl1i—C56—H56B107.3
C16—C17—C18120.42 (19)H56A—C56—H56B107.3
C49—Ru1—Ru2—C50138.92 (11)C7—As1—C1—C279.09 (14)
C48—Ru1—Ru2—C5065.79 (8)C13—As1—C1—C2177.73 (13)
C47—Ru1—Ru2—C50113.36 (8)Ru3—As1—C1—C255.95 (14)
As3—Ru1—Ru2—C5019.17 (6)C7—As1—C1—C6107.05 (14)
Ru3—Ru1—Ru2—C50170.60 (6)C13—As1—C1—C63.88 (15)
C49—Ru1—Ru2—C51136.67 (10)Ru3—As1—C1—C6117.91 (13)
C48—Ru1—Ru2—C51150.20 (7)C6—C1—C2—C31.1 (2)
C47—Ru1—Ru2—C5128.95 (7)As1—C1—C2—C3172.93 (13)
As3—Ru1—Ru2—C5165.25 (5)C1—C2—C3—C40.2 (3)
Ru3—Ru1—Ru2—C51104.98 (5)C2—C3—C4—C51.0 (3)
C49—Ru1—Ru2—C5244.40 (10)C3—C4—C5—C61.4 (3)
C48—Ru1—Ru2—C5228.73 (7)C4—C5—C6—C10.6 (3)
C47—Ru1—Ru2—C52152.12 (7)C2—C1—C6—C50.7 (3)
As3—Ru1—Ru2—C52113.69 (5)As1—C1—C6—C5173.10 (14)
Ru3—Ru1—Ru2—C5276.08 (5)C1—As1—C7—C81.40 (17)
C49—Ru1—Ru2—As266.38 (9)C13—As1—C7—C8105.61 (16)
C48—Ru1—Ru2—As2139.51 (5)Ru3—As1—C7—C8135.74 (14)
C47—Ru1—Ru2—As241.34 (5)C1—As1—C7—C12179.85 (13)
As3—Ru1—Ru2—As2135.534 (11)C13—As1—C7—C1272.84 (14)
Ru3—Ru1—Ru2—As234.694 (11)Ru3—As1—C7—C1245.81 (15)
C49—Ru1—Ru2—Ru331.68 (9)C12—C7—C8—C90.4 (3)
C48—Ru1—Ru2—Ru3104.81 (5)As1—C7—C8—C9177.99 (16)
C47—Ru1—Ru2—Ru376.04 (5)C7—C8—C9—C100.1 (3)
As3—Ru1—Ru2—Ru3170.228 (7)C8—C9—C10—C110.2 (3)
C49—Ru1—Ru3—C5427.93 (7)C9—C10—C11—C120.1 (3)
C48—Ru1—Ru3—C54120.36 (7)C10—C11—C12—C70.6 (3)
C47—Ru1—Ru3—C5465.28 (7)C8—C7—C12—C110.7 (3)
As3—Ru1—Ru3—C54116.29 (6)As1—C7—C12—C11177.76 (14)
Ru2—Ru1—Ru3—C54169.77 (5)C1—As1—C13—As283.61 (9)
C49—Ru1—Ru3—C5560.37 (7)C7—As1—C13—As2168.59 (8)
C48—Ru1—Ru3—C5532.06 (7)Ru3—As1—C13—As243.27 (9)
C47—Ru1—Ru3—C55153.57 (7)C20—As2—C13—As1142.99 (8)
As3—Ru1—Ru3—C55155.41 (6)C14—As2—C13—As1116.42 (9)
Ru2—Ru1—Ru3—C55101.93 (5)Ru2—As2—C13—As116.97 (10)
C49—Ru1—Ru3—C53121.11 (7)C20—As2—C14—C15127.08 (15)
C48—Ru1—Ru3—C53146.46 (7)C13—As2—C14—C15129.76 (15)
C47—Ru1—Ru3—C5327.90 (7)Ru2—As2—C14—C150.66 (16)
As3—Ru1—Ru3—C5323.11 (6)C20—As2—C14—C1948.66 (15)
Ru2—Ru1—Ru3—C5376.59 (5)C13—As2—C14—C1954.50 (15)
C49—Ru1—Ru3—As1142.62 (5)Ru2—As2—C14—C19175.08 (12)
C48—Ru1—Ru3—As150.18 (5)C19—C14—C15—C160.0 (3)
C47—Ru1—Ru3—As1124.18 (5)As2—C14—C15—C16175.76 (16)
As3—Ru1—Ru3—As173.16 (4)C14—C15—C16—C170.5 (3)
Ru2—Ru1—Ru3—As119.685 (13)C15—C16—C17—C180.6 (4)
C49—Ru1—Ru3—Ru2162.30 (5)C16—C17—C18—C190.2 (4)
C48—Ru1—Ru3—Ru269.87 (5)C17—C18—C19—C140.3 (3)
C47—Ru1—Ru3—Ru2104.50 (5)C15—C14—C19—C180.4 (3)
As3—Ru1—Ru3—Ru253.48 (3)As2—C14—C19—C18176.16 (16)
C50—Ru2—Ru3—C5486.0 (3)C14—As2—C20—C2195.77 (15)
C51—Ru2—Ru3—C5430.4 (2)C13—As2—C20—C218.33 (16)
C52—Ru2—Ru3—C54140.46 (19)Ru2—As2—C20—C21134.38 (13)
As2—Ru2—Ru3—C54123.96 (19)C14—As2—C20—C2581.72 (14)
Ru1—Ru2—Ru3—C5437.28 (19)C13—As2—C20—C25174.18 (13)
C50—Ru2—Ru3—C5527.0 (3)Ru2—As2—C20—C2548.13 (14)
C51—Ru2—Ru3—C55143.36 (7)C25—C20—C21—C220.9 (3)
C52—Ru2—Ru3—C5527.50 (7)As2—C20—C21—C22178.32 (14)
As2—Ru2—Ru3—C55123.08 (5)C20—C21—C22—C230.9 (3)
Ru1—Ru2—Ru3—C5575.69 (5)C21—C22—C23—C240.1 (3)
C50—Ru2—Ru3—C53148.3 (3)C22—C23—C24—C250.7 (3)
C51—Ru2—Ru3—C5331.93 (7)C23—C24—C25—C200.7 (3)
C52—Ru2—Ru3—C53157.22 (7)C21—C20—C25—C240.1 (3)
As2—Ru2—Ru3—C5361.64 (5)As2—C20—C25—C24177.69 (14)
Ru1—Ru2—Ru3—C5399.60 (5)C32—As3—C26—C3112.40 (16)
C50—Ru2—Ru3—As1121.9 (3)C38—As3—C26—C3192.50 (15)
C51—Ru2—Ru3—As1121.71 (5)Ru1—As3—C26—C31142.60 (13)
C52—Ru2—Ru3—As167.44 (5)C32—As3—C26—C27174.97 (13)
As2—Ru2—Ru3—As128.143 (7)C38—As3—C26—C2780.12 (14)
Ru1—Ru2—Ru3—As1170.622 (7)Ru1—As3—C26—C2744.78 (15)
C50—Ru2—Ru3—Ru148.7 (3)C31—C26—C27—C281.9 (3)
C51—Ru2—Ru3—Ru167.67 (5)As3—C26—C27—C28171.04 (13)
C52—Ru2—Ru3—Ru1103.18 (5)C26—C27—C28—C290.9 (3)
As2—Ru2—Ru3—Ru1161.235 (7)C27—C28—C29—C300.9 (3)
C54—Ru3—As1—C1113.07 (7)C27—C28—C29—S1179.66 (14)
C55—Ru3—As1—C120.97 (7)C44—S1—C29—C3010.75 (19)
C53—Ru3—As1—C1154.72 (7)C44—S1—C29—C28169.88 (15)
Ru1—Ru3—As1—C157.57 (6)C28—C29—C30—C311.8 (3)
Ru2—Ru3—As1—C174.74 (5)S1—C29—C30—C31178.86 (14)
C54—Ru3—As1—C715.56 (8)C27—C26—C31—C301.1 (3)
C55—Ru3—As1—C7107.66 (7)As3—C26—C31—C30171.47 (14)
C53—Ru3—As1—C776.65 (7)C29—C30—C31—C260.8 (3)
Ru1—Ru3—As1—C7173.80 (6)C26—As3—C32—C37120.37 (13)
Ru2—Ru3—As1—C7156.63 (6)C38—As3—C32—C3718.14 (15)
C54—Ru3—As1—C13128.27 (7)Ru1—As3—C32—C37105.59 (13)
C55—Ru3—As1—C13139.63 (7)C26—As3—C32—C3362.45 (14)
C53—Ru3—As1—C1336.06 (7)C38—As3—C32—C33164.68 (13)
Ru1—Ru3—As1—C1361.09 (5)Ru1—As3—C32—C3371.59 (14)
Ru2—Ru3—As1—C1343.92 (5)C37—C32—C33—C340.4 (3)
C50—Ru2—As2—C2078.97 (8)As3—C32—C33—C34177.68 (13)
C51—Ru2—As2—C2013.39 (7)C32—C33—C34—C351.7 (3)
C52—Ru2—As2—C20171.19 (7)C33—C34—C35—C361.1 (3)
Ru3—Ru2—As2—C20106.79 (5)C33—C34—C35—S2176.40 (14)
Ru1—Ru2—As2—C2077.75 (5)C45—S2—C35—C3412.60 (18)
C50—Ru2—As2—C1438.70 (8)C45—S2—C35—C36169.84 (14)
C51—Ru2—As2—C14131.05 (7)C34—C35—C36—C370.7 (2)
C52—Ru2—As2—C1453.52 (7)S2—C35—C36—C37178.44 (13)
Ru3—Ru2—As2—C14135.55 (6)C35—C36—C37—C322.0 (2)
Ru1—Ru2—As2—C14164.58 (6)C33—C32—C37—C361.4 (2)
C50—Ru2—As2—C13162.89 (8)As3—C32—C37—C36175.82 (12)
C51—Ru2—As2—C13104.76 (7)C26—As3—C38—C3920.61 (15)
C52—Ru2—As2—C1370.67 (7)C32—As3—C38—C3983.30 (15)
Ru3—Ru2—As2—C1311.35 (6)Ru1—As3—C38—C39151.38 (12)
Ru1—Ru2—As2—C1340.39 (6)C26—As3—C38—C43157.37 (14)
C49—Ru1—As3—C26168.10 (8)C32—As3—C38—C4398.72 (14)
C48—Ru1—As3—C2675.30 (8)Ru1—As3—C38—C4326.59 (15)
C47—Ru1—As3—C2698.77 (7)C43—C38—C39—C400.0 (3)
Ru3—Ru1—As3—C2648.38 (7)As3—C38—C39—C40178.00 (14)
Ru2—Ru1—As3—C260.78 (6)C38—C39—C40—C410.9 (3)
C49—Ru1—As3—C3268.08 (8)C39—C40—C41—C421.1 (3)
C48—Ru1—As3—C32160.87 (7)C39—C40—C41—S3178.79 (14)
C47—Ru1—As3—C3225.06 (7)C46—S3—C41—C42171.86 (15)
Ru3—Ru1—As3—C3275.45 (6)C46—S3—C41—C408.04 (18)
Ru2—Ru1—As3—C32124.61 (5)C40—C41—C42—C430.5 (3)
C49—Ru1—As3—C3849.87 (7)S3—C41—C42—C43179.43 (14)
C48—Ru1—As3—C3842.92 (7)C41—C42—C43—C380.4 (3)
C47—Ru1—As3—C38143.01 (7)C39—C38—C43—C420.6 (3)
Ru3—Ru1—As3—C38166.60 (6)As3—C38—C43—C42178.66 (14)
Ru2—Ru1—As3—C38117.44 (5)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C26–C31, C32–C37, C1–C6, C14–C19 and C38–C43 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1ii0.932.593.609 (2)134
C10—H10A···Cg2iii0.932.913.788 (2)156
C24—H24A···Cg3iv0.932.963.676 (2)136
C42—H42A···Cg4v0.932.813.641 (2)155
C46—H46C···Cg5vi0.962.903.742 (2)152
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula2[Ru3(C25H22As2)(C21H21AsS3)(CO)9]·CH2Cl2
Mr3029.01
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.8807 (1), 12.7494 (2), 20.9320 (3)
α, β, γ (°)94.512 (1), 98.721 (1), 102.855 (1)
V3)2779.13 (6)
Z1
Radiation typeMo Kα
µ (mm1)2.79
Crystal size (mm)0.56 × 0.29 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.306, 0.605
No. of measured, independent and
observed [I > 2σ(I)] reflections
117127, 20038, 17668
Rint0.027
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.01
No. of reflections20038
No. of parameters679
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.53, 1.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C26–C31, C32–C37, C1–C6, C14–C19 and C38–C43 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.932.593.609 (2)134
C10—H10A···Cg2ii0.932.913.788 (2)156
C24—H24A···Cg3iii0.932.963.676 (2)136
C42—H42A···Cg4iv0.932.813.641 (2)155
C46—H46C···Cg5v0.962.903.742 (2)152
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: E-2833-2010l.

Thomson Reuters ResearcherID: A-5523-2009.

‡‡Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research Grant 1001/PJJAUH/811115. SSS thanks USM for the Research Officer position. IAK is grateful to USM for a Visiting Researcher position. HKF and CSY thank USM for the Research University Golden Goose Grant 1001/PFIZIK/811012. CSY also thanks USM for the award of a USM Fellowship.

References

First citationBruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 181–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Liddell, M. J., Shawkataly, O. bin., Hughes, C. A., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 207–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321–343.  CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Shawkataly, O. bin. & Williams, M. L. (1985). J. Organomet. Chem. 287, 127–131.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Sirat, S. S., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, m1047–m1048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Sirat, S. S., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m1150–m1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, m30–m31.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m180–m181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387–394.  Web of Science CSD CrossRef Google Scholar
First citationShawkataly, O. bin, Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211–1216.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds