organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-3-ethyl­sulfinyl-2-(4-iodo­phen­yl)-7-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 2 August 2010; accepted 5 August 2010; online 11 August 2010)

In the title compound, C17H14ClIO2S, the 4-iodo­phenyl ring makes a dihedral angle of 1.61 (9)° with the benzofuran ring system. In the crystal, mol­ecules are linked through a weak inter­molecular C—H⋯O hydrogen bond and an I⋯O contact [3.416 (2) Å]. The ethyl group is disordered over two orientations with site-occupancy factors of 0.402 (7) and 0.598 (7).

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the structures of related 3-ethyl­sulfinyl-2-(4-iodo­phen­yl)-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1862.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1985.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14ClIO2S

  • Mr = 444.69

  • Triclinic, [P \overline 1]

  • a = 7.8013 (2) Å

  • b = 10.4240 (3) Å

  • c = 11.6003 (3) Å

  • α = 115.962 (1)°

  • β = 98.040 (1)°

  • γ = 96.661 (1)°

  • V = 823.00 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 173 K

  • 0.48 × 0.34 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.473, Tmax = 0.746

  • 14721 measured reflections

  • 3773 independent reflections

  • 3408 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.065

  • S = 1.06

  • 3773 reflections

  • 221 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16A—H16B⋯O2i 0.97 2.40 3.297 (6) 154
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a benzofuran ring have received considerable attention in view of their pharmacological properties such as antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the substituent effect on the solid state structures of 3-ethylsulfinyl-2-(4-iodophenyl)-1-benzofuran analogues (Choi et al., 2010a, b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the nine constituent atoms. The ethyl group is disordered over two positions with site–occupancy factors of 0.402 (7) (for atom labelled A) and 0.598 (7) (for atom labelled B) in Fig. 1. The dihedral angle formed by the benzofuran plane and the 4–iodophenyl ring is 1.61 (9)°. The molecular packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the methylene H atom of the ethyl group and the oxygen of the SO unit, with a C16A—H16B···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by an I···O halogen-bonding between the iodine and the oxygen of the SO unit [I···O2ii = 3.416 (2) Å; C12—I···O2ii = 161.46 (7)°] (Politzer et al., 2007).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 3-ethylsulfinyl-2-(4-iodophenyl)-1-benzofuran derivatives, see: Choi et al. (2010a,b). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-chloroperoxybenzoic acid (157 mg, 0.7 mmol) was added in small portions to a stirred solution of 5-chloro-3-ethylsulfanyl-2-(4-iodophenyl)-7-methyl-1-benzofuran (300 mg, 0.7 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 457–458 K; R/f = 0.64 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl, 0.97 Å for methylene, and 0.96 Å for methyl H atoms, and with Uiso(H) =1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms. The ethyl group was found to be disordered over two positions and modelled with site-occupancy factors, from refinement of 0.402 (7) (part A) and 0.598 (7) (part B), respectively. The displacement ellipsoids of part B were restrained using command ISOR (0.01), sets of C atoms were restrained using command DELU and the distances of C—C were restrained to 1.480 (2) Å using command DFIX. The distances of C—S and C—C were restrained to 0.001Å using command SADI.

Structure description top

Many compounds containing a benzofuran ring have received considerable attention in view of their pharmacological properties such as antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the substituent effect on the solid state structures of 3-ethylsulfinyl-2-(4-iodophenyl)-1-benzofuran analogues (Choi et al., 2010a, b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the nine constituent atoms. The ethyl group is disordered over two positions with site–occupancy factors of 0.402 (7) (for atom labelled A) and 0.598 (7) (for atom labelled B) in Fig. 1. The dihedral angle formed by the benzofuran plane and the 4–iodophenyl ring is 1.61 (9)°. The molecular packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the methylene H atom of the ethyl group and the oxygen of the SO unit, with a C16A—H16B···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by an I···O halogen-bonding between the iodine and the oxygen of the SO unit [I···O2ii = 3.416 (2) Å; C12—I···O2ii = 161.46 (7)°] (Politzer et al., 2007).

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 3-ethylsulfinyl-2-(4-iodophenyl)-1-benzofuran derivatives, see: Choi et al. (2010a,b). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The ethyl group is disordered over two positions with site-occupancy factors, from refinement of 0.402 (7) and 0.598 (7).
[Figure 2] Fig. 2. C—H···O and I···O interactions (dotted lines) in the crystal structure of the title compound. The disordered component of the ethyl group, part B, has been omitted for clarity as have H atoms not involved in intermolecular contacts. [Symmetry codes: (i) - x, - y, - z; (ii) x + 1, y + 1, z + 1; (iii) x - 1 , y - 1, z - 1.]
5-Chloro-3-ethylsulfinyl-2-(4-iodophenyl)-7-methyl-1-benzofuran top
Crystal data top
C17H14ClIO2SZ = 2
Mr = 444.69F(000) = 436
Triclinic, P1Dx = 1.794 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8013 (2) ÅCell parameters from 9231 reflections
b = 10.4240 (3) Åθ = 2.2–27.5°
c = 11.6003 (3) ŵ = 2.24 mm1
α = 115.962 (1)°T = 173 K
β = 98.040 (1)°Block, colourless
γ = 96.661 (1)°0.48 × 0.34 × 0.16 mm
V = 823.00 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3773 independent reflections
Radiation source: rotating anode3408 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.024
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.0°
φ and ω scansh = 910
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.473, Tmax = 0.746l = 1515
14721 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.065H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.034P)2 + 0.2748P]
where P = (Fo2 + 2Fc2)/3
3773 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.28 e Å3
28 restraintsΔρmin = 0.60 e Å3
Crystal data top
C17H14ClIO2Sγ = 96.661 (1)°
Mr = 444.69V = 823.00 (4) Å3
Triclinic, P1Z = 2
a = 7.8013 (2) ÅMo Kα radiation
b = 10.4240 (3) ŵ = 2.24 mm1
c = 11.6003 (3) ÅT = 173 K
α = 115.962 (1)°0.48 × 0.34 × 0.16 mm
β = 98.040 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3773 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3408 reflections with I > 2σ(I)
Tmin = 0.473, Tmax = 0.746Rint = 0.024
14721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02428 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
3773 reflectionsΔρmin = 0.60 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I0.64468 (2)0.843070 (18)0.633828 (13)0.05745 (7)
Cl0.13606 (8)0.12905 (7)0.54903 (5)0.06029 (16)
S0.05956 (8)0.20738 (7)0.00343 (6)0.05340 (14)
O10.26320 (19)0.55334 (15)0.03279 (13)0.0397 (3)
O20.1151 (3)0.1273 (2)0.0800 (2)0.0830 (7)
C30.0084 (3)0.2242 (2)0.2921 (2)0.0432 (4)
H30.06630.13520.30310.052*
C10.1344 (3)0.3441 (2)0.04020 (19)0.0398 (4)
C20.0905 (3)0.3316 (2)0.17052 (19)0.0383 (4)
C40.0153 (3)0.2577 (2)0.3946 (2)0.0440 (4)
C50.0668 (3)0.3905 (2)0.3815 (2)0.0450 (5)
H50.05670.40650.45470.054*
C60.1637 (3)0.4998 (2)0.2612 (2)0.0413 (4)
C70.1723 (3)0.4632 (2)0.15913 (18)0.0377 (4)
C80.2378 (3)0.4790 (2)0.03875 (18)0.0384 (4)
C90.3273 (3)0.5601 (2)0.17695 (19)0.0396 (4)
C100.3167 (3)0.5045 (3)0.2654 (2)0.0498 (5)
H100.25030.41200.23700.060*
C110.4045 (3)0.5857 (3)0.3958 (2)0.0512 (5)
H110.39430.54810.45450.061*
C120.5061 (3)0.7208 (2)0.4386 (2)0.0446 (5)
C130.5151 (4)0.7794 (3)0.3532 (2)0.0611 (7)
H130.58150.87210.38250.073*
C140.4253 (4)0.7001 (3)0.2240 (2)0.0590 (6)
H140.43030.74100.16730.071*
C150.2513 (4)0.6454 (3)0.2418 (3)0.0580 (6)
H15A0.37450.64680.24210.087*
H15B0.23850.71970.15930.087*
H15C0.19710.66310.31160.087*
C16A0.2618 (6)0.1332 (6)0.0089 (5)0.0561 (19)0.402 (7)
H16A0.36490.21080.05700.067*0.402 (7)
H16B0.25430.06970.04980.067*0.402 (7)
C17A0.2695 (15)0.0509 (8)0.1310 (5)0.074 (2)0.402 (7)
H17A0.15920.01590.17890.112*0.402 (7)
H17B0.36330.00240.13820.112*0.402 (7)
H17C0.29090.11740.16650.112*0.402 (7)
C16B0.1842 (6)0.0735 (5)0.0927 (4)0.0586 (13)0.598 (7)
H16C0.13820.02080.09980.070*0.598 (7)
H16D0.16860.06430.18060.070*0.598 (7)
C17B0.3749 (6)0.1176 (7)0.0305 (6)0.0832 (18)0.598 (7)
H17D0.41740.21560.01400.125*0.598 (7)
H17E0.43860.05330.08820.125*0.598 (7)
H17F0.39200.11260.05080.125*0.598 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.05606 (11)0.06525 (12)0.03984 (9)0.00242 (7)0.00008 (6)0.02082 (7)
Cl0.0624 (3)0.0565 (3)0.0396 (3)0.0026 (3)0.0005 (2)0.0076 (2)
S0.0596 (3)0.0483 (3)0.0604 (3)0.0012 (3)0.0147 (3)0.0339 (3)
O10.0480 (7)0.0332 (7)0.0359 (7)0.0025 (6)0.0051 (5)0.0165 (5)
O20.0949 (15)0.0656 (12)0.0693 (12)0.0320 (11)0.0043 (11)0.0322 (10)
C30.0463 (10)0.0333 (10)0.0431 (10)0.0038 (8)0.0085 (8)0.0130 (8)
C10.0467 (10)0.0359 (10)0.0403 (10)0.0077 (8)0.0110 (8)0.0202 (8)
C20.0414 (10)0.0341 (9)0.0392 (9)0.0078 (8)0.0097 (8)0.0163 (8)
C40.0418 (10)0.0425 (11)0.0356 (9)0.0073 (8)0.0036 (8)0.0090 (8)
C50.0496 (11)0.0497 (12)0.0378 (10)0.0118 (9)0.0089 (8)0.0218 (9)
C60.0459 (10)0.0390 (10)0.0428 (10)0.0083 (8)0.0113 (8)0.0217 (8)
C70.0404 (9)0.0343 (9)0.0358 (9)0.0059 (7)0.0067 (7)0.0146 (7)
C80.0446 (10)0.0359 (10)0.0387 (9)0.0088 (8)0.0107 (8)0.0199 (8)
C90.0414 (10)0.0376 (10)0.0379 (9)0.0068 (8)0.0071 (7)0.0163 (8)
C100.0586 (13)0.0419 (11)0.0452 (11)0.0001 (10)0.0009 (9)0.0222 (9)
C110.0588 (13)0.0525 (13)0.0437 (11)0.0043 (10)0.0028 (9)0.0273 (10)
C120.0428 (10)0.0503 (12)0.0363 (9)0.0061 (9)0.0046 (8)0.0179 (9)
C130.0743 (16)0.0502 (13)0.0463 (12)0.0156 (12)0.0007 (11)0.0216 (10)
C140.0800 (16)0.0503 (13)0.0409 (11)0.0101 (12)0.0022 (11)0.0246 (10)
C150.0709 (15)0.0502 (13)0.0551 (13)0.0005 (11)0.0093 (11)0.0306 (11)
C16A0.076 (4)0.041 (3)0.050 (3)0.005 (3)0.002 (3)0.025 (3)
C17A0.112 (6)0.057 (4)0.062 (4)0.028 (4)0.015 (4)0.033 (3)
C16B0.084 (3)0.044 (2)0.051 (3)0.017 (2)0.019 (2)0.0216 (19)
C17B0.081 (4)0.094 (4)0.099 (4)0.037 (3)0.035 (3)0.057 (3)
Geometric parameters (Å, º) top
I—C122.095 (2)C10—C111.389 (3)
I—O2i3.416 (2)C10—H100.9300
Cl—C41.739 (2)C11—C121.370 (3)
S—O21.466 (2)C11—H110.9300
S—C11.774 (2)C12—C131.378 (3)
S—C16A1.841 (4)C13—C141.381 (3)
S—C16B1.842 (4)C13—H130.9300
O1—C71.372 (2)C14—H140.9300
O1—C81.379 (2)C15—H15A0.9600
C3—C41.374 (3)C15—H15B0.9600
C3—C21.397 (3)C15—H15C0.9600
C3—H30.9300C16A—C17A1.4807 (15)
C1—C81.368 (3)C16A—H16A0.9700
C1—C21.447 (3)C16A—H16B0.9700
C2—C71.386 (3)C17A—H17A0.9600
C4—C51.390 (3)C17A—H17B0.9600
C5—C61.389 (3)C17A—H17C0.9600
C5—H50.9300C16B—C17B1.4812 (15)
C6—C71.391 (3)C16B—H16C0.9700
C6—C151.495 (3)C16B—H16D0.9700
C8—C91.461 (3)C17B—H17D0.9600
C9—C101.389 (3)C17B—H17E0.9600
C9—C141.392 (3)C17B—H17F0.9600
C12—I—O2i161.46 (7)C12—C11—C10120.4 (2)
O2—S—C1108.18 (11)C12—C11—H11119.8
O2—S—C16A126.7 (2)C10—C11—H11119.8
C1—S—C16A99.2 (2)C11—C12—C13119.9 (2)
O2—S—C16B96.09 (17)C11—C12—I121.10 (16)
C1—S—C16B96.62 (17)C13—C12—I119.02 (16)
C7—O1—C8106.81 (15)C12—C13—C14119.8 (2)
C4—C3—C2116.20 (19)C12—C13—H13120.1
C4—C3—H3121.9C14—C13—H13120.1
C2—C3—H3121.9C13—C14—C9121.3 (2)
C8—C1—C2106.99 (17)C13—C14—H14119.3
C8—C1—S128.36 (16)C9—C14—H14119.3
C2—C1—S124.63 (15)C6—C15—H15A109.5
C7—C2—C3119.59 (18)C6—C15—H15B109.5
C7—C2—C1105.15 (16)H15A—C15—H15B109.5
C3—C2—C1135.26 (19)C6—C15—H15C109.5
C3—C4—C5123.51 (19)H15A—C15—H15C109.5
C3—C4—Cl118.70 (17)H15B—C15—H15C109.5
C5—C4—Cl117.78 (17)C17A—C16A—S103.8 (4)
C6—C5—C4121.43 (19)C17A—C16A—H16A111.0
C6—C5—H5119.3S—C16A—H16A111.0
C4—C5—H5119.3C17A—C16A—H16B111.0
C5—C6—C7114.33 (19)S—C16A—H16B111.0
C5—C6—C15123.3 (2)H16A—C16A—H16B109.0
C7—C6—C15122.3 (2)C17B—C16B—S111.2 (3)
O1—C7—C2110.77 (17)C17B—C16B—H16C109.4
O1—C7—C6124.31 (18)S—C16B—H16C109.4
C2—C7—C6124.93 (18)C17B—C16B—H16D109.4
C1—C8—O1110.28 (16)S—C16B—H16D109.4
C1—C8—C9135.71 (19)H16C—C16B—H16D108.0
O1—C8—C9114.00 (16)C16B—C17B—H17D109.5
C10—C9—C14117.86 (19)C16B—C17B—H17E109.5
C10—C9—C8122.76 (19)H17D—C17B—H17E109.5
C14—C9—C8119.37 (19)C16B—C17B—H17F109.5
C9—C10—C11120.6 (2)H17D—C17B—H17F109.5
C9—C10—H10119.7H17E—C17B—H17F109.5
C11—C10—H10119.7
O2—S—C1—C8147.2 (2)C2—C1—C8—O10.2 (2)
C16A—S—C1—C879.1 (3)S—C1—C8—O1178.82 (15)
C16B—S—C1—C8114.1 (2)C2—C1—C8—C9179.1 (2)
O2—S—C1—C231.1 (2)S—C1—C8—C92.3 (4)
C16A—S—C1—C2102.6 (2)C7—O1—C8—C10.6 (2)
C16B—S—C1—C267.5 (2)C7—O1—C8—C9179.74 (16)
C4—C3—C2—C70.8 (3)C1—C8—C9—C101.6 (4)
C4—C3—C2—C1179.5 (2)O1—C8—C9—C10179.5 (2)
C8—C1—C2—C70.2 (2)C1—C8—C9—C14179.6 (3)
S—C1—C2—C7178.46 (15)O1—C8—C9—C140.7 (3)
C8—C1—C2—C3179.9 (2)C14—C9—C10—C111.3 (4)
S—C1—C2—C31.2 (4)C8—C9—C10—C11179.9 (2)
C2—C3—C4—C51.2 (3)C9—C10—C11—C121.4 (4)
C2—C3—C4—Cl180.00 (15)C10—C11—C12—C132.9 (4)
C3—C4—C5—C60.3 (3)C10—C11—C12—I178.48 (19)
Cl—C4—C5—C6179.08 (17)O2i—I—C12—C11167.99 (19)
C4—C5—C6—C71.0 (3)O2i—I—C12—C1310.6 (4)
C4—C5—C6—C15178.8 (2)C11—C12—C13—C141.6 (4)
C8—O1—C7—C20.7 (2)I—C12—C13—C14179.7 (2)
C8—O1—C7—C6179.17 (19)C12—C13—C14—C91.1 (4)
C3—C2—C7—O1179.68 (18)C10—C9—C14—C132.5 (4)
C1—C2—C7—O10.6 (2)C8—C9—C14—C13178.6 (3)
C3—C2—C7—C60.4 (3)O2—S—C16A—C17A48.1 (6)
C1—C2—C7—C6179.3 (2)C1—S—C16A—C17A72.9 (5)
C5—C6—C7—O1178.80 (18)C16B—S—C16A—C17A15.4 (5)
C15—C6—C7—O11.5 (3)O2—S—C16B—C17B177.3 (4)
C5—C6—C7—C21.3 (3)C1—S—C16B—C17B73.5 (4)
C15—C6—C7—C2178.4 (2)C16A—S—C16B—C17B23.2 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16A—H16B···O2ii0.972.403.297 (6)154
Symmetry code: (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC17H14ClIO2S
Mr444.69
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.8013 (2), 10.4240 (3), 11.6003 (3)
α, β, γ (°)115.962 (1), 98.040 (1), 96.661 (1)
V3)823.00 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.48 × 0.34 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.473, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14721, 3773, 3408
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.06
No. of reflections3773
No. of parameters221
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.60

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16A—H16B···O2i0.972.403.297 (6)154.4
Symmetry code: (i) x, y, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1862.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds