metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(5-carb­­oxy-2-propyl-1H-imidazole-4-carboxyl­ato-κ2N3,O4)manganese(II) 3.5-hydrate

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and cCollege of Medical Laboratory, Hebei North University, Zhangjiakou 075000, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 23 July 2010; accepted 6 August 2010; online 18 August 2010)

In the title complex, [Mn(C8H9N2O4)2(H2O)2]·3.5H2O, the MnII cation is six-coordinated by two N,O-bidentate H2pimda ligands (H2pimda = 5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ate) and two water mol­ecules in a distorted octa­hedral environment. The complete solid-state structure can be described as a three-dimensional supra­molecular framework stabilized by a wide range of O—H⋯O and N—H⋯O hydrogen bonds. The propyl groups of H2pimda are disordered over two sets of sites with refined occupancies of 0.759 (5):0.241 (5) and 0.545 (7):0.455 (7).

Related literature

For our previous structural studies of complexes with H2pimda, see: Yan et al. (2010[Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.]); Li et al. (2010[Li, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m280.]); Song et al.(2010[Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.]); He et al. (2010[He, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896.]); Fan et al. (2010[Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897-m898.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H9N2O4)2(H2O)2]·3.5H2O

  • Mr = 548.37

  • Triclinic, [P \overline 1]

  • a = 10.609 (6) Å

  • b = 10.649 (6) Å

  • c = 11.424 (7) Å

  • α = 82.748 (8)°

  • β = 82.544 (7)°

  • γ = 86.857 (7)°

  • V = 1268.5 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.31 × 0.26 × 0.21 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.838, Tmax = 0.886

  • 6656 measured reflections

  • 4508 independent reflections

  • 2551 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.152

  • S = 1.00

  • 4508 reflections

  • 342 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.82 1.70 2.507 (5) 167
O7—H6⋯O6 0.82 1.64 2.462 (4) 175
N2—H2⋯O4W 0.88 1.88 2.762 (6) 179
N4—H4⋯O6W 0.87 1.90 2.758 (5) 166
O1W—H1W⋯O5Wi 0.85 2.25 2.667 (4) 110
O1W—H2W⋯O8ii 0.85 1.89 2.724 (4) 168
O2W—H3W⋯O8iii 0.85 2.09 2.878 (4) 153
O2W—H4W⋯O2iv 0.85 1.97 2.791 (4) 163
O3W—H5W⋯O3Wv 0.85 1.48 2.149 (12) 133
O3W—H5W⋯O3iv 0.85 2.21 2.811 (6) 128
O3W—H6W⋯O3vi 0.86 1.98 2.793 (7) 157
O4W—H7W⋯O3W 0.85 1.82 2.646 (7) 165
O4W—H8W⋯O7vii 0.85 2.05 2.897 (5) 176
O5W—H9W⋯O5vii 0.85 2.09 2.885 (4) 156
O5W—H9W⋯O6vii 0.85 2.59 3.266 (5) 137
O5W—H10W⋯O4viii 0.85 1.97 2.804 (4) 166
O6W—H11W⋯O3Wviii 0.85 1.86 2.674 (7) 160
O6W—H12W⋯O5Wix 0.85 2.26 2.880 (6) 130
Symmetry codes: (i) x+1, y, z-1; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+2, -y, -z+1; (v) -x+2, -y, -z+2; (vi) x, y, z+1; (vii) -x+1, -y+1, -z+1; (viii) -x+1, -y, -z+1; (ix) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is considerable interest in the design and synthesis of metal-organic frameworks (MOFs) due to their potential applications in conductivity, luminescence, catalysis, magnetism and sensors as well as fascinating architectures and topologies. 2-propyl-1H-imidazole-4,5-carboxylate(H3pimda) ligand as one derivative of H3IDC with efficient N,O-donors has been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k3 N3, O4,O5)calcium(II)](Song et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4) manganese(II)]N,N-dimethylformamide(Yan et al., 2010), [Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2 N3,O4)nickle(II)]N,N-dimethylformamide disolvate(Li et al., 2010), Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- k2N3,O4)copper(II) N,N-dimethylformamide disolvate(He et al., 2010) and Diaquabis(5-carboxy-2-propyl-1H-imidazole- 4-carboxylato-k2N3,O4)nickle(II) tetrahedrate(Fan et al., 2010). In this paper, we report the structure of a new Mn(II) complex obtained under hydrothermal conditions.

As illustrated in figure 1, the title complex molecule is isomorphous with Ni(II) analog(Fan et al., 2010). Similar structural description applies to the present isomorphous complex. The MnII is six-coordinated by two N,O-bidentate H3pimda anions and two water molecules, and exhibits a distorted octahedral geometry. The carboxylic acid ligand bears a formal charge of -1, and the free carboxylate atoms O1 and O4, O6 and O7 form intramolecular hydrogen bonds, respectively. The dihedral angle between the two imidazole rings is 77.2 (8) %A. In the crystal structure, the three-dimensional supramolecular framework is stabilized by extensive O—H···O and N—H···O hydrogen bonds involving the free water molecules, the coordinated water molecules, the carboxy O atoms and the protonated N atoms of H3pimda. The propyl groups of H3pimda are disordered over two sets of sites with refined occupiencies of 0.759 (5):0.241 (5) and 0.545 (7):0.455 (7).

Related literature top

For our past work based on H3pimda, see: Yan et al. (2010); Li et al. (2010); Song et al.(2010); He et al. (2010); Fan et al. (2010).

Experimental top

A mixture of Mncl2 (0.5 mmol, 0.06 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid(0.5 mmol, 0.99 g) in 15 ml of H2O solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433k for 4 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Carboxyl H atoms were located in a difference map and refined with distance restraints, Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N). The propyl groups of H3pimda are disordered over two sites with refined occupancies of 0.759 (5):0.241 (5) and 0.545 (7):0.455 (7). C—C distance restraints of disordered components were applied. The O3W water molecule is located close to an inversion center, its occupancy factor was refined to 0.49 (1) and was fixed as 0.5 at the final refinements.

Structure description top

There is considerable interest in the design and synthesis of metal-organic frameworks (MOFs) due to their potential applications in conductivity, luminescence, catalysis, magnetism and sensors as well as fascinating architectures and topologies. 2-propyl-1H-imidazole-4,5-carboxylate(H3pimda) ligand as one derivative of H3IDC with efficient N,O-donors has been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k3 N3, O4,O5)calcium(II)](Song et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4) manganese(II)]N,N-dimethylformamide(Yan et al., 2010), [Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2 N3,O4)nickle(II)]N,N-dimethylformamide disolvate(Li et al., 2010), Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- k2N3,O4)copper(II) N,N-dimethylformamide disolvate(He et al., 2010) and Diaquabis(5-carboxy-2-propyl-1H-imidazole- 4-carboxylato-k2N3,O4)nickle(II) tetrahedrate(Fan et al., 2010). In this paper, we report the structure of a new Mn(II) complex obtained under hydrothermal conditions.

As illustrated in figure 1, the title complex molecule is isomorphous with Ni(II) analog(Fan et al., 2010). Similar structural description applies to the present isomorphous complex. The MnII is six-coordinated by two N,O-bidentate H3pimda anions and two water molecules, and exhibits a distorted octahedral geometry. The carboxylic acid ligand bears a formal charge of -1, and the free carboxylate atoms O1 and O4, O6 and O7 form intramolecular hydrogen bonds, respectively. The dihedral angle between the two imidazole rings is 77.2 (8) %A. In the crystal structure, the three-dimensional supramolecular framework is stabilized by extensive O—H···O and N—H···O hydrogen bonds involving the free water molecules, the coordinated water molecules, the carboxy O atoms and the protonated N atoms of H3pimda. The propyl groups of H3pimda are disordered over two sets of sites with refined occupiencies of 0.759 (5):0.241 (5) and 0.545 (7):0.455 (7).

For our past work based on H3pimda, see: Yan et al. (2010); Li et al. (2010); Song et al.(2010); He et al. (2010); Fan et al. (2010).

Computing details top

Data collection: APEXII (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-κ2N3,O4)manganese(II) 3.5-hydrate top
Crystal data top
[Mn(C8H9N2O4)2(H2O)2]·3.5H2OZ = 2
Mr = 548.37F(000) = 572
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.609 (6) ÅCell parameters from 3600 reflections
b = 10.649 (6) Åθ = 1.4–25.0°
c = 11.424 (7) ŵ = 0.59 mm1
α = 82.748 (8)°T = 296 K
β = 82.544 (7)°Block, colorless
γ = 86.857 (7)°0.31 × 0.26 × 0.21 mm
V = 1268.5 (13) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4508 independent reflections
Radiation source: fine-focus sealed tube2551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scanθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.838, Tmax = 0.886k = 1212
6656 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.2346P]
where P = (Fo2 + 2Fc2)/3
4508 reflections(Δ/σ)max = 0.009
342 parametersΔρmax = 0.32 e Å3
5 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Mn(C8H9N2O4)2(H2O)2]·3.5H2Oγ = 86.857 (7)°
Mr = 548.37V = 1268.5 (13) Å3
Triclinic, P1Z = 2
a = 10.609 (6) ÅMo Kα radiation
b = 10.649 (6) ŵ = 0.59 mm1
c = 11.424 (7) ÅT = 296 K
α = 82.748 (8)°0.31 × 0.26 × 0.21 mm
β = 82.544 (7)°
Data collection top
Bruker APEXII area-detector
diffractometer
4508 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2551 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.886Rint = 0.035
6656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0595 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
4508 reflectionsΔρmin = 0.33 e Å3
342 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.84879 (6)0.29330 (6)0.19294 (6)0.0505 (2)
O10.8746 (4)0.1883 (3)0.5157 (3)0.0718 (10)
H10.87010.16260.44550.108*
O20.8374 (3)0.1110 (3)0.6882 (3)0.0724 (10)
O30.8872 (3)0.0868 (3)0.1898 (3)0.0582 (8)
O40.8969 (3)0.1020 (3)0.2997 (3)0.0662 (9)
O50.7711 (3)0.4910 (3)0.2083 (3)0.0564 (8)
O60.6057 (3)0.6263 (3)0.1848 (3)0.0691 (10)
O70.3863 (3)0.6187 (3)0.1382 (3)0.0641 (9)
H60.45810.61820.15770.096*
O80.2555 (3)0.4775 (3)0.0983 (3)0.0642 (9)
N10.8290 (3)0.2105 (3)0.3841 (3)0.0500 (9)
N20.8112 (3)0.1375 (4)0.5753 (3)0.0585 (10)
H20.79910.14510.65160.070*
N30.6401 (3)0.2898 (3)0.1720 (3)0.0460 (9)
N40.4436 (3)0.2822 (3)0.1290 (3)0.0505 (9)
H40.37760.24680.11110.061*
C10.8355 (4)0.0337 (4)0.5152 (4)0.0440 (10)
C20.8473 (3)0.0802 (4)0.3970 (4)0.0419 (10)
C30.8087 (5)0.2420 (4)0.4943 (4)0.0604 (13)
C40.8790 (4)0.0165 (4)0.2877 (4)0.0496 (11)
C50.8483 (4)0.0942 (5)0.5799 (5)0.0554 (12)
C6A0.7996 (11)0.3774 (11)0.5220 (13)0.084 (3)0.759 (5)
H6A0.83140.38100.59730.100*0.759 (5)
H6B0.85280.42880.46080.100*0.759 (5)
C7A0.6680 (8)0.4301 (7)0.5284 (8)0.100 (3)0.759 (5)
H7A0.61690.38630.59640.120*0.759 (5)
H7B0.63210.41680.45730.120*0.759 (5)
C8A0.6635 (9)0.5741 (7)0.5402 (9)0.137 (4)0.759 (5)
H8A0.57790.60130.56650.206*0.759 (5)
H8B0.69140.62020.46430.206*0.759 (5)
H8C0.71830.58970.59690.206*0.759 (5)
C6B0.747 (4)0.358 (4)0.541 (5)0.084 (3)0.241 (5)
H6C0.68220.39360.49320.100*0.241 (5)
H6D0.70790.33760.62240.100*0.241 (5)
C7B0.846 (2)0.452 (3)0.538 (2)0.100 (3)0.241 (5)
H7C0.80670.53500.54790.120*0.241 (5)
H7D0.89900.45840.46120.120*0.241 (5)
C8B0.929 (3)0.410 (2)0.638 (3)0.137 (4)0.241 (5)
H8D0.98550.47670.64330.206*0.241 (5)
H8E0.97880.33510.62070.206*0.241 (5)
H8F0.87590.39330.71200.206*0.241 (5)
C90.5827 (4)0.4087 (4)0.1688 (4)0.0412 (10)
C100.4601 (4)0.4059 (4)0.1419 (4)0.0432 (10)
C110.5528 (4)0.2139 (4)0.1468 (4)0.0515 (11)
C120.6575 (4)0.5144 (4)0.1884 (4)0.0507 (11)
C130.3590 (4)0.5048 (4)0.1255 (4)0.0526 (12)
C14A0.559 (3)0.0724 (6)0.1680 (13)0.061 (3)0.545 (7)
H14A0.64470.04130.14360.073*0.545 (7)
H14B0.50230.03910.12020.073*0.545 (7)
C15A0.5196 (17)0.0242 (9)0.3025 (12)0.093 (4)0.545 (7)
H15A0.57250.06070.35160.111*0.545 (7)
H15B0.43150.04880.32630.111*0.545 (7)
C16A0.5371 (12)0.1179 (9)0.3172 (12)0.107 (4)0.545 (7)
H16A0.50740.15080.39760.160*0.545 (7)
H16B0.62570.14100.29960.160*0.545 (7)
H16C0.48940.15240.26370.160*0.545 (7)
C14B0.578 (3)0.0799 (8)0.1201 (18)0.061 (3)0.455 (7)
H14C0.66680.05600.12410.073*0.455 (7)
H14D0.55940.07310.04020.073*0.455 (7)
C15B0.4928 (12)0.0126 (12)0.2116 (12)0.093 (4)0.455 (7)
H15C0.40390.01230.20830.111*0.455 (7)
H15D0.50610.09790.18970.111*0.455 (7)
C16B0.523 (2)0.0117 (16)0.3355 (14)0.107 (4)0.455 (7)
H16D0.52910.09710.37360.160*0.455 (7)
H16E0.45760.03520.37930.160*0.455 (7)
H16F0.60320.02740.33320.160*0.455 (7)
O1W0.8931 (3)0.3345 (3)0.0048 (3)0.0828 (11)
H1W0.90990.26720.02800.124*
H2W0.85680.39680.03360.124*
O2W1.0434 (3)0.3326 (3)0.2140 (3)0.0849 (12)
H3W1.08670.39430.17870.127*
H4W1.09290.26990.23280.127*
O3W0.9127 (6)0.0143 (5)0.9610 (5)0.0656 (17)0.50
H5W0.99300.00180.95320.098*0.50
H6W0.90680.01431.03640.098*0.50
O4W0.7778 (4)0.1620 (4)0.8153 (4)0.1275 (17)
H7W0.83160.11630.85230.191*
H8W0.73260.22870.82730.191*
O5W0.1048 (3)0.2730 (3)0.8677 (3)0.0828 (11)
H9W0.15430.32900.83090.124*
H10W0.11010.21200.82560.124*
O6W0.2622 (3)0.1565 (4)0.0418 (4)0.1110 (15)
H11W0.21520.09280.05460.167*
H12W0.20630.21520.02920.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0448 (4)0.0542 (5)0.0498 (5)0.0021 (3)0.0097 (3)0.0064 (3)
O10.091 (2)0.051 (2)0.071 (3)0.0000 (18)0.019 (2)0.0070 (18)
O20.073 (2)0.082 (2)0.052 (2)0.0119 (18)0.0074 (18)0.0235 (18)
O30.065 (2)0.062 (2)0.044 (2)0.0122 (16)0.0093 (16)0.0003 (16)
O40.094 (2)0.049 (2)0.058 (2)0.0116 (17)0.0190 (18)0.0090 (16)
O50.0510 (18)0.0522 (19)0.068 (2)0.0029 (14)0.0201 (16)0.0028 (16)
O60.064 (2)0.050 (2)0.096 (3)0.0058 (16)0.0150 (19)0.0153 (18)
O70.0532 (19)0.057 (2)0.081 (3)0.0147 (16)0.0147 (18)0.0039 (18)
O80.0415 (17)0.072 (2)0.074 (2)0.0008 (16)0.0118 (16)0.0119 (17)
N10.051 (2)0.054 (2)0.043 (2)0.0040 (17)0.0077 (18)0.0020 (18)
N20.063 (2)0.070 (3)0.041 (2)0.007 (2)0.0037 (19)0.008 (2)
N30.046 (2)0.040 (2)0.051 (2)0.0014 (16)0.0115 (17)0.0029 (16)
N40.0364 (19)0.053 (2)0.061 (3)0.0019 (17)0.0159 (17)0.0055 (18)
C10.040 (2)0.048 (3)0.043 (3)0.0023 (19)0.005 (2)0.000 (2)
C20.039 (2)0.042 (2)0.044 (3)0.0022 (18)0.008 (2)0.002 (2)
C30.078 (3)0.053 (3)0.049 (3)0.005 (2)0.008 (3)0.004 (2)
C40.044 (2)0.055 (3)0.051 (3)0.008 (2)0.013 (2)0.006 (2)
C50.047 (3)0.061 (3)0.055 (3)0.002 (2)0.013 (2)0.010 (3)
C6A0.125 (12)0.063 (6)0.060 (7)0.014 (7)0.005 (8)0.013 (5)
C7A0.122 (7)0.068 (5)0.106 (7)0.015 (5)0.002 (5)0.013 (5)
C8A0.177 (10)0.076 (6)0.154 (10)0.023 (6)0.001 (7)0.025 (6)
C6B0.125 (12)0.063 (6)0.060 (7)0.014 (7)0.005 (8)0.013 (5)
C7B0.122 (7)0.068 (5)0.106 (7)0.015 (5)0.002 (5)0.013 (5)
C8B0.177 (10)0.076 (6)0.154 (10)0.023 (6)0.001 (7)0.025 (6)
C90.041 (2)0.040 (2)0.041 (3)0.0010 (19)0.0066 (19)0.0023 (19)
C100.043 (2)0.041 (3)0.042 (3)0.0043 (19)0.0047 (19)0.0032 (19)
C110.045 (2)0.047 (3)0.062 (3)0.002 (2)0.013 (2)0.000 (2)
C120.054 (3)0.046 (3)0.052 (3)0.001 (2)0.007 (2)0.003 (2)
C130.047 (3)0.057 (3)0.048 (3)0.002 (2)0.001 (2)0.008 (2)
C14A0.058 (8)0.042 (3)0.082 (12)0.002 (3)0.023 (10)0.004 (4)
C15A0.073 (6)0.056 (6)0.143 (12)0.005 (5)0.023 (7)0.021 (6)
C16A0.116 (8)0.068 (6)0.133 (9)0.005 (7)0.022 (7)0.006 (7)
C14B0.058 (8)0.042 (3)0.082 (12)0.002 (3)0.023 (10)0.004 (4)
C15B0.073 (6)0.056 (6)0.143 (12)0.005 (5)0.023 (7)0.021 (6)
C16B0.116 (8)0.068 (6)0.133 (9)0.005 (7)0.022 (7)0.006 (7)
O1W0.078 (2)0.097 (3)0.060 (2)0.036 (2)0.0015 (18)0.0170 (19)
O2W0.052 (2)0.088 (3)0.105 (3)0.0148 (18)0.0197 (19)0.043 (2)
O3W0.072 (4)0.074 (4)0.051 (4)0.006 (3)0.013 (3)0.011 (3)
O4W0.156 (4)0.155 (4)0.078 (3)0.069 (3)0.035 (3)0.053 (3)
O5W0.073 (2)0.078 (2)0.100 (3)0.0245 (19)0.013 (2)0.035 (2)
O6W0.099 (3)0.108 (3)0.144 (4)0.006 (2)0.064 (3)0.038 (3)
Geometric parameters (Å, º) top
Mn1—O1W2.134 (3)C6B—H6D0.9700
Mn1—O2W2.178 (3)C7B—C8B1.540 (13)
Mn1—O32.218 (3)C7B—H7C0.9700
Mn1—N12.237 (4)C7B—H7D0.9700
Mn1—O52.238 (3)C8B—H8D0.9600
Mn1—N32.260 (3)C8B—H8E0.9600
O1—C51.312 (5)C8B—H8F0.9600
O1—H10.8200C9—C101.377 (5)
O2—C51.219 (5)C9—C121.468 (6)
O3—C41.261 (5)C10—C131.474 (5)
O4—C41.259 (5)C11—C14A1.495 (7)
O5—C121.260 (5)C11—C14B1.499 (9)
O6—C121.283 (5)C14A—C15A1.567 (14)
O7—C131.292 (5)C14A—H14A0.9700
O7—H60.8200C14A—H14B0.9700
O8—C131.238 (5)C15A—C16A1.505 (11)
N1—C31.332 (5)C15A—H15A0.9700
N1—C21.382 (5)C15A—H15B0.9700
N2—C31.356 (5)C16A—H16A0.9600
N2—C11.369 (5)C16A—H16B0.9600
N2—H20.8771C16A—H16C0.9600
N3—C111.344 (5)C14B—C15B1.571 (14)
N3—C91.373 (5)C14B—H14C0.9700
N4—C111.358 (5)C14B—H14D0.9700
N4—C101.367 (5)C15B—C16B1.495 (12)
N4—H40.8708C15B—H15C0.9700
C1—C21.371 (6)C15B—H15D0.9700
C1—C51.474 (6)C16B—H16D0.9600
C2—C41.487 (6)C16B—H16E0.9600
C3—C6B1.50 (5)C16B—H16F0.9600
C3—C6A1.510 (12)O1W—H1W0.8500
C6A—C7A1.472 (14)O1W—H2W0.8500
C6A—H6A0.9700O2W—H3W0.8501
C6A—H6B0.9700O2W—H4W0.8500
C7A—C8A1.553 (9)O3W—H5W0.8499
C7A—H7A0.9700O3W—H6W0.8551
C7A—H7B0.9700O4W—H7W0.8500
C8A—H8A0.9600O4W—H8W0.8500
C8A—H8B0.9600O5W—H9W0.8500
C8A—H8C0.9600O5W—H10W0.8500
C6B—C7B1.482 (17)O6W—H11W0.8500
C6B—H6C0.9700O6W—H12W0.8500
O1W—Mn1—O2W89.56 (13)C8B—C7B—H7C109.8
O1W—Mn1—O393.19 (12)C6B—C7B—H7D109.8
O2W—Mn1—O394.68 (12)C8B—C7B—H7D109.8
O1W—Mn1—N1167.13 (13)H7C—C7B—H7D108.3
O2W—Mn1—N186.66 (12)C7B—C8B—H8D109.5
O3—Mn1—N174.89 (12)C7B—C8B—H8E109.5
O1W—Mn1—O591.53 (12)H8D—C8B—H8E109.5
O2W—Mn1—O595.47 (12)C7B—C8B—H8F109.5
O3—Mn1—O5168.84 (11)H8D—C8B—H8F109.5
N1—Mn1—O5101.07 (12)H8E—C8B—H8F109.5
O1W—Mn1—N389.97 (12)N3—C9—C10110.4 (3)
O2W—Mn1—N3169.81 (13)N3—C9—C12118.4 (3)
O3—Mn1—N395.51 (11)C10—C9—C12131.2 (4)
N1—Mn1—N395.91 (12)N4—C10—C9105.1 (3)
O5—Mn1—N374.37 (11)N4—C10—C13122.0 (4)
C5—O1—H1109.5C9—C10—C13132.9 (4)
C4—O3—Mn1118.1 (3)N3—C11—N4109.9 (4)
C12—O5—Mn1116.7 (3)N3—C11—C14A125.3 (13)
C13—O7—H6109.5N4—C11—C14A122.8 (12)
C3—N1—C2105.4 (3)N3—C11—C14B125.4 (15)
C3—N1—Mn1142.5 (3)N4—C11—C14B123.9 (15)
C2—N1—Mn1112.1 (3)C14A—C11—C14B21.4 (9)
C3—N2—C1108.2 (4)O5—C12—O6122.5 (4)
C3—N2—H2120.0O5—C12—C9118.2 (4)
C1—N2—H2131.8O6—C12—C9119.3 (4)
C11—N3—C9105.7 (3)O8—C13—O7123.3 (4)
C11—N3—Mn1141.8 (3)O8—C13—C10120.2 (4)
C9—N3—Mn1111.8 (3)O7—C13—C10116.4 (4)
C11—N4—C10108.9 (3)C11—C14A—C15A111.1 (7)
C11—N4—H4121.3C11—C14A—H14A109.4
C10—N4—H4129.8C15A—C14A—H14A109.4
N2—C1—C2105.5 (4)C11—C14A—H14B109.4
N2—C1—C5120.8 (4)C15A—C14A—H14B109.4
C2—C1—C5133.7 (4)H14A—C14A—H14B108.0
C1—C2—N1110.1 (4)C16A—C15A—C14A107.5 (10)
C1—C2—C4131.7 (4)C16A—C15A—H15A110.2
N1—C2—C4118.2 (4)C14A—C15A—H15A110.2
N1—C3—N2110.8 (4)C16A—C15A—H15B110.2
N1—C3—C6B131 (2)C14A—C15A—H15B110.2
N2—C3—C6B115 (2)H15A—C15A—H15B108.5
N1—C3—C6A123.2 (7)C11—C14B—C15B110.5 (12)
N2—C3—C6A125.7 (7)C11—C14B—H14C109.5
C6B—C3—C6A23.1 (13)C15B—C14B—H14C109.5
O4—C4—O3125.2 (4)C11—C14B—H14D109.5
O4—C4—C2118.1 (4)C15B—C14B—H14D109.5
O3—C4—C2116.8 (4)H14C—C14B—H14D108.1
O2—C5—O1121.7 (4)C16B—C15B—C14B111.5 (16)
O2—C5—C1121.2 (5)C16B—C15B—H15C109.3
O1—C5—C1117.0 (4)C14B—C15B—H15C109.3
C7A—C6A—C3112.0 (8)C16B—C15B—H15D109.3
C7A—C6A—H6A109.2C14B—C15B—H15D109.3
C3—C6A—H6A109.2H15C—C15B—H15D108.0
C7A—C6A—H6B109.2C15B—C16B—H16D109.5
C3—C6A—H6B109.2C15B—C16B—H16E109.5
H6A—C6A—H6B107.9H16D—C16B—H16E109.5
C6A—C7A—C8A111.0 (8)C15B—C16B—H16F109.5
C6A—C7A—H7A109.4H16D—C16B—H16F109.5
C8A—C7A—H7A109.4H16E—C16B—H16F109.5
C6A—C7A—H7B109.4Mn1—O1W—H1W111.4
C8A—C7A—H7B109.4Mn1—O1W—H2W121.1
H7A—C7A—H7B108.0H1W—O1W—H2W118.1
C7B—C6B—C3109 (3)Mn1—O2W—H3W127.0
C7B—C6B—H6C110.0Mn1—O2W—H4W117.6
C3—C6B—H6C110.0H3W—O2W—H4W109.8
C7B—C6B—H6D110.0H5W—O3W—H6W93.8
C3—C6B—H6D110.0H7W—O4W—H8W135.3
H6C—C6B—H6D108.3H9W—O5W—H10W106.9
C6B—C7B—C8B109 (3)H11W—O6W—H12W99.7
C6B—C7B—H7C109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.702.507 (5)167
O7—H6···O60.821.642.462 (4)175
N2—H2···O4W0.881.882.762 (6)179
N4—H4···O6W0.871.902.758 (5)166
O1W—H1W···O5Wi0.852.252.667 (4)110
O1W—H2W···O8ii0.851.892.724 (4)168
O2W—H3W···O8iii0.852.092.878 (4)153
O2W—H4W···O2iv0.851.972.791 (4)163
O3W—H5W···O3Wv0.851.482.149 (12)133
O3W—H5W···O3iv0.852.212.811 (6)128
O3W—H6W···O3vi0.861.982.793 (7)157
O4W—H7W···O3W0.851.822.646 (7)165
O4W—H8W···O7vii0.852.052.897 (5)176
O5W—H9W···O5vii0.852.092.885 (4)156
O5W—H9W···O6vii0.852.593.266 (5)137
O5W—H10W···O4viii0.851.972.804 (4)166
O6W—H11W···O3Wviii0.851.862.674 (7)160
O6W—H12W···O5Wix0.852.262.880 (6)130
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y, z+1; (v) x+2, y, z+2; (vi) x, y, z+1; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1; (ix) x, y, z1.

Experimental details

Crystal data
Chemical formula[Mn(C8H9N2O4)2(H2O)2]·3.5H2O
Mr548.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.609 (6), 10.649 (6), 11.424 (7)
α, β, γ (°)82.748 (8), 82.544 (7), 86.857 (7)
V3)1268.5 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.31 × 0.26 × 0.21
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.838, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
6656, 4508, 2551
Rint0.035
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.152, 1.00
No. of reflections4508
No. of parameters342
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: APEXII (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.702.507 (5)166.7
O7—H6···O60.821.642.462 (4)174.5
N2—H2···O4W0.881.882.762 (6)178.5
N4—H4···O6W0.871.902.758 (5)166.1
O1W—H1W···O5Wi0.852.252.667 (4)110.4
O1W—H2W···O8ii0.851.892.724 (4)167.8
O2W—H3W···O8iii0.852.092.878 (4)153.4
O2W—H4W···O2iv0.851.972.791 (4)162.6
O3W—H5W···O3Wv0.851.482.149 (12)132.9
O3W—H5W···O3iv0.852.212.811 (6)127.5
O3W—H6W···O3vi0.861.982.793 (7)157.2
O4W—H7W···O3W0.851.822.646 (7)165.4
O4W—H8W···O7vii0.852.052.897 (5)176.0
O5W—H9W···O5vii0.852.092.885 (4)155.9
O5W—H9W···O6vii0.852.593.266 (5)136.7
O5W—H10W···O4viii0.851.972.804 (4)165.8
O6W—H11W···O3Wviii0.851.862.674 (7)160.0
O6W—H12W···O5Wix0.852.262.880 (6)130.1
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y, z+1; (v) x+2, y, z+2; (vi) x, y, z+1; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1; (ix) x, y, z1.
 

Acknowledgements

The work was supported by the Non-profit Industry Found­ation of the National Ocean Administration of China (grant No. 2000905021), Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), Guangdong Province Key Project in the field of social development [grant No. A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No.00087061110314018) and the Guangdong Natural Science Foundation (No.9252408801000002).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds