metal-organic compounds
μ-Oxalato-bis[(2,2′-bipyridyl)copper(II)] bis(perchlorate) dimethylformamide disolvate monohydrate
aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine, and bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101, Joensuu, Finland
*Correspondence e-mail: igolenya@ua.fm
The title compound, [Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2O, contains doubly charged centrosymmetric dinuclear oxalato-bridged copper(II) complex cations, perchlorate anions, and DMF and water solvate molecules. In the complex cation, the oxalate ligand is coordinated in a bis-bidentate bridging mode to the Cu atoms. Each Cu atom has a distorted tetragonal-bipyramidal environment, being coordinated by two N atoms of the two chelating bipy ligands and two O atoms of the doubly deprotonated oxalate anion. Pairs of perchlorate anions and water molecules are linked into rectangles by O—H⋯O bonds in which the perchlorate O atoms act as acceptors and the water molecules as donors. Methyl groups of the DMF solvent molecule are disordered over two sites with occupancies of 0.453 (7):0.547 (7), and the water molecule is half-occupied.
Related literature
For use of oxalic acid and its derivatives in molecular magnetism and supramolecular chemistry, see: Kahn (1987); Ojima & Nonoyama (1988); Fritsky et al. (1998); Świątek-Kozłowska et al. (2000). For use of oxalic acid for the preparation of mixed-ligand polynuclear complexes, see: Strotmeyer et al. (2003). For related structures, see: Krämer & Fritsky (2000); Kovbasyuk et al. (2004); Wörl et al. (2005); Tomyn et al. (2007); Moroz et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bradenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810031569/jh2192sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810031569/jh2192Isup2.hkl
Cu(ClO4)2.6H2O (0.371 g, 1 mmol) was dissolved in water (5 ml) and added to the dimethylformamide solution of pyridine-2-hydroxamic acid (0.138 g, 1 mmol) and 2,2'-bipyridine (0.156 g, 1 mmol), and then a powder of K2C2O4.H2O (0.092 g, 0.5 mmol) was added to the obtained solution. The resulting mixture was being stirred at 60 C° during 15 min and filtered. Turquoise crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether vapour to the resulting solution at room temperature within 72 hours. They were filtered off and washed with diethyl ether. Yield: 57%.
Methyl groups of the dimethylformamide solvent molecule were disordered over two sites with occupancies 0.45/0.55. The N-C distances in the dimethylformamide molecules were restrained to to be similar and the anisotropic displacement parameters of the methyl carbons were constrained to be equal. The water of crystallization was refined with occupancy of 0.5. The H2O hydrogen atoms were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, and Uiso = 1.2-1.5 Ueq(parent atom). The highest peak is located 0.58 Å from atom C22B and the deepest hole is located 0.60 Å from atom O7.
Oxalic acid and its amide derivatives are widely used in molecular magnetism and supramolecular chemistry for preparation of various bi- and polynuclear complexes as well as exchange clusters of high nuclearity (Kahn, 1987; Ojima & Nonoyama, 1988; Fritsky et al., 1998; Świątek-Kozłowska et al., 2000). Use of additional bridging ligands sometimes results in increase of nuclearity of the target mixed ligands compounds (Strotmeyer et al., 2003). However, use of this synthetic strategy is often restricted by formation of complex species containing only one of the used bridging ligands. Herein we report a compound (I) isolated as a result of an attempt to obtain a mixed ligand complex containing both oxalate and pyridine-2-hydroxamate ligands.
In (I), the Cu atom has a distorted tetragonal-bipyramidal environment, with one oxygen atom of the oxalate (O2), three nitrogen atoms of the 2,2'-bipyridine ligand (N1, N2 and N4) occupying the base of the pyramid, and the second oxygen atom of the oxalate (O1) and one of the bipyridine nitrogen atoms (N3) in the apical positions (Fig. 1). The planar µ4-oxalato group lies in a center of symmetry and bridges the two copper atoms in a bis(chelating) mode, each copper atom being bound to two oxygens from the two different carboxylic groups. The Cu···Cu separation in the dimer is 5.6032 (9)Å which is slightly longer than the intermetallic separation observed in a related µ4-oxalato-bridged dicopper complex with (1-(pyridin-2-yl)ethylidene)hydrazine (5.449 (1) Å) (Tomyn et al., 2007). The C-N and C-C bond lenths in the 2,2'-bipyridine ligands are normal for 2-substituted pyridine derivatives (Krämer et al., 2000; Kovbasyuk et al., 2004; Wörl et al., 2005; Moroz et al., 2010).
In the crystal packing, the dimeric complex cations are organized in layers disposed parallel to the xy plane. The neighboring cations are linked by stacking interactions between the pyridine rings (both along x and y directions) and by
The perchlorate anions and solvate water molecules are disposed between the cationic layers. Two pairs of the translational perchlorate anions and water molecules form rectangles due to H-bonds where perchlorate O atoms act as acceptors and H2O molecules as donors (Fig. 2, Table 1).For use of oxalic acid and its derivatives in molecular magnetism and supramolecular chemistry, see: Kahn (1987); Ojima & Nonoyama (1988); Fritsky et al. (1998); Świątek-Kozłowska et al. (2000). For use of oxalic acid for the preparation of mixed-ligand polynuclear complexes, see: Strotmeyer et al. (2003). For related structures, see: Krämer & Fritsky (2000); Kovbasyuk et al. (2004); Wörl et al. (2005); Tomyn et al. (2007); Moroz et al., 2010.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bradenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2O | Z = 1 |
Mr = 1202.94 | F(000) = 618 |
Triclinic, P1 | Dx = 1.569 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6872 (5) Å | Cell parameters from 3860 reflections |
b = 11.0080 (8) Å | θ = 2.3–27.4° |
c = 12.2449 (5) Å | µ = 1.02 mm−1 |
α = 97.928 (3)° | T = 100 K |
β = 99.565 (2)° | Block, turquoise |
γ = 91.924 (2)° | 0.23 × 0.12 × 0.08 mm |
V = 1273.16 (12) Å3 |
Bruker Kappa APEXII DUO CCD diffractometer | 4993 independent reflections |
Radiation source: fine-focus sealed tube | 3955 reflections with I > 2σ(I) |
Curved graphite crystal monochromator | Rint = 0.023 |
Detector resolution: 16 pixels mm-1 | θmax = 26.0°, θmin = 1.7° |
φ scans and ω scans with κ offset | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −13→13 |
Tmin = 0.802, Tmax = 0.923 | l = −10→15 |
10051 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0663P)2 + 2.0663P] where P = (Fo2 + 2Fc2)/3 |
4993 reflections | (Δ/σ)max < 0.001 |
359 parameters | Δρmax = 1.43 e Å−3 |
27 restraints | Δρmin = −0.70 e Å−3 |
[Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2O | γ = 91.924 (2)° |
Mr = 1202.94 | V = 1273.16 (12) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.6872 (5) Å | Mo Kα radiation |
b = 11.0080 (8) Å | µ = 1.02 mm−1 |
c = 12.2449 (5) Å | T = 100 K |
α = 97.928 (3)° | 0.23 × 0.12 × 0.08 mm |
β = 99.565 (2)° |
Bruker Kappa APEXII DUO CCD diffractometer | 4993 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3955 reflections with I > 2σ(I) |
Tmin = 0.802, Tmax = 0.923 | Rint = 0.023 |
10051 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 27 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.43 e Å−3 |
4993 reflections | Δρmin = −0.70 e Å−3 |
359 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.29558 (4) | 0.30820 (4) | 0.41931 (4) | 0.01694 (15) | |
Cl1 | 0.71283 (9) | 0.33716 (9) | 0.90518 (8) | 0.0256 (2) | |
O1 | 0.5313 (3) | 0.3455 (2) | 0.5049 (2) | 0.0206 (6) | |
O2 | 0.3249 (2) | 0.4898 (2) | 0.4286 (2) | 0.0176 (5) | |
O3 | 0.7943 (4) | 0.3548 (3) | 0.8209 (3) | 0.0517 (9) | |
O4 | 0.7375 (3) | 0.2198 (3) | 0.9423 (3) | 0.0351 (7) | |
O5 | 0.7470 (4) | 0.4320 (3) | 0.9976 (3) | 0.0534 (10) | |
O6 | 0.5683 (3) | 0.3377 (4) | 0.8567 (3) | 0.0523 (10) | |
O7 | 0.3074 (6) | 0.0419 (7) | 0.7731 (7) | 0.138 (3) | |
N1 | 0.3182 (3) | 0.1260 (3) | 0.4105 (3) | 0.0199 (7) | |
N2 | 0.3572 (3) | 0.2758 (3) | 0.2693 (3) | 0.0176 (6) | |
N3 | 0.0654 (3) | 0.3071 (3) | 0.3574 (3) | 0.0190 (6) | |
N4 | 0.2160 (3) | 0.3330 (3) | 0.5640 (3) | 0.0177 (6) | |
N5 | 0.0955 (5) | 0.0617 (5) | 0.7989 (5) | 0.0720 (17) | |
C1 | 0.2978 (4) | 0.0562 (4) | 0.4883 (4) | 0.0293 (9) | |
H1 | 0.2670 | 0.0932 | 0.5542 | 0.035* | |
C2 | 0.3199 (4) | −0.0685 (4) | 0.4759 (4) | 0.0321 (10) | |
H2 | 0.3052 | −0.1160 | 0.5325 | 0.039* | |
C3 | 0.3636 (4) | −0.1221 (3) | 0.3802 (4) | 0.0287 (9) | |
H3 | 0.3776 | −0.2076 | 0.3694 | 0.034* | |
C4 | 0.3870 (4) | −0.0508 (3) | 0.3001 (4) | 0.0256 (8) | |
H4 | 0.4179 | −0.0863 | 0.2338 | 0.031* | |
C5 | 0.3646 (3) | 0.0738 (3) | 0.3182 (3) | 0.0186 (7) | |
C6 | 0.3871 (3) | 0.1588 (3) | 0.2378 (3) | 0.0180 (7) | |
C7 | 0.4363 (4) | 0.1248 (4) | 0.1392 (3) | 0.0269 (9) | |
H7 | 0.4560 | 0.0418 | 0.1176 | 0.032* | |
C8 | 0.4568 (4) | 0.2125 (4) | 0.0723 (3) | 0.0292 (9) | |
H8 | 0.4916 | 0.1906 | 0.0045 | 0.035* | |
C9 | 0.4265 (4) | 0.3320 (4) | 0.1045 (3) | 0.0267 (9) | |
H9 | 0.4406 | 0.3939 | 0.0599 | 0.032* | |
C10 | 0.3753 (4) | 0.3601 (3) | 0.2029 (3) | 0.0233 (8) | |
H10 | 0.3520 | 0.4421 | 0.2245 | 0.028* | |
C11 | −0.0050 (4) | 0.2868 (4) | 0.2522 (3) | 0.0259 (8) | |
H11 | 0.0470 | 0.2737 | 0.1928 | 0.031* | |
C12 | −0.1495 (4) | 0.2839 (4) | 0.2259 (4) | 0.0279 (9) | |
H12 | −0.1961 | 0.2686 | 0.1503 | 0.033* | |
C13 | −0.2244 (4) | 0.3038 (4) | 0.3131 (4) | 0.0275 (9) | |
H13 | −0.3239 | 0.3025 | 0.2979 | 0.033* | |
C14 | −0.1538 (4) | 0.3256 (3) | 0.4223 (3) | 0.0210 (8) | |
H14 | −0.2038 | 0.3397 | 0.4829 | 0.025* | |
C15 | −0.0077 (4) | 0.3266 (3) | 0.4419 (3) | 0.0177 (7) | |
C16 | 0.0767 (4) | 0.3479 (3) | 0.5566 (3) | 0.0177 (7) | |
C17 | 0.0176 (4) | 0.3815 (3) | 0.6520 (3) | 0.0233 (8) | |
H17 | −0.0802 | 0.3919 | 0.6458 | 0.028* | |
C18 | 0.1027 (4) | 0.3992 (4) | 0.7553 (3) | 0.0274 (9) | |
H18 | 0.0641 | 0.4226 | 0.8209 | 0.033* | |
C19 | 0.2450 (4) | 0.3828 (4) | 0.7632 (3) | 0.0273 (9) | |
H19 | 0.3052 | 0.3939 | 0.8339 | 0.033* | |
C20 | 0.2973 (4) | 0.3496 (3) | 0.6654 (3) | 0.0218 (8) | |
H20 | 0.3947 | 0.3381 | 0.6703 | 0.026* | |
C21 | 0.5591 (4) | 0.4576 (3) | 0.5219 (3) | 0.0168 (7) | |
C22A | 0.0103 (10) | 0.0664 (11) | 0.7051 (11) | 0.049 (2) | 0.453 (7) |
H22A | −0.0851 | 0.0770 | 0.7202 | 0.074* | 0.453 (7) |
H22B | 0.0119 | −0.0101 | 0.6540 | 0.074* | 0.453 (7) |
H22C | 0.0402 | 0.1359 | 0.6707 | 0.074* | 0.453 (7) |
C23A | 0.075 (2) | 0.1244 (19) | 0.9138 (14) | 0.107 (4) | 0.453 (7) |
H23A | −0.0240 | 0.1429 | 0.9113 | 0.161* | 0.453 (7) |
H23B | 0.1336 | 0.2010 | 0.9343 | 0.161* | 0.453 (7) |
H23C | 0.1010 | 0.0697 | 0.9696 | 0.161* | 0.453 (7) |
C22B | 0.0510 (8) | 0.0191 (9) | 0.6636 (8) | 0.049 (2) | 0.547 (7) |
H22D | −0.0497 | 0.0275 | 0.6410 | 0.074* | 0.547 (7) |
H22E | 0.0726 | −0.0668 | 0.6447 | 0.074* | 0.547 (7) |
H22F | 0.1036 | 0.0711 | 0.6241 | 0.074* | 0.547 (7) |
C23B | −0.0322 (15) | 0.1000 (16) | 0.8376 (15) | 0.107 (4) | 0.547 (7) |
H23D | −0.1106 | 0.0875 | 0.7745 | 0.161* | 0.547 (7) |
H23E | −0.0206 | 0.1872 | 0.8694 | 0.161* | 0.547 (7) |
H23F | −0.0517 | 0.0512 | 0.8950 | 0.161* | 0.547 (7) |
C24 | 0.2302 (8) | 0.0497 (10) | 0.8262 (7) | 0.100 (3) | |
H24 | 0.2637 | 0.0475 | 0.9034 | 0.121* | |
O1W | 0.9215 (13) | 0.6412 (13) | 0.9750 (10) | 0.119 (4) | 0.50 |
H1W | 1.0104 | 0.6270 | 0.9637 | 0.179* | 0.50 |
H2W | 0.8765 | 0.5737 | 0.9756 | 0.179* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0187 (2) | 0.0152 (2) | 0.0193 (3) | 0.00275 (16) | 0.00795 (17) | 0.00502 (17) |
Cl1 | 0.0245 (5) | 0.0333 (5) | 0.0202 (5) | 0.0044 (4) | 0.0052 (4) | 0.0060 (4) |
O1 | 0.0211 (13) | 0.0159 (13) | 0.0269 (15) | 0.0031 (10) | 0.0067 (11) | 0.0074 (11) |
O2 | 0.0161 (12) | 0.0166 (12) | 0.0217 (14) | 0.0036 (9) | 0.0059 (10) | 0.0043 (10) |
O3 | 0.059 (2) | 0.058 (2) | 0.049 (2) | 0.0059 (18) | 0.0366 (18) | 0.0171 (18) |
O4 | 0.0452 (17) | 0.0316 (16) | 0.0297 (17) | 0.0101 (13) | 0.0065 (14) | 0.0069 (13) |
O5 | 0.091 (3) | 0.0350 (18) | 0.0285 (18) | 0.0096 (18) | −0.0034 (18) | −0.0029 (15) |
O6 | 0.0277 (16) | 0.072 (3) | 0.062 (2) | 0.0046 (16) | −0.0021 (16) | 0.035 (2) |
O7 | 0.070 (4) | 0.139 (6) | 0.236 (9) | 0.031 (4) | 0.044 (5) | 0.107 (6) |
N1 | 0.0209 (15) | 0.0146 (15) | 0.0249 (17) | −0.0006 (12) | 0.0043 (13) | 0.0058 (13) |
N2 | 0.0170 (14) | 0.0155 (14) | 0.0210 (16) | 0.0020 (11) | 0.0037 (12) | 0.0039 (12) |
N3 | 0.0193 (15) | 0.0214 (16) | 0.0181 (16) | 0.0022 (12) | 0.0057 (12) | 0.0058 (13) |
N4 | 0.0165 (14) | 0.0169 (15) | 0.0214 (17) | 0.0007 (11) | 0.0050 (12) | 0.0070 (13) |
N5 | 0.038 (3) | 0.060 (3) | 0.117 (5) | 0.011 (2) | 0.032 (3) | −0.015 (3) |
C1 | 0.038 (2) | 0.023 (2) | 0.030 (2) | −0.0007 (17) | 0.0105 (18) | 0.0074 (17) |
C2 | 0.039 (2) | 0.021 (2) | 0.036 (3) | −0.0037 (17) | 0.0019 (19) | 0.0133 (18) |
C3 | 0.031 (2) | 0.0142 (18) | 0.037 (2) | 0.0020 (16) | −0.0067 (18) | 0.0056 (17) |
C4 | 0.0266 (19) | 0.0194 (19) | 0.029 (2) | 0.0046 (15) | 0.0007 (17) | −0.0002 (16) |
C5 | 0.0144 (16) | 0.0192 (18) | 0.0200 (19) | −0.0001 (13) | −0.0033 (14) | 0.0030 (15) |
C6 | 0.0130 (16) | 0.0188 (18) | 0.0208 (19) | 0.0018 (13) | 0.0003 (14) | 0.0006 (15) |
C7 | 0.032 (2) | 0.025 (2) | 0.024 (2) | 0.0060 (16) | 0.0081 (17) | −0.0021 (16) |
C8 | 0.032 (2) | 0.036 (2) | 0.021 (2) | 0.0026 (18) | 0.0107 (17) | 0.0004 (18) |
C9 | 0.029 (2) | 0.028 (2) | 0.025 (2) | −0.0008 (16) | 0.0087 (17) | 0.0088 (17) |
C10 | 0.0278 (19) | 0.0192 (18) | 0.025 (2) | 0.0029 (15) | 0.0094 (16) | 0.0057 (16) |
C11 | 0.0257 (19) | 0.030 (2) | 0.023 (2) | 0.0024 (16) | 0.0068 (16) | 0.0051 (17) |
C12 | 0.027 (2) | 0.032 (2) | 0.024 (2) | −0.0016 (16) | −0.0008 (16) | 0.0056 (17) |
C13 | 0.0189 (18) | 0.030 (2) | 0.033 (2) | 0.0015 (16) | 0.0027 (16) | 0.0049 (18) |
C14 | 0.0208 (17) | 0.0181 (18) | 0.026 (2) | 0.0016 (14) | 0.0077 (15) | 0.0051 (15) |
C15 | 0.0198 (17) | 0.0132 (16) | 0.0215 (19) | 0.0017 (13) | 0.0072 (15) | 0.0032 (14) |
C16 | 0.0188 (17) | 0.0148 (17) | 0.0213 (19) | −0.0001 (13) | 0.0068 (14) | 0.0055 (14) |
C17 | 0.0205 (18) | 0.0253 (19) | 0.026 (2) | 0.0008 (15) | 0.0103 (16) | 0.0030 (16) |
C18 | 0.028 (2) | 0.034 (2) | 0.023 (2) | 0.0019 (17) | 0.0125 (17) | 0.0038 (17) |
C19 | 0.026 (2) | 0.035 (2) | 0.022 (2) | −0.0014 (17) | 0.0053 (16) | 0.0073 (17) |
C20 | 0.0188 (17) | 0.0252 (19) | 0.023 (2) | 0.0006 (15) | 0.0053 (15) | 0.0062 (16) |
C21 | 0.0198 (17) | 0.0185 (18) | 0.0159 (18) | 0.0044 (14) | 0.0093 (14) | 0.0070 (14) |
C22A | 0.011 (3) | 0.039 (4) | 0.098 (6) | 0.002 (3) | 0.005 (3) | 0.021 (4) |
C23A | 0.083 (6) | 0.126 (7) | 0.107 (7) | 0.019 (5) | 0.019 (5) | −0.007 (6) |
C22B | 0.011 (3) | 0.039 (4) | 0.098 (6) | 0.002 (3) | 0.005 (3) | 0.021 (4) |
C23B | 0.083 (6) | 0.126 (7) | 0.107 (7) | 0.019 (5) | 0.019 (5) | −0.007 (6) |
C24 | 0.050 (4) | 0.178 (10) | 0.066 (5) | −0.029 (5) | −0.004 (4) | 0.017 (5) |
O1S | 0.095 (8) | 0.155 (12) | 0.110 (10) | −0.004 (8) | 0.015 (7) | 0.032 (9) |
Cu1—O2 | 1.995 (2) | C8—H8 | 0.9500 |
Cu1—N2 | 2.015 (3) | C9—C10 | 1.378 (5) |
Cu1—N1 | 2.015 (3) | C9—H9 | 0.9500 |
Cu1—N4 | 2.036 (3) | C10—H10 | 0.9500 |
Cu1—N3 | 2.232 (3) | C11—C12 | 1.381 (5) |
Cu1—O1 | 2.346 (3) | C11—H11 | 0.9500 |
Cl1—O5 | 1.417 (3) | C12—C13 | 1.383 (6) |
Cl1—O6 | 1.428 (3) | C12—H12 | 0.9500 |
Cl1—O3 | 1.428 (3) | C13—C14 | 1.382 (6) |
Cl1—O4 | 1.442 (3) | C13—H13 | 0.9500 |
O1—C21 | 1.236 (4) | C14—C15 | 1.395 (5) |
O2—C21i | 1.265 (4) | C14—H14 | 0.9500 |
O7—C24 | 1.065 (9) | C15—C16 | 1.486 (5) |
N1—C1 | 1.339 (5) | C16—C17 | 1.395 (5) |
N1—C5 | 1.348 (5) | C17—C18 | 1.375 (6) |
N2—C10 | 1.340 (5) | C17—H17 | 0.9500 |
N2—C6 | 1.348 (4) | C18—C19 | 1.384 (5) |
N3—C11 | 1.339 (5) | C18—H18 | 0.9500 |
N3—C15 | 1.346 (5) | C19—C20 | 1.385 (5) |
N4—C20 | 1.340 (5) | C19—H19 | 0.9500 |
N4—C16 | 1.354 (4) | C20—H20 | 0.9500 |
N5—C22A | 1.313 (11) | C21—O2i | 1.265 (4) |
N5—C24 | 1.305 (9) | C21—C21i | 1.573 (7) |
N5—C23B | 1.463 (14) | C22A—H22A | 0.9800 |
N5—C23A | 1.527 (14) | C22A—H22B | 0.9800 |
N5—C22B | 1.631 (11) | C22A—H22C | 0.9800 |
C1—C2 | 1.387 (6) | C23A—H23A | 0.9800 |
C1—H1 | 0.9500 | C23A—H23B | 0.9800 |
C2—C3 | 1.375 (6) | C23A—H23C | 0.9800 |
C2—H2 | 0.9500 | C22B—H22D | 0.9800 |
C3—C4 | 1.379 (6) | C22B—H22E | 0.9800 |
C3—H3 | 0.9500 | C22B—H22F | 0.9800 |
C4—C5 | 1.390 (5) | C23B—H23D | 0.9800 |
C4—H4 | 0.9500 | C23B—H23E | 0.9800 |
C5—C6 | 1.485 (5) | C23B—H23F | 0.9800 |
C6—C7 | 1.380 (5) | C24—H24 | 0.9500 |
C7—C8 | 1.379 (6) | O1W—H1W | 0.9100 |
C7—H7 | 0.9500 | O1W—H2W | 0.8500 |
C8—C9 | 1.377 (6) | ||
O2—Cu1—N2 | 92.86 (11) | C8—C9—C10 | 118.6 (4) |
O2—Cu1—N1 | 165.61 (11) | C8—C9—H9 | 120.7 |
N2—Cu1—N1 | 80.78 (12) | C10—C9—H9 | 120.7 |
O2—Cu1—N4 | 89.79 (11) | N2—C10—C9 | 122.3 (4) |
N2—Cu1—N4 | 174.69 (12) | N2—C10—H10 | 118.8 |
N1—Cu1—N4 | 97.65 (12) | C9—C10—H10 | 118.8 |
O2—Cu1—N3 | 93.94 (10) | N3—C11—C12 | 123.2 (4) |
N2—Cu1—N3 | 97.73 (11) | N3—C11—H11 | 118.4 |
N1—Cu1—N3 | 99.68 (12) | C12—C11—H11 | 118.4 |
N4—Cu1—N3 | 77.48 (11) | C11—C12—C13 | 118.1 (4) |
O2—Cu1—O1 | 77.12 (9) | C11—C12—H12 | 121.0 |
N2—Cu1—O1 | 89.30 (11) | C13—C12—H12 | 121.0 |
N1—Cu1—O1 | 89.83 (10) | C14—C13—C12 | 119.7 (4) |
N4—Cu1—O1 | 95.78 (10) | C14—C13—H13 | 120.2 |
N3—Cu1—O1 | 168.94 (10) | C12—C13—H13 | 120.2 |
O5—Cl1—O6 | 110.2 (2) | C13—C14—C15 | 118.8 (4) |
O5—Cl1—O3 | 110.4 (2) | C13—C14—H14 | 120.6 |
O6—Cl1—O3 | 107.9 (2) | C15—C14—H14 | 120.6 |
O5—Cl1—O4 | 109.5 (2) | N3—C15—C14 | 121.6 (3) |
O6—Cl1—O4 | 108.4 (2) | N3—C15—C16 | 115.9 (3) |
O3—Cl1—O4 | 110.2 (2) | C14—C15—C16 | 122.5 (3) |
C21—O1—Cu1 | 108.6 (2) | N4—C16—C17 | 121.1 (3) |
C21i—O2—Cu1 | 119.4 (2) | N4—C16—C15 | 116.2 (3) |
C1—N1—C5 | 118.8 (3) | C17—C16—C15 | 122.7 (3) |
C1—N1—Cu1 | 126.4 (3) | C18—C17—C16 | 119.2 (3) |
C5—N1—Cu1 | 114.7 (2) | C18—C17—H17 | 120.4 |
C10—N2—C6 | 119.1 (3) | C16—C17—H17 | 120.4 |
C10—N2—Cu1 | 125.8 (3) | C17—C18—C19 | 119.8 (4) |
C6—N2—Cu1 | 115.0 (2) | C17—C18—H18 | 120.1 |
C11—N3—C15 | 118.6 (3) | C19—C18—H18 | 120.1 |
C11—N3—Cu1 | 129.3 (3) | C20—C19—C18 | 118.3 (4) |
C15—N3—Cu1 | 112.0 (2) | C20—C19—H19 | 120.9 |
C20—N4—C16 | 119.0 (3) | C18—C19—H19 | 120.9 |
C20—N4—Cu1 | 122.7 (2) | N4—C20—C19 | 122.7 (3) |
C16—N4—Cu1 | 117.9 (2) | N4—C20—H20 | 118.7 |
C22A—N5—C24 | 134.7 (8) | C19—C20—H20 | 118.7 |
C22A—N5—C23B | 78.1 (9) | O1—C21—O2i | 125.4 (3) |
C24—N5—C23B | 146.3 (9) | O1—C21—C21i | 117.5 (4) |
C22A—N5—C23A | 125.4 (9) | O2i—C21—C21i | 117.1 (4) |
C24—N5—C23A | 96.1 (9) | N5—C22A—H22A | 109.4 |
C23B—N5—C23A | 49.9 (9) | N5—C22A—H22B | 109.5 |
C24—N5—C22B | 108.0 (6) | H22A—C22A—H22B | 109.5 |
C23B—N5—C22B | 105.5 (9) | N5—C22A—H22C | 109.5 |
C23A—N5—C22B | 154.7 (8) | H22A—C22A—H22C | 109.5 |
N1—C1—C2 | 122.2 (4) | H22B—C22A—H22C | 109.5 |
N1—C1—H1 | 118.9 | N5—C23A—H23A | 109.5 |
C2—C1—H1 | 118.9 | N5—C23A—H23B | 109.4 |
C3—C2—C1 | 118.8 (4) | H23A—C23A—H23B | 109.5 |
C3—C2—H2 | 120.6 | N5—C23A—H23C | 109.5 |
C1—C2—H2 | 120.6 | H23A—C23A—H23C | 109.5 |
C2—C3—C4 | 119.6 (4) | H23B—C23A—H23C | 109.5 |
C2—C3—H3 | 120.2 | N5—C22B—H22D | 109.5 |
C4—C3—H3 | 120.2 | N5—C22B—H22E | 109.5 |
C3—C4—C5 | 118.7 (4) | H22D—C22B—H22E | 109.5 |
C3—C4—H4 | 120.6 | N5—C22B—H22F | 109.5 |
C5—C4—H4 | 120.6 | H22D—C22B—H22F | 109.5 |
N1—C5—C4 | 121.8 (3) | H22E—C22B—H22F | 109.5 |
N1—C5—C6 | 115.0 (3) | N5—C23B—H23D | 109.5 |
C4—C5—C6 | 123.2 (4) | N5—C23B—H23E | 109.5 |
N2—C6—C7 | 121.2 (3) | H23D—C23B—H23E | 109.5 |
N2—C6—C5 | 114.4 (3) | N5—C23B—H23F | 109.4 |
C7—C6—C5 | 124.4 (3) | H23D—C23B—H23F | 109.5 |
C8—C7—C6 | 119.3 (4) | H23E—C23B—H23F | 109.5 |
C8—C7—H7 | 120.3 | O7—C24—N5 | 128.6 (9) |
C6—C7—H7 | 120.3 | O7—C24—H24 | 115.7 |
C9—C8—C7 | 119.4 (4) | N5—C24—H24 | 115.7 |
C9—C8—H8 | 120.3 | H1W—O1W—H2W | 110.2 |
C7—C8—H8 | 120.3 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O5ii | 0.91 | 2.45 | 3.311 (13) | 159 |
O1W—H2W···O5 | 0.85 | 2.04 | 2.882 (14) | 169 |
Symmetry code: (ii) −x+2, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2O |
Mr | 1202.94 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.6872 (5), 11.0080 (8), 12.2449 (5) |
α, β, γ (°) | 97.928 (3), 99.565 (2), 91.924 (2) |
V (Å3) | 1273.16 (12) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.02 |
Crystal size (mm) | 0.23 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Bruker Kappa APEXII DUO CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.802, 0.923 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10051, 4993, 3955 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.129, 1.04 |
No. of reflections | 4993 |
No. of parameters | 359 |
No. of restraints | 27 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.43, −0.70 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Bradenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O5i | 0.91 | 2.45 | 3.311 (13) | 158.7 |
O1W—H2W···O5 | 0.85 | 2.04 | 2.882 (14) | 168.7 |
Symmetry code: (i) −x+2, −y+1, −z+2. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).
References
Bradenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc., Dalton Trans. pp. 326–3274. Google Scholar
Kahn, O. (1987). Struct. Bond. 68, 89–167. CrossRef CAS Google Scholar
Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881. Web of Science CrossRef Google Scholar
Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510. Google Scholar
Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85–111. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547. Web of Science CSD CrossRef CAS Google Scholar
Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068. Google Scholar
Tomyn, S. V., Gumienna-Kontecka, E., Fritsky, I. O., Iskenderov, T. S. & Światek-Kozłowska, J. (2007). Acta Cryst. E63, m438–m440. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxalic acid and its amide derivatives are widely used in molecular magnetism and supramolecular chemistry for preparation of various bi- and polynuclear complexes as well as exchange clusters of high nuclearity (Kahn, 1987; Ojima & Nonoyama, 1988; Fritsky et al., 1998; Świątek-Kozłowska et al., 2000). Use of additional bridging ligands sometimes results in increase of nuclearity of the target mixed ligands compounds (Strotmeyer et al., 2003). However, use of this synthetic strategy is often restricted by formation of complex species containing only one of the used bridging ligands. Herein we report a compound (I) isolated as a result of an attempt to obtain a mixed ligand complex containing both oxalate and pyridine-2-hydroxamate ligands.
In (I), the Cu atom has a distorted tetragonal-bipyramidal environment, with one oxygen atom of the oxalate (O2), three nitrogen atoms of the 2,2'-bipyridine ligand (N1, N2 and N4) occupying the base of the pyramid, and the second oxygen atom of the oxalate (O1) and one of the bipyridine nitrogen atoms (N3) in the apical positions (Fig. 1). The planar µ4-oxalato group lies in a center of symmetry and bridges the two copper atoms in a bis(chelating) mode, each copper atom being bound to two oxygens from the two different carboxylic groups. The Cu···Cu separation in the dimer is 5.6032 (9)Å which is slightly longer than the intermetallic separation observed in a related µ4-oxalato-bridged dicopper complex with (1-(pyridin-2-yl)ethylidene)hydrazine (5.449 (1) Å) (Tomyn et al., 2007). The C-N and C-C bond lenths in the 2,2'-bipyridine ligands are normal for 2-substituted pyridine derivatives (Krämer et al., 2000; Kovbasyuk et al., 2004; Wörl et al., 2005; Moroz et al., 2010).
In the crystal packing, the dimeric complex cations are organized in layers disposed parallel to the xy plane. The neighboring cations are linked by stacking interactions between the pyridine rings (both along x and y directions) and by van der Waals forces. The perchlorate anions and solvate water molecules are disposed between the cationic layers. Two pairs of the translational perchlorate anions and water molecules form rectangles due to H-bonds where perchlorate O atoms act as acceptors and H2O molecules as donors (Fig. 2, Table 1).