metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Oxalato-bis­­[(2,2′-bi­pyridyl)­copper(II)] bis­(perchlorate) di­methyl­formamide disolvate monohydrate

aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine, and bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101, Joensuu, Finland
*Correspondence e-mail: igolenya@ua.fm

(Received 29 July 2010; accepted 5 August 2010; online 18 August 2010)

The title compound, [Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2O, contains doubly charged centrosymmetric dinuclear oxalato-bridged copper(II) complex cations, perchlorate anions, and DMF and water solvate mol­ecules. In the complex cation, the oxalate ligand is coordinated in a bis-bidentate bridging mode to the Cu atoms. Each Cu atom has a distorted tetra­gonal-bipyramidal environment, being coordinated by two N atoms of the two chelating bipy ligands and two O atoms of the doubly deprotonated oxalate anion. Pairs of perchlorate anions and water mol­ecules are linked into recta­ngles by O—H⋯O bonds in which the perchlorate O atoms act as acceptors and the water mol­ecules as donors. Methyl groups of the DMF solvent molecule are disordered over two sites with occupancies of 0.453 (7):0.547 (7), and the water molecule is half-occupied.

Related literature

For use of oxalic acid and its derivatives in mol­ecular magnetism and supra­molecular chemistry, see: Kahn (1987[Kahn, O. (1987). Struct. Bond. 68, 89-167.]); Ojima & Nonoyama (1988[Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85-111.]); Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc., Dalton Trans. pp. 326-3274.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]). For use of oxalic acid for the preparation of mixed-ligand polynuclear complexes, see: Strotmeyer et al. (2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]). For related structures, see: Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]); Wörl et al. (2005[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27-29.]); Tomyn et al. (2007[Tomyn, S. V., Gumienna-Kontecka, E., Fritsky, I. O., Iskenderov, T. S. & Światek-Kozłowska, J. (2007). Acta Cryst. E63, m438-m440.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2O

  • Mr = 1202.94

  • Triclinic, [P \overline 1]

  • a = 9.6872 (5) Å

  • b = 11.0080 (8) Å

  • c = 12.2449 (5) Å

  • α = 97.928 (3)°

  • β = 99.565 (2)°

  • γ = 91.924 (2)°

  • V = 1273.16 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 100 K

  • 0.23 × 0.12 × 0.08 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.802, Tmax = 0.923

  • 10051 measured reflections

  • 4993 independent reflections

  • 3955 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.04

  • 4993 reflections

  • 359 parameters

  • 27 restraints

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O5i 0.91 2.45 3.311 (13) 159
O1W—H2W⋯O5 0.85 2.04 2.882 (14) 169
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Bradenburg, 2006[Bradenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxalic acid and its amide derivatives are widely used in molecular magnetism and supramolecular chemistry for preparation of various bi- and polynuclear complexes as well as exchange clusters of high nuclearity (Kahn, 1987; Ojima & Nonoyama, 1988; Fritsky et al., 1998; Świątek-Kozłowska et al., 2000). Use of additional bridging ligands sometimes results in increase of nuclearity of the target mixed ligands compounds (Strotmeyer et al., 2003). However, use of this synthetic strategy is often restricted by formation of complex species containing only one of the used bridging ligands. Herein we report a compound (I) isolated as a result of an attempt to obtain a mixed ligand complex containing both oxalate and pyridine-2-hydroxamate ligands.

In (I), the Cu atom has a distorted tetragonal-bipyramidal environment, with one oxygen atom of the oxalate (O2), three nitrogen atoms of the 2,2'-bipyridine ligand (N1, N2 and N4) occupying the base of the pyramid, and the second oxygen atom of the oxalate (O1) and one of the bipyridine nitrogen atoms (N3) in the apical positions (Fig. 1). The planar µ4-oxalato group lies in a center of symmetry and bridges the two copper atoms in a bis(chelating) mode, each copper atom being bound to two oxygens from the two different carboxylic groups. The Cu···Cu separation in the dimer is 5.6032 (9)Å which is slightly longer than the intermetallic separation observed in a related µ4-oxalato-bridged dicopper complex with (1-(pyridin-2-yl)ethylidene)hydrazine (5.449 (1) Å) (Tomyn et al., 2007). The C-N and C-C bond lenths in the 2,2'-bipyridine ligands are normal for 2-substituted pyridine derivatives (Krämer et al., 2000; Kovbasyuk et al., 2004; Wörl et al., 2005; Moroz et al., 2010).

In the crystal packing, the dimeric complex cations are organized in layers disposed parallel to the xy plane. The neighboring cations are linked by stacking interactions between the pyridine rings (both along x and y directions) and by van der Waals forces. The perchlorate anions and solvate water molecules are disposed between the cationic layers. Two pairs of the translational perchlorate anions and water molecules form rectangles due to H-bonds where perchlorate O atoms act as acceptors and H2O molecules as donors (Fig. 2, Table 1).

Related literature top

For use of oxalic acid and its derivatives in molecular magnetism and supramolecular chemistry, see: Kahn (1987); Ojima & Nonoyama (1988); Fritsky et al. (1998); Świątek-Kozłowska et al. (2000). For use of oxalic acid for the preparation of mixed-ligand polynuclear complexes, see: Strotmeyer et al. (2003). For related structures, see: Krämer & Fritsky (2000); Kovbasyuk et al. (2004); Wörl et al. (2005); Tomyn et al. (2007); Moroz et al., 2010.

Experimental top

Cu(ClO4)2.6H2O (0.371 g, 1 mmol) was dissolved in water (5 ml) and added to the dimethylformamide solution of pyridine-2-hydroxamic acid (0.138 g, 1 mmol) and 2,2'-bipyridine (0.156 g, 1 mmol), and then a powder of K2C2O4.H2O (0.092 g, 0.5 mmol) was added to the obtained solution. The resulting mixture was being stirred at 60 C° during 15 min and filtered. Turquoise crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether vapour to the resulting solution at room temperature within 72 hours. They were filtered off and washed with diethyl ether. Yield: 57%.

Refinement top

Methyl groups of the dimethylformamide solvent molecule were disordered over two sites with occupancies 0.45/0.55. The N-C distances in the dimethylformamide molecules were restrained to to be similar and the anisotropic displacement parameters of the methyl carbons were constrained to be equal. The water of crystallization was refined with occupancy of 0.5. The H2O hydrogen atoms were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, and Uiso = 1.2-1.5 Ueq(parent atom). The highest peak is located 0.58 Å from atom C22B and the deepest hole is located 0.60 Å from atom O7.

Structure description top

Oxalic acid and its amide derivatives are widely used in molecular magnetism and supramolecular chemistry for preparation of various bi- and polynuclear complexes as well as exchange clusters of high nuclearity (Kahn, 1987; Ojima & Nonoyama, 1988; Fritsky et al., 1998; Świątek-Kozłowska et al., 2000). Use of additional bridging ligands sometimes results in increase of nuclearity of the target mixed ligands compounds (Strotmeyer et al., 2003). However, use of this synthetic strategy is often restricted by formation of complex species containing only one of the used bridging ligands. Herein we report a compound (I) isolated as a result of an attempt to obtain a mixed ligand complex containing both oxalate and pyridine-2-hydroxamate ligands.

In (I), the Cu atom has a distorted tetragonal-bipyramidal environment, with one oxygen atom of the oxalate (O2), three nitrogen atoms of the 2,2'-bipyridine ligand (N1, N2 and N4) occupying the base of the pyramid, and the second oxygen atom of the oxalate (O1) and one of the bipyridine nitrogen atoms (N3) in the apical positions (Fig. 1). The planar µ4-oxalato group lies in a center of symmetry and bridges the two copper atoms in a bis(chelating) mode, each copper atom being bound to two oxygens from the two different carboxylic groups. The Cu···Cu separation in the dimer is 5.6032 (9)Å which is slightly longer than the intermetallic separation observed in a related µ4-oxalato-bridged dicopper complex with (1-(pyridin-2-yl)ethylidene)hydrazine (5.449 (1) Å) (Tomyn et al., 2007). The C-N and C-C bond lenths in the 2,2'-bipyridine ligands are normal for 2-substituted pyridine derivatives (Krämer et al., 2000; Kovbasyuk et al., 2004; Wörl et al., 2005; Moroz et al., 2010).

In the crystal packing, the dimeric complex cations are organized in layers disposed parallel to the xy plane. The neighboring cations are linked by stacking interactions between the pyridine rings (both along x and y directions) and by van der Waals forces. The perchlorate anions and solvate water molecules are disposed between the cationic layers. Two pairs of the translational perchlorate anions and water molecules form rectangles due to H-bonds where perchlorate O atoms act as acceptors and H2O molecules as donors (Fig. 2, Table 1).

For use of oxalic acid and its derivatives in molecular magnetism and supramolecular chemistry, see: Kahn (1987); Ojima & Nonoyama (1988); Fritsky et al. (1998); Świątek-Kozłowska et al. (2000). For use of oxalic acid for the preparation of mixed-ligand polynuclear complexes, see: Strotmeyer et al. (2003). For related structures, see: Krämer & Fritsky (2000); Kovbasyuk et al. (2004); Wörl et al. (2005); Tomyn et al. (2007); Moroz et al., 2010.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bradenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of compound (1), with displacement ellipsoids shown at the 30% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry code: (i)1-x,1-y,1-z].
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
µ-Oxalato-bis[(2,2'-bipyridyl)copper(II)] bis(perchlorate) dimethylformamide disolvate monohydrate top
Crystal data top
[Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2OZ = 1
Mr = 1202.94F(000) = 618
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6872 (5) ÅCell parameters from 3860 reflections
b = 11.0080 (8) Åθ = 2.3–27.4°
c = 12.2449 (5) ŵ = 1.02 mm1
α = 97.928 (3)°T = 100 K
β = 99.565 (2)°Block, turquoise
γ = 91.924 (2)°0.23 × 0.12 × 0.08 mm
V = 1273.16 (12) Å3
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4993 independent reflections
Radiation source: fine-focus sealed tube3955 reflections with I > 2σ(I)
Curved graphite crystal monochromatorRint = 0.023
Detector resolution: 16 pixels mm-1θmax = 26.0°, θmin = 1.7°
φ scans and ω scans with κ offseth = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.802, Tmax = 0.923l = 1015
10051 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0663P)2 + 2.0663P]
where P = (Fo2 + 2Fc2)/3
4993 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 1.43 e Å3
27 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2Oγ = 91.924 (2)°
Mr = 1202.94V = 1273.16 (12) Å3
Triclinic, P1Z = 1
a = 9.6872 (5) ÅMo Kα radiation
b = 11.0080 (8) ŵ = 1.02 mm1
c = 12.2449 (5) ÅT = 100 K
α = 97.928 (3)°0.23 × 0.12 × 0.08 mm
β = 99.565 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4993 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3955 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.923Rint = 0.023
10051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04727 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 1.43 e Å3
4993 reflectionsΔρmin = 0.70 e Å3
359 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.29558 (4)0.30820 (4)0.41931 (4)0.01694 (15)
Cl10.71283 (9)0.33716 (9)0.90518 (8)0.0256 (2)
O10.5313 (3)0.3455 (2)0.5049 (2)0.0206 (6)
O20.3249 (2)0.4898 (2)0.4286 (2)0.0176 (5)
O30.7943 (4)0.3548 (3)0.8209 (3)0.0517 (9)
O40.7375 (3)0.2198 (3)0.9423 (3)0.0351 (7)
O50.7470 (4)0.4320 (3)0.9976 (3)0.0534 (10)
O60.5683 (3)0.3377 (4)0.8567 (3)0.0523 (10)
O70.3074 (6)0.0419 (7)0.7731 (7)0.138 (3)
N10.3182 (3)0.1260 (3)0.4105 (3)0.0199 (7)
N20.3572 (3)0.2758 (3)0.2693 (3)0.0176 (6)
N30.0654 (3)0.3071 (3)0.3574 (3)0.0190 (6)
N40.2160 (3)0.3330 (3)0.5640 (3)0.0177 (6)
N50.0955 (5)0.0617 (5)0.7989 (5)0.0720 (17)
C10.2978 (4)0.0562 (4)0.4883 (4)0.0293 (9)
H10.26700.09320.55420.035*
C20.3199 (4)0.0685 (4)0.4759 (4)0.0321 (10)
H20.30520.11600.53250.039*
C30.3636 (4)0.1221 (3)0.3802 (4)0.0287 (9)
H30.37760.20760.36940.034*
C40.3870 (4)0.0508 (3)0.3001 (4)0.0256 (8)
H40.41790.08630.23380.031*
C50.3646 (3)0.0738 (3)0.3182 (3)0.0186 (7)
C60.3871 (3)0.1588 (3)0.2378 (3)0.0180 (7)
C70.4363 (4)0.1248 (4)0.1392 (3)0.0269 (9)
H70.45600.04180.11760.032*
C80.4568 (4)0.2125 (4)0.0723 (3)0.0292 (9)
H80.49160.19060.00450.035*
C90.4265 (4)0.3320 (4)0.1045 (3)0.0267 (9)
H90.44060.39390.05990.032*
C100.3753 (4)0.3601 (3)0.2029 (3)0.0233 (8)
H100.35200.44210.22450.028*
C110.0050 (4)0.2868 (4)0.2522 (3)0.0259 (8)
H110.04700.27370.19280.031*
C120.1495 (4)0.2839 (4)0.2259 (4)0.0279 (9)
H120.19610.26860.15030.033*
C130.2244 (4)0.3038 (4)0.3131 (4)0.0275 (9)
H130.32390.30250.29790.033*
C140.1538 (4)0.3256 (3)0.4223 (3)0.0210 (8)
H140.20380.33970.48290.025*
C150.0077 (4)0.3266 (3)0.4419 (3)0.0177 (7)
C160.0767 (4)0.3479 (3)0.5566 (3)0.0177 (7)
C170.0176 (4)0.3815 (3)0.6520 (3)0.0233 (8)
H170.08020.39190.64580.028*
C180.1027 (4)0.3992 (4)0.7553 (3)0.0274 (9)
H180.06410.42260.82090.033*
C190.2450 (4)0.3828 (4)0.7632 (3)0.0273 (9)
H190.30520.39390.83390.033*
C200.2973 (4)0.3496 (3)0.6654 (3)0.0218 (8)
H200.39470.33810.67030.026*
C210.5591 (4)0.4576 (3)0.5219 (3)0.0168 (7)
C22A0.0103 (10)0.0664 (11)0.7051 (11)0.049 (2)0.453 (7)
H22A0.08510.07700.72020.074*0.453 (7)
H22B0.01190.01010.65400.074*0.453 (7)
H22C0.04020.13590.67070.074*0.453 (7)
C23A0.075 (2)0.1244 (19)0.9138 (14)0.107 (4)0.453 (7)
H23A0.02400.14290.91130.161*0.453 (7)
H23B0.13360.20100.93430.161*0.453 (7)
H23C0.10100.06970.96960.161*0.453 (7)
C22B0.0510 (8)0.0191 (9)0.6636 (8)0.049 (2)0.547 (7)
H22D0.04970.02750.64100.074*0.547 (7)
H22E0.07260.06680.64470.074*0.547 (7)
H22F0.10360.07110.62410.074*0.547 (7)
C23B0.0322 (15)0.1000 (16)0.8376 (15)0.107 (4)0.547 (7)
H23D0.11060.08750.77450.161*0.547 (7)
H23E0.02060.18720.86940.161*0.547 (7)
H23F0.05170.05120.89500.161*0.547 (7)
C240.2302 (8)0.0497 (10)0.8262 (7)0.100 (3)
H240.26370.04750.90340.121*
O1W0.9215 (13)0.6412 (13)0.9750 (10)0.119 (4)0.50
H1W1.01040.62700.96370.179*0.50
H2W0.87650.57370.97560.179*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0187 (2)0.0152 (2)0.0193 (3)0.00275 (16)0.00795 (17)0.00502 (17)
Cl10.0245 (5)0.0333 (5)0.0202 (5)0.0044 (4)0.0052 (4)0.0060 (4)
O10.0211 (13)0.0159 (13)0.0269 (15)0.0031 (10)0.0067 (11)0.0074 (11)
O20.0161 (12)0.0166 (12)0.0217 (14)0.0036 (9)0.0059 (10)0.0043 (10)
O30.059 (2)0.058 (2)0.049 (2)0.0059 (18)0.0366 (18)0.0171 (18)
O40.0452 (17)0.0316 (16)0.0297 (17)0.0101 (13)0.0065 (14)0.0069 (13)
O50.091 (3)0.0350 (18)0.0285 (18)0.0096 (18)0.0034 (18)0.0029 (15)
O60.0277 (16)0.072 (3)0.062 (2)0.0046 (16)0.0021 (16)0.035 (2)
O70.070 (4)0.139 (6)0.236 (9)0.031 (4)0.044 (5)0.107 (6)
N10.0209 (15)0.0146 (15)0.0249 (17)0.0006 (12)0.0043 (13)0.0058 (13)
N20.0170 (14)0.0155 (14)0.0210 (16)0.0020 (11)0.0037 (12)0.0039 (12)
N30.0193 (15)0.0214 (16)0.0181 (16)0.0022 (12)0.0057 (12)0.0058 (13)
N40.0165 (14)0.0169 (15)0.0214 (17)0.0007 (11)0.0050 (12)0.0070 (13)
N50.038 (3)0.060 (3)0.117 (5)0.011 (2)0.032 (3)0.015 (3)
C10.038 (2)0.023 (2)0.030 (2)0.0007 (17)0.0105 (18)0.0074 (17)
C20.039 (2)0.021 (2)0.036 (3)0.0037 (17)0.0019 (19)0.0133 (18)
C30.031 (2)0.0142 (18)0.037 (2)0.0020 (16)0.0067 (18)0.0056 (17)
C40.0266 (19)0.0194 (19)0.029 (2)0.0046 (15)0.0007 (17)0.0002 (16)
C50.0144 (16)0.0192 (18)0.0200 (19)0.0001 (13)0.0033 (14)0.0030 (15)
C60.0130 (16)0.0188 (18)0.0208 (19)0.0018 (13)0.0003 (14)0.0006 (15)
C70.032 (2)0.025 (2)0.024 (2)0.0060 (16)0.0081 (17)0.0021 (16)
C80.032 (2)0.036 (2)0.021 (2)0.0026 (18)0.0107 (17)0.0004 (18)
C90.029 (2)0.028 (2)0.025 (2)0.0008 (16)0.0087 (17)0.0088 (17)
C100.0278 (19)0.0192 (18)0.025 (2)0.0029 (15)0.0094 (16)0.0057 (16)
C110.0257 (19)0.030 (2)0.023 (2)0.0024 (16)0.0068 (16)0.0051 (17)
C120.027 (2)0.032 (2)0.024 (2)0.0016 (16)0.0008 (16)0.0056 (17)
C130.0189 (18)0.030 (2)0.033 (2)0.0015 (16)0.0027 (16)0.0049 (18)
C140.0208 (17)0.0181 (18)0.026 (2)0.0016 (14)0.0077 (15)0.0051 (15)
C150.0198 (17)0.0132 (16)0.0215 (19)0.0017 (13)0.0072 (15)0.0032 (14)
C160.0188 (17)0.0148 (17)0.0213 (19)0.0001 (13)0.0068 (14)0.0055 (14)
C170.0205 (18)0.0253 (19)0.026 (2)0.0008 (15)0.0103 (16)0.0030 (16)
C180.028 (2)0.034 (2)0.023 (2)0.0019 (17)0.0125 (17)0.0038 (17)
C190.026 (2)0.035 (2)0.022 (2)0.0014 (17)0.0053 (16)0.0073 (17)
C200.0188 (17)0.0252 (19)0.023 (2)0.0006 (15)0.0053 (15)0.0062 (16)
C210.0198 (17)0.0185 (18)0.0159 (18)0.0044 (14)0.0093 (14)0.0070 (14)
C22A0.011 (3)0.039 (4)0.098 (6)0.002 (3)0.005 (3)0.021 (4)
C23A0.083 (6)0.126 (7)0.107 (7)0.019 (5)0.019 (5)0.007 (6)
C22B0.011 (3)0.039 (4)0.098 (6)0.002 (3)0.005 (3)0.021 (4)
C23B0.083 (6)0.126 (7)0.107 (7)0.019 (5)0.019 (5)0.007 (6)
C240.050 (4)0.178 (10)0.066 (5)0.029 (5)0.004 (4)0.017 (5)
O1S0.095 (8)0.155 (12)0.110 (10)0.004 (8)0.015 (7)0.032 (9)
Geometric parameters (Å, º) top
Cu1—O21.995 (2)C8—H80.9500
Cu1—N22.015 (3)C9—C101.378 (5)
Cu1—N12.015 (3)C9—H90.9500
Cu1—N42.036 (3)C10—H100.9500
Cu1—N32.232 (3)C11—C121.381 (5)
Cu1—O12.346 (3)C11—H110.9500
Cl1—O51.417 (3)C12—C131.383 (6)
Cl1—O61.428 (3)C12—H120.9500
Cl1—O31.428 (3)C13—C141.382 (6)
Cl1—O41.442 (3)C13—H130.9500
O1—C211.236 (4)C14—C151.395 (5)
O2—C21i1.265 (4)C14—H140.9500
O7—C241.065 (9)C15—C161.486 (5)
N1—C11.339 (5)C16—C171.395 (5)
N1—C51.348 (5)C17—C181.375 (6)
N2—C101.340 (5)C17—H170.9500
N2—C61.348 (4)C18—C191.384 (5)
N3—C111.339 (5)C18—H180.9500
N3—C151.346 (5)C19—C201.385 (5)
N4—C201.340 (5)C19—H190.9500
N4—C161.354 (4)C20—H200.9500
N5—C22A1.313 (11)C21—O2i1.265 (4)
N5—C241.305 (9)C21—C21i1.573 (7)
N5—C23B1.463 (14)C22A—H22A0.9800
N5—C23A1.527 (14)C22A—H22B0.9800
N5—C22B1.631 (11)C22A—H22C0.9800
C1—C21.387 (6)C23A—H23A0.9800
C1—H10.9500C23A—H23B0.9800
C2—C31.375 (6)C23A—H23C0.9800
C2—H20.9500C22B—H22D0.9800
C3—C41.379 (6)C22B—H22E0.9800
C3—H30.9500C22B—H22F0.9800
C4—C51.390 (5)C23B—H23D0.9800
C4—H40.9500C23B—H23E0.9800
C5—C61.485 (5)C23B—H23F0.9800
C6—C71.380 (5)C24—H240.9500
C7—C81.379 (6)O1W—H1W0.9100
C7—H70.9500O1W—H2W0.8500
C8—C91.377 (6)
O2—Cu1—N292.86 (11)C8—C9—C10118.6 (4)
O2—Cu1—N1165.61 (11)C8—C9—H9120.7
N2—Cu1—N180.78 (12)C10—C9—H9120.7
O2—Cu1—N489.79 (11)N2—C10—C9122.3 (4)
N2—Cu1—N4174.69 (12)N2—C10—H10118.8
N1—Cu1—N497.65 (12)C9—C10—H10118.8
O2—Cu1—N393.94 (10)N3—C11—C12123.2 (4)
N2—Cu1—N397.73 (11)N3—C11—H11118.4
N1—Cu1—N399.68 (12)C12—C11—H11118.4
N4—Cu1—N377.48 (11)C11—C12—C13118.1 (4)
O2—Cu1—O177.12 (9)C11—C12—H12121.0
N2—Cu1—O189.30 (11)C13—C12—H12121.0
N1—Cu1—O189.83 (10)C14—C13—C12119.7 (4)
N4—Cu1—O195.78 (10)C14—C13—H13120.2
N3—Cu1—O1168.94 (10)C12—C13—H13120.2
O5—Cl1—O6110.2 (2)C13—C14—C15118.8 (4)
O5—Cl1—O3110.4 (2)C13—C14—H14120.6
O6—Cl1—O3107.9 (2)C15—C14—H14120.6
O5—Cl1—O4109.5 (2)N3—C15—C14121.6 (3)
O6—Cl1—O4108.4 (2)N3—C15—C16115.9 (3)
O3—Cl1—O4110.2 (2)C14—C15—C16122.5 (3)
C21—O1—Cu1108.6 (2)N4—C16—C17121.1 (3)
C21i—O2—Cu1119.4 (2)N4—C16—C15116.2 (3)
C1—N1—C5118.8 (3)C17—C16—C15122.7 (3)
C1—N1—Cu1126.4 (3)C18—C17—C16119.2 (3)
C5—N1—Cu1114.7 (2)C18—C17—H17120.4
C10—N2—C6119.1 (3)C16—C17—H17120.4
C10—N2—Cu1125.8 (3)C17—C18—C19119.8 (4)
C6—N2—Cu1115.0 (2)C17—C18—H18120.1
C11—N3—C15118.6 (3)C19—C18—H18120.1
C11—N3—Cu1129.3 (3)C20—C19—C18118.3 (4)
C15—N3—Cu1112.0 (2)C20—C19—H19120.9
C20—N4—C16119.0 (3)C18—C19—H19120.9
C20—N4—Cu1122.7 (2)N4—C20—C19122.7 (3)
C16—N4—Cu1117.9 (2)N4—C20—H20118.7
C22A—N5—C24134.7 (8)C19—C20—H20118.7
C22A—N5—C23B78.1 (9)O1—C21—O2i125.4 (3)
C24—N5—C23B146.3 (9)O1—C21—C21i117.5 (4)
C22A—N5—C23A125.4 (9)O2i—C21—C21i117.1 (4)
C24—N5—C23A96.1 (9)N5—C22A—H22A109.4
C23B—N5—C23A49.9 (9)N5—C22A—H22B109.5
C24—N5—C22B108.0 (6)H22A—C22A—H22B109.5
C23B—N5—C22B105.5 (9)N5—C22A—H22C109.5
C23A—N5—C22B154.7 (8)H22A—C22A—H22C109.5
N1—C1—C2122.2 (4)H22B—C22A—H22C109.5
N1—C1—H1118.9N5—C23A—H23A109.5
C2—C1—H1118.9N5—C23A—H23B109.4
C3—C2—C1118.8 (4)H23A—C23A—H23B109.5
C3—C2—H2120.6N5—C23A—H23C109.5
C1—C2—H2120.6H23A—C23A—H23C109.5
C2—C3—C4119.6 (4)H23B—C23A—H23C109.5
C2—C3—H3120.2N5—C22B—H22D109.5
C4—C3—H3120.2N5—C22B—H22E109.5
C3—C4—C5118.7 (4)H22D—C22B—H22E109.5
C3—C4—H4120.6N5—C22B—H22F109.5
C5—C4—H4120.6H22D—C22B—H22F109.5
N1—C5—C4121.8 (3)H22E—C22B—H22F109.5
N1—C5—C6115.0 (3)N5—C23B—H23D109.5
C4—C5—C6123.2 (4)N5—C23B—H23E109.5
N2—C6—C7121.2 (3)H23D—C23B—H23E109.5
N2—C6—C5114.4 (3)N5—C23B—H23F109.4
C7—C6—C5124.4 (3)H23D—C23B—H23F109.5
C8—C7—C6119.3 (4)H23E—C23B—H23F109.5
C8—C7—H7120.3O7—C24—N5128.6 (9)
C6—C7—H7120.3O7—C24—H24115.7
C9—C8—C7119.4 (4)N5—C24—H24115.7
C9—C8—H8120.3H1W—O1W—H2W110.2
C7—C8—H8120.3
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5ii0.912.453.311 (13)159
O1W—H2W···O50.852.042.882 (14)169
Symmetry code: (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2O
Mr1202.94
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6872 (5), 11.0080 (8), 12.2449 (5)
α, β, γ (°)97.928 (3), 99.565 (2), 91.924 (2)
V3)1273.16 (12)
Z1
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.23 × 0.12 × 0.08
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.802, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
10051, 4993, 3955
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.04
No. of reflections4993
No. of parameters359
No. of restraints27
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.70

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Bradenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5i0.912.453.311 (13)158.7
O1W—H2W···O50.852.042.882 (14)168.7
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).

References

First citationBradenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc., Dalton Trans. pp. 326–3274.  Google Scholar
First citationKahn, O. (1987). Struct. Bond. 68, 89–167.  CrossRef CAS Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOjima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85–111.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationTomyn, S. V., Gumienna-Kontecka, E., Fritsky, I. O., Iskenderov, T. S. & Światek-Kozłowska, J. (2007). Acta Cryst. E63, m438–m440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds