organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4H-1,2,4-Triazol-4-yl)phenol

aDepartment of Physics, Huainan Normal University, Huainan, Anhui 232001, People's Republic of China, bDepartment of Chemistry & Chemical Engineering, Huainan Normal University, Huainan, Anhui 232001, People's Republic of China, and cCollege of Chemical Engineering, Weifang University, Weifang, Shandong 261061, People's Republic of China
*Correspondence e-mail: zwwwz@live.com

(Received 2 August 2010; accepted 7 August 2010; online 18 August 2010)

In the title compound, C8H7N3O, the dihedral angle between the benzene and triazole rings is 41.74 (12)°.

Related literature

For the use of substituted 1,2,4-triazoles as ligands, see: Ouellette et al. (2006[Ouellette, W., Yu, M. H., O' Connor, C. J., Hagrman, D. & Zubieta, J. (2006). Angew. Chem. Int. Ed. 45, 3497-3500.]); Zhang et al. (2005[Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). J. Am. Chem. Soc. 127, 5495-5506.]); Zhou et al. (2007[Zhou, W.-W., Liu, B., Chen, W.-T., Zheng, F.-K., Chen, J.-T., Guo, G.-C. & Huang, J.-S. (2007). Chin. J. Struct. Chem. 26, 703-706.], 2008[Zhou, W.-W., Chen, J.-T., Xu, G., Wang, M.-S., Zou, J.-P., Long, X.-F., Wang, G.-J., Guo, G.-C. & Huang, J.-S. (2008). Chem. Commun. pp. 2762-2764.]). For related structures, see: Wiley & Hart (1953[Wiley, R. H. & Hart, A. J. (1953). J. Org. Chem. 18, 1368-1371.]); Bartlett & Humphrey (1967[Bartlett, R. K. & Humphrey, I. R. (1967). J. Chem. Soc. C, pp. 1664-1666.]); Li et al. (2004[Li, B., Zhu, X., Li, B. & Zhang, Y. (2004). J. Mol. Struct. 691, 159-163.]); Zhu et al. (2000[Zhu, D.-R., Xu, Y., Zhang, Y., Wang, T.-W. & You, X.-Z. (2000). Acta Cryst. C56, 895-896.]); Xu et al. (2004[Xu, L., Guo, G.-C., Liu, B., Fu, M.-L. & Huang, J.-S. (2004). Acta Cryst. E60, o1060-o1062.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N3O

  • Mr = 161.17

  • Monoclinic, P 21 /n

  • a = 7.273 (3) Å

  • b = 14.265 (4) Å

  • c = 7.720 (3) Å

  • β = 90.93 (3)°

  • V = 800.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.42 × 0.37 × 0.35 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (Sphere in CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.815, Tmax = 1.000

  • 5037 measured reflections

  • 1460 independent reflections

  • 863 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.237

  • S = 1.09

  • 1460 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many compounds with uncommon properties have been widely investigated by using substituted 1,2,4-triazoles ligands, resulting from their rich coordination fashions and broad potential applications in various fields (Ouellette et al. (2006); Zhang et al. (2005); Zhou et al. (2007); Zhou et al. (2008)). Substituted 1,2,4-triazoles can be synthesized from different amines and diformylhydrazine. The triazole ring, having strong -donor and weak-acceptor properties, potentially has two different coordination modes through three nitrogen-donor atoms coordinating to metal ions. Recently, we have prepared some new substituted 1,2,4-triazole derivatives and their transition-metal complexes, and we report here the crystal structure analysis of 2-(1H-1,2,4-Triazol-4-yl)phenol, (I).

Related literature top

For the use of substituted 1,2,4-triazoles as ligands, see: Ouellette et al. (2006); Zhang et al. (2005); Zhou et al. (2007, 2008). For related structures, see: Wiley et al. (1953); Bartlett et al. (1967); Li et al. (2004); Zhu et al. (2000); Xu et al. (2004).

Experimental top

The title compound was prepared by reacting diformylhydrazine (0.6 mmol, 0.053 g) and o-aminophenol (0.6 mmol, 0.065 g) in a Telon-lined stainless steel autoclave in a furnace at 443 K for 2 d. The reaction vessel was then cooled to 293 K. The product was isolated and washed with hot water and hot ethanol and black crystals suitable for X-ray diffraction studies were obtained. The crystals are air-stable. Yield based on o-aminophenol: 0.062 g, 64%. Elemental analysis (%) for C8H7N3O, found (calculated): C 59.70 (59.61), H 4.25 (4.38), N 26.06 (26.08).

Refinement top

Hydrogen atoms were allowed to ride on their respective parent atoms with C—H distances of 0.93 Å, and were included in the refinement with isotropic displacement parameters Uiso(H) = 1.2Ueq(C).

Structure description top

Many compounds with uncommon properties have been widely investigated by using substituted 1,2,4-triazoles ligands, resulting from their rich coordination fashions and broad potential applications in various fields (Ouellette et al. (2006); Zhang et al. (2005); Zhou et al. (2007); Zhou et al. (2008)). Substituted 1,2,4-triazoles can be synthesized from different amines and diformylhydrazine. The triazole ring, having strong -donor and weak-acceptor properties, potentially has two different coordination modes through three nitrogen-donor atoms coordinating to metal ions. Recently, we have prepared some new substituted 1,2,4-triazole derivatives and their transition-metal complexes, and we report here the crystal structure analysis of 2-(1H-1,2,4-Triazol-4-yl)phenol, (I).

For the use of substituted 1,2,4-triazoles as ligands, see: Ouellette et al. (2006); Zhang et al. (2005); Zhou et al. (2007, 2008). For related structures, see: Wiley et al. (1953); Bartlett et al. (1967); Li et al. (2004); Zhu et al. (2000); Xu et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. View of the 3-D structure of the title compound.
2-(4H-1,2,4-Triazol-4-yl)phenol top
Crystal data top
C8H7N3OF(000) = 336
Mr = 161.17Dx = 1.337 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.273 (3) ÅCell parameters from 1048 reflections
b = 14.265 (4) Åθ = 2.6–27.4°
c = 7.720 (3) ŵ = 0.09 mm1
β = 90.93 (3)°T = 293 K
V = 800.8 (5) Å3Block, black
Z = 40.42 × 0.37 × 0.35 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1460 independent reflections
Radiation source: rotating-anode generator863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(Sphere in CrystalClear; Rigaku, 2002)
h = 88
Tmin = 0.815, Tmax = 1.000k = 1617
5037 measured reflectionsl = 98
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.237 w = 1/[σ2(Fo2) + (0.144P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1460 reflectionsΔρmax = 0.44 e Å3
110 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.08 (3)
Crystal data top
C8H7N3OV = 800.8 (5) Å3
Mr = 161.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.273 (3) ŵ = 0.09 mm1
b = 14.265 (4) ÅT = 293 K
c = 7.720 (3) Å0.42 × 0.37 × 0.35 mm
β = 90.93 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
1460 independent reflections
Absorption correction: multi-scan
(Sphere in CrystalClear; Rigaku, 2002)
863 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 1.000Rint = 0.057
5037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.237H-atom parameters constrained
S = 1.09Δρmax = 0.44 e Å3
1460 reflectionsΔρmin = 0.44 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5881 (5)0.7175 (2)0.7593 (5)0.0559 (10)
H1A0.50530.74180.83810.067*
C20.7294 (5)0.6248 (2)0.5912 (4)0.0510 (10)
H2A0.76330.57180.52930.061*
C30.4535 (4)0.5571 (2)0.7425 (4)0.0423 (8)
C40.5137 (4)0.4665 (2)0.7748 (4)0.0448 (9)
C50.3858 (5)0.4004 (2)0.8286 (4)0.0542 (10)
H5A0.42330.33940.85270.065*
C60.2034 (5)0.4252 (3)0.8463 (5)0.0651 (11)
H6A0.11940.38070.88370.078*
C70.1443 (5)0.5148 (3)0.8091 (5)0.0633 (11)
H7A0.02100.53080.82000.076*
C80.2698 (5)0.5804 (3)0.7557 (5)0.0582 (10)
H8A0.23090.64080.72840.070*
N10.7219 (4)0.76432 (19)0.6942 (4)0.0632 (10)
N20.8157 (4)0.70426 (19)0.5852 (4)0.0618 (10)
N30.5836 (3)0.62837 (17)0.6985 (3)0.0443 (8)
O10.6918 (3)0.44556 (15)0.7550 (3)0.0582 (8)
H1B0.74720.49230.72290.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (2)0.0332 (18)0.068 (2)0.0041 (15)0.0238 (18)0.0022 (16)
C20.057 (2)0.0414 (18)0.0553 (19)0.0010 (15)0.0129 (17)0.0025 (15)
C30.0378 (18)0.0426 (17)0.0466 (17)0.0030 (14)0.0046 (13)0.0028 (14)
C40.0428 (19)0.0414 (19)0.0504 (17)0.0018 (14)0.0042 (14)0.0001 (14)
C50.060 (2)0.0429 (19)0.060 (2)0.0089 (15)0.0074 (18)0.0071 (16)
C60.058 (2)0.075 (3)0.063 (2)0.024 (2)0.0154 (18)0.005 (2)
C70.047 (2)0.070 (3)0.072 (2)0.0036 (18)0.0121 (18)0.001 (2)
C80.050 (2)0.058 (2)0.067 (2)0.0034 (16)0.0065 (17)0.0065 (17)
N10.073 (2)0.0368 (16)0.081 (2)0.0025 (14)0.0284 (17)0.0018 (15)
N20.065 (2)0.0458 (17)0.076 (2)0.0100 (14)0.0222 (16)0.0004 (14)
N30.0449 (16)0.0329 (15)0.0553 (16)0.0000 (11)0.0117 (12)0.0012 (11)
O10.0451 (15)0.0400 (13)0.0897 (19)0.0004 (10)0.0081 (12)0.0087 (12)
Geometric parameters (Å, º) top
C1—N11.289 (4)C4—C51.393 (4)
C1—N31.356 (4)C5—C61.382 (5)
C1—H1A0.9300C5—H5A0.9300
C2—N21.297 (4)C6—C71.378 (6)
C2—N31.357 (4)C6—H6A0.9300
C2—H2A0.9300C7—C81.375 (5)
C3—C81.382 (4)C7—H7A0.9300
C3—C41.385 (5)C8—H8A0.9300
C3—N31.433 (4)N1—N21.388 (4)
C4—O11.340 (4)O1—H1B0.8200
N1—C1—N3111.4 (3)C7—C6—C5120.9 (3)
N1—C1—H1A124.3C7—C6—H6A119.5
N3—C1—H1A124.3C5—C6—H6A119.5
N2—C2—N3111.9 (3)C8—C7—C6119.2 (3)
N2—C2—H2A124.1C8—C7—H7A120.4
N3—C2—H2A124.1C6—C7—H7A120.4
C8—C3—C4120.9 (3)C7—C8—C3120.4 (4)
C8—C3—N3119.3 (3)C7—C8—H8A119.8
C4—C3—N3119.8 (3)C3—C8—H8A119.8
O1—C4—C3119.4 (3)C1—N1—N2107.4 (3)
O1—C4—C5122.3 (3)C2—N2—N1105.9 (3)
C3—C4—C5118.4 (3)C1—N3—C2103.4 (2)
C6—C5—C4120.2 (3)C1—N3—C3126.6 (3)
C6—C5—H5A119.9C2—N3—C3130.0 (3)
C4—C5—H5A119.9C4—O1—H1B109.5

Experimental details

Crystal data
Chemical formulaC8H7N3O
Mr161.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.273 (3), 14.265 (4), 7.720 (3)
β (°) 90.93 (3)
V3)800.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.37 × 0.35
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(Sphere in CrystalClear; Rigaku, 2002)
Tmin, Tmax0.815, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5037, 1460, 863
Rint0.057
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.237, 1.09
No. of reflections1460
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.44

Computer programs: CrystalClear (Rigaku, 2002), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support from the Natural Science Foundation of the Education Department of Anhui Province (KJ2010B203, KJ2010B205) and the Science Foundation of Shandong Province (ZR2009BM041).

References

First citationBartlett, R. K. & Humphrey, I. R. (1967). J. Chem. Soc. C, pp. 1664–1666.  Google Scholar
First citationLi, B., Zhu, X., Li, B. & Zhang, Y. (2004). J. Mol. Struct. 691, 159–163.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuellette, W., Yu, M. H., O' Connor, C. J., Hagrman, D. & Zubieta, J. (2006). Angew. Chem. Int. Ed. 45, 3497–3500.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiley, R. H. & Hart, A. J. (1953). J. Org. Chem. 18, 1368–1371.  CrossRef CAS Web of Science Google Scholar
First citationXu, L., Guo, G.-C., Liu, B., Fu, M.-L. & Huang, J.-S. (2004). Acta Cryst. E60, o1060–o1062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). J. Am. Chem. Soc. 127, 5495–5506.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhou, W.-W., Chen, J.-T., Xu, G., Wang, M.-S., Zou, J.-P., Long, X.-F., Wang, G.-J., Guo, G.-C. & Huang, J.-S. (2008). Chem. Commun. pp. 2762–2764.  Web of Science CSD CrossRef Google Scholar
First citationZhou, W.-W., Liu, B., Chen, W.-T., Zheng, F.-K., Chen, J.-T., Guo, G.-C. & Huang, J.-S. (2007). Chin. J. Struct. Chem. 26, 703–706.  CAS Google Scholar
First citationZhu, D.-R., Xu, Y., Zhang, Y., Wang, T.-W. & You, X.-Z. (2000). Acta Cryst. C56, 895–896.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds