metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­aqua­bis­­[5-carb­­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ido-κ2N3,O4]zinc(II)

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
*Correspondence e-mail: lixia@hncj.edu.cn

(Received 5 August 2010; accepted 9 August 2010; online 28 August 2010)

In the title complex, [Zn(C10H6N3O4)2(H2O)2], the ZnII atom is located on a twofold rotation axis and is coordinated by two trans-positioned N,O-bidentate and zwitterionic 5-carb­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ide (H2PIDC) ligands and two water mol­ecules, defining a distorted octa­hedral environment. The complete solid-state structure can be described as a three-dimensional supra­molecular framework, stabilized by extensive hydrogen-bonding inter­actions involving the coordinated water mol­ecules, uncoordin­ated imidazole N atom, protonated pyridine N and carboxyl­ate O atoms of the H2PIDC ligands.

Related literature

For related structures, see: Li, Liu et al. (2009[Li, X., Liu, W., Wu, B.-L. & Zhang, H.-Y. (2009). Acta Cryst. E65, m820-m821.]); Li, Wu et al. (2009[Li, X., Wu, B. L., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). Cryst. Growth Des. 9, 3423-3431.]). For the preparation of 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarb­oxy­lic acid, see: Sun et al. (2006[Sun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751-o2752.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H6N3O4)2(H2O)2]

  • Mr = 565.76

  • Monoclinic, C 2/c

  • a = 7.4138 (9) Å

  • b = 20.204 (3) Å

  • c = 13.4778 (17) Å

  • β = 97.008 (1)°

  • V = 2003.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 173 K

  • 0.27 × 0.17 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.754, Tmax = 0.878

  • 9235 measured reflections

  • 2488 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.04

  • 2488 reflections

  • 178 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O2 2.0713 (15)
Zn1—O1 2.1407 (18)
Zn1—N1 2.1592 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N2i 0.82 (3) 2.08 (3) 2.898 (3) 178 (3)
N3—H3⋯O5ii 0.88 1.89 2.755 (2) 169
O4—H4A⋯O3 0.89 (2) 1.58 (2) 2.459 (2) 173 (3)
Symmetry codes: (i) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multifunctional connector 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate acid (H3PIDC), a rigid N-heterocyclic carboxylate, has great potential for coordinative interactions and hydrogen bonding, showing more interesting traits in the construction of MOFs. It can be successively deprotonated to generate various species with different proton numbers, and hence may result in a large diversity of supramolecular architectures. Very recently, we have reported several supramolecular architectures (Li, Wu et al., 2009; Li, Liu et al., 2009) base on ligand 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid. As an extension of our previous investigations, we have isolated a new Zn(II) complex, [Zn(H2PIDC)2(H2O)2], (I), by the reaction of H3PIDC and Zn(II) diacetate under the hydrothermal condition. We report here the single-crystal structure of this complex.

As shown in Fig. 1, the molecule of (I) is a discrete neutral monomer, in which the Zn atom resides on a crystallographic inversion centre and the asymmetric unit contains one-half of the [Zn(H2PIDC)2(H2O)2] formula unit. Each Zn atom is six-coordinated by N2O4 with two chelating rings from two H2PIDC ligands arranged symmetrically in the equatorial plane and two water molecules occupying the apical sites, showing a distorted octahedral geometry (Table 1). In this complex, one carboxyl group and imidazole group are deprotonated and the pyridyl group is protonated, and the ligand bears a formal charge of -1, and the uncoordinated carboxylate atoms O3 and O4 form an intramolecular hydrogen bond (Table 2). All non-H atoms in the imidazole-4,5-dicarboxyl group are nearly coplanar [the mean deviation is 0.075 (3) Å], and the dihedral angle between imidazole group and pyridine group is 11.4 (2) °.

A three-dimensional supramolecular network is constructed via hydrogen-bonding interactions involving the coordinated water molecules, uncoordinated imidazole N atom, protonated pyridine N and carboxylate O atoms of the H2PIDC- ligands (Table 2 and Fig. 2).

Related literature top

For related structures, see: Li, Liu et al. (2009); Li, Wu et al. (2009). For the preparation of 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid, see: Sun et al. (2006).

Experimental top

A mixture of zinc diacetate dihydrate (0.022 g, 0.1 mmol), 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid (0.024 g, 0.1 mmol) (Sun et al., 2006), NaOH (0.004 g, 0.1 mmol) and water (10 ml) was sealed into a Teflon-lined stainless autoclave and heated at 413 K for 3 days, then cooled to room temperature gradually and colourless block crystals of (I) were obtained. Analysis calculated for C20H16ZnN6O10: C 42.46, H 2.85, N 14.85; found: C 42.82, H 2.73, N 14.70.

Refinement top

H atoms attached to N and O atoms were located in a difference Fourier maps and refined as riding in their as-found relative positions, with Uiso(H) = 1.5Ueq(O,N). Other H atoms were positioned geometrically with C—H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Multifunctional connector 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate acid (H3PIDC), a rigid N-heterocyclic carboxylate, has great potential for coordinative interactions and hydrogen bonding, showing more interesting traits in the construction of MOFs. It can be successively deprotonated to generate various species with different proton numbers, and hence may result in a large diversity of supramolecular architectures. Very recently, we have reported several supramolecular architectures (Li, Wu et al., 2009; Li, Liu et al., 2009) base on ligand 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid. As an extension of our previous investigations, we have isolated a new Zn(II) complex, [Zn(H2PIDC)2(H2O)2], (I), by the reaction of H3PIDC and Zn(II) diacetate under the hydrothermal condition. We report here the single-crystal structure of this complex.

As shown in Fig. 1, the molecule of (I) is a discrete neutral monomer, in which the Zn atom resides on a crystallographic inversion centre and the asymmetric unit contains one-half of the [Zn(H2PIDC)2(H2O)2] formula unit. Each Zn atom is six-coordinated by N2O4 with two chelating rings from two H2PIDC ligands arranged symmetrically in the equatorial plane and two water molecules occupying the apical sites, showing a distorted octahedral geometry (Table 1). In this complex, one carboxyl group and imidazole group are deprotonated and the pyridyl group is protonated, and the ligand bears a formal charge of -1, and the uncoordinated carboxylate atoms O3 and O4 form an intramolecular hydrogen bond (Table 2). All non-H atoms in the imidazole-4,5-dicarboxyl group are nearly coplanar [the mean deviation is 0.075 (3) Å], and the dihedral angle between imidazole group and pyridine group is 11.4 (2) °.

A three-dimensional supramolecular network is constructed via hydrogen-bonding interactions involving the coordinated water molecules, uncoordinated imidazole N atom, protonated pyridine N and carboxylate O atoms of the H2PIDC- ligands (Table 2 and Fig. 2).

For related structures, see: Li, Liu et al. (2009); Li, Wu et al. (2009). For the preparation of 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid, see: Sun et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular of (I), showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing the three-dimensional hydrogen-bonding network, H atoms have been omited for clarity.
trans-Diaquabis[5-carboxy-4-carboxylato-2-(4-pyridinio)-1H- imidazol-1-ido-κ2N3,O4]zinc(II) top
Crystal data top
[Zn(C10H6N3O4)2(H2O)2]F(000) = 1152
Mr = 565.76Dx = 1.875 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.4138 (9) Åθ = 2.5–28.3°
b = 20.204 (3) ŵ = 1.31 mm1
c = 13.4778 (17) ÅT = 173 K
β = 97.008 (1)°Block, colorless
V = 2003.7 (4) Å30.27 × 0.17 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2488 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scanθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 99
Tmin = 0.754, Tmax = 0.878k = 2626
9235 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0453P)2 + 2.1588P]
where P = (Fo2 + 2Fc2)/3
2488 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
[Zn(C10H6N3O4)2(H2O)2]V = 2003.7 (4) Å3
Mr = 565.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.4138 (9) ŵ = 1.31 mm1
b = 20.204 (3) ÅT = 173 K
c = 13.4778 (17) Å0.27 × 0.17 × 0.10 mm
β = 97.008 (1)°
Data collection top
Rigaku Mercury CCD
diffractometer
2488 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1957 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.878Rint = 0.031
9235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
2488 reflectionsΔρmin = 0.37 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.25000.25000.50000.02158 (12)
O10.1031 (3)0.21527 (11)0.36331 (14)0.0405 (5)
N10.0003 (2)0.26283 (8)0.56460 (13)0.0181 (3)
C10.0872 (3)0.37351 (10)0.51444 (16)0.0230 (4)
O20.1956 (2)0.34788 (7)0.46161 (13)0.0296 (4)
N20.2095 (2)0.28420 (8)0.67035 (13)0.0204 (4)
C20.2007 (3)0.40644 (10)0.68011 (17)0.0239 (4)
O30.0612 (2)0.43586 (7)0.51721 (13)0.0355 (4)
N30.2067 (3)0.03644 (9)0.68078 (15)0.0283 (4)
H30.22030.00560.69530.034*
C30.0184 (3)0.32960 (9)0.57348 (15)0.0184 (4)
O40.1528 (3)0.46001 (7)0.63823 (14)0.0368 (4)
C40.1451 (3)0.34251 (9)0.63948 (15)0.0192 (4)
O50.2869 (2)0.40756 (8)0.75300 (12)0.0322 (4)
C50.1194 (3)0.23786 (9)0.62332 (15)0.0184 (4)
C60.1542 (3)0.16745 (9)0.63892 (15)0.0180 (4)
C70.2469 (3)0.14843 (10)0.71861 (17)0.0250 (5)
H70.29490.18110.75870.030*
C80.2687 (3)0.08256 (11)0.73901 (17)0.0278 (5)
H80.32790.06980.79460.033*
C90.1247 (3)0.05237 (11)0.60116 (18)0.0311 (5)
H90.08660.01840.55970.037*
C100.0947 (3)0.11772 (10)0.57857 (17)0.0251 (5)
H100.03430.12880.52260.030*
H1B0.008 (4)0.2148 (13)0.353 (2)0.030*
H1A0.135 (4)0.1903 (13)0.324 (2)0.030*
H4A0.080 (3)0.4538 (12)0.5916 (16)0.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0248 (2)0.01734 (18)0.0245 (2)0.00358 (13)0.01053 (13)0.00102 (13)
O10.0245 (9)0.0669 (14)0.0305 (10)0.0044 (9)0.0054 (8)0.0200 (9)
N10.0208 (8)0.0139 (8)0.0206 (8)0.0008 (6)0.0066 (7)0.0011 (6)
C10.0266 (11)0.0175 (10)0.0261 (11)0.0015 (8)0.0088 (9)0.0026 (8)
O20.0361 (9)0.0201 (7)0.0366 (9)0.0046 (7)0.0203 (7)0.0067 (7)
N20.0216 (9)0.0161 (8)0.0250 (9)0.0002 (7)0.0085 (7)0.0004 (7)
C20.0263 (11)0.0184 (10)0.0280 (11)0.0016 (8)0.0077 (9)0.0012 (8)
O30.0493 (11)0.0144 (7)0.0482 (11)0.0022 (7)0.0275 (9)0.0071 (7)
N30.0356 (11)0.0140 (8)0.0359 (11)0.0042 (7)0.0074 (8)0.0035 (7)
C30.0209 (10)0.0140 (9)0.0212 (10)0.0006 (7)0.0063 (8)0.0004 (7)
O40.0576 (12)0.0155 (7)0.0430 (10)0.0036 (7)0.0291 (9)0.0001 (7)
C40.0222 (10)0.0144 (9)0.0220 (10)0.0007 (7)0.0062 (8)0.0013 (7)
O50.0417 (10)0.0220 (8)0.0370 (9)0.0018 (7)0.0215 (8)0.0053 (7)
C50.0204 (10)0.0153 (9)0.0199 (10)0.0008 (7)0.0045 (8)0.0015 (7)
C60.0186 (10)0.0145 (9)0.0213 (10)0.0013 (7)0.0034 (8)0.0016 (7)
C70.0309 (12)0.0183 (10)0.0275 (11)0.0017 (8)0.0101 (9)0.0008 (8)
C80.0324 (12)0.0239 (11)0.0287 (12)0.0055 (9)0.0109 (10)0.0054 (9)
C90.0411 (14)0.0190 (10)0.0353 (13)0.0016 (9)0.0137 (10)0.0037 (9)
C100.0312 (12)0.0195 (10)0.0266 (11)0.0023 (8)0.0115 (9)0.0011 (8)
Geometric parameters (Å, º) top
Zn1—O22.0713 (15)C2—O41.290 (3)
Zn1—O2i2.0713 (15)C2—C41.481 (3)
Zn1—O12.1407 (18)N3—C91.336 (3)
Zn1—O1i2.1407 (18)N3—C81.335 (3)
Zn1—N1i2.1592 (17)N3—H30.8800
Zn1—N12.1592 (17)C3—C41.395 (3)
O1—H1B0.82 (3)O4—H4A0.885 (16)
O1—H1A0.78 (3)C5—C61.466 (2)
N1—C51.353 (3)C6—C71.398 (3)
N1—C31.362 (2)C6—C101.397 (3)
C1—O21.249 (3)C7—C81.372 (3)
C1—O31.276 (2)C7—H70.9500
C1—C31.478 (3)C8—H80.9500
N2—C51.352 (3)C9—C101.379 (3)
N2—C41.355 (2)C9—H90.9500
C2—O51.236 (3)C10—H100.9500
O2—Zn1—O2i180.0C9—N3—C8121.80 (19)
O2—Zn1—O192.00 (8)C9—N3—H3119.1
O2i—Zn1—O188.00 (8)C8—N3—H3119.1
O2—Zn1—O1i88.00 (8)N1—C3—C4108.82 (17)
O2i—Zn1—O1i92.00 (8)N1—C3—C1118.85 (17)
O1—Zn1—O1i180.0C4—C3—C1132.32 (18)
O2—Zn1—N1i99.47 (6)C2—O4—H4A114.6 (16)
O2i—Zn1—N1i80.53 (6)N2—C4—C3108.85 (17)
O1—Zn1—N1i89.17 (7)N2—C4—C2121.34 (18)
O1i—Zn1—N1i90.83 (7)C3—C4—C2129.67 (18)
O2—Zn1—N180.53 (6)N1—C5—N2114.27 (17)
O2i—Zn1—N199.47 (6)N1—C5—C6125.79 (18)
O1—Zn1—N190.83 (7)N2—C5—C6119.94 (18)
O1i—Zn1—N189.17 (7)C7—C6—C10117.99 (18)
N1i—Zn1—N1180.0C7—C6—C5119.26 (18)
Zn1—O1—H1B123.2 (19)C10—C6—C5122.73 (18)
Zn1—O1—H1A129 (2)C8—C7—C6120.1 (2)
H1B—O1—H1A105 (3)C8—C7—H7120.0
C5—N1—C3103.85 (16)C6—C7—H7120.0
C5—N1—Zn1147.69 (13)N3—C8—C7120.1 (2)
C3—N1—Zn1104.67 (12)N3—C8—H8119.9
O2—C1—O3122.40 (19)C7—C8—H8119.9
O2—C1—C3118.55 (18)N3—C9—C10120.6 (2)
O3—C1—C3119.02 (18)N3—C9—H9119.7
C1—O2—Zn1111.87 (13)C10—C9—H9119.7
C5—N2—C4104.20 (17)C9—C10—C6119.3 (2)
O5—C2—O4121.93 (19)C9—C10—H10120.4
O5—C2—C4120.28 (19)C6—C10—H10120.4
O4—C2—C4117.77 (19)
O2—Zn1—N1—C5170.7 (3)N1—C3—C4—N21.3 (2)
O2i—Zn1—N1—C59.3 (3)C1—C3—C4—N2177.0 (2)
O1—Zn1—N1—C597.4 (3)N1—C3—C4—C2174.4 (2)
O1i—Zn1—N1—C582.6 (3)C1—C3—C4—C27.3 (4)
N1i—Zn1—N1—C537 (16)O5—C2—C4—N210.2 (3)
O2—Zn1—N1—C319.40 (13)O4—C2—C4—N2171.3 (2)
O2i—Zn1—N1—C3160.60 (13)O5—C2—C4—C3165.1 (2)
O1—Zn1—N1—C3111.28 (14)O4—C2—C4—C313.5 (4)
O1i—Zn1—N1—C368.72 (14)C3—N1—C5—N21.2 (2)
N1i—Zn1—N1—C3171 (100)Zn1—N1—C5—N2150.2 (2)
O3—C1—O2—Zn1166.35 (18)C3—N1—C5—C6179.3 (2)
C3—C1—O2—Zn115.4 (3)Zn1—N1—C5—C629.3 (4)
O2i—Zn1—O2—C124 (100)C4—N2—C5—N10.4 (2)
O1—Zn1—O2—C1110.06 (17)C4—N2—C5—C6179.97 (19)
O1i—Zn1—O2—C169.94 (17)N1—C5—C6—C7164.9 (2)
N1i—Zn1—O2—C1160.45 (16)N2—C5—C6—C714.7 (3)
N1—Zn1—O2—C119.55 (16)N1—C5—C6—C1013.6 (3)
C5—N1—C3—C41.5 (2)N2—C5—C6—C10166.9 (2)
Zn1—N1—C3—C4163.20 (14)C10—C6—C7—C83.5 (3)
C5—N1—C3—C1177.10 (19)C5—C6—C7—C8175.1 (2)
Zn1—N1—C3—C118.2 (2)C9—N3—C8—C70.8 (4)
O2—C1—C3—N13.1 (3)C6—C7—C8—N32.2 (3)
O3—C1—C3—N1175.2 (2)C8—N3—C9—C102.6 (4)
O2—C1—C3—C4178.8 (2)N3—C9—C10—C61.2 (4)
O3—C1—C3—C43.0 (4)C7—C6—C10—C91.8 (3)
C5—N2—C4—C30.6 (2)C5—C6—C10—C9176.7 (2)
C5—N2—C4—C2175.55 (19)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N2ii0.82 (3)2.08 (3)2.898 (3)178 (3)
N3—H3···O5iii0.881.892.755 (2)169
O4—H4A···O30.89 (2)1.58 (2)2.459 (2)173 (3)
Symmetry codes: (ii) x1/2, y+1/2, z+1; (iii) x1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H6N3O4)2(H2O)2]
Mr565.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)7.4138 (9), 20.204 (3), 13.4778 (17)
β (°) 97.008 (1)
V3)2003.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.27 × 0.17 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.754, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
9235, 2488, 1957
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.04
No. of reflections2488
No. of parameters178
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.37

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O22.0713 (15)Zn1—N12.1592 (17)
Zn1—O12.1407 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N2i0.82 (3)2.08 (3)2.898 (3)178 (3)
N3—H3···O5ii0.881.892.755 (2)168.8
O4—H4A···O30.885 (16)1.578 (17)2.459 (2)173 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20771094, 20671083), the Science and Technology Key Task of Henan Province (0524270061) and the China Postdoctoral Science Foundation (20070410877).

References

First citationLi, X., Liu, W., Wu, B.-L. & Zhang, H.-Y. (2009). Acta Cryst. E65, m820–m821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Wu, B. L., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). Cryst. Growth Des. 9, 3423–3431.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751–o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds