metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{3-Methyl-2-[(1-oxido-2-naphth­yl)methyl­­idene­amino-κ2O,N]butano­ato-κO}(1H-pyrazole-κN2)nickel(II)

aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: jecky_2002@163.com

(Received 11 July 2010; accepted 12 August 2010; online 18 August 2010)

In either of the two independent mol­ecules within the asymmetric unit of the title compound, [Ni(C16H15NO3)(C3H4N2)], the NiII atom is coordinated by the two N atoms and two O atoms in a distorted square-planar geometry. The crystal packing is stabilized by strong and weak inter­molecular C—H⋯O hydrogen bonds, as well as weak centroid–centroid π-stacking inter­actions [centroid–centroid separation = 3.526 (3) Å].

Related literature

For complexes of Schiff base ligands composed of salicyl­aldehyde, 2-formyl­pyridine or their analogues, see: Li et al. (2010[Li, J., Guo, Z., Li, L. & Wang, D. (2010). Acta Cryst. E66, m516.]); Vergopoulos et al. (1993[Vergopoulos, V., Priebsch, W., Fritzsche, M. & Rehder, D. (1993). Inorg. Chem. 32, 1844-1849.]); Usman et al. (2003[Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438-m440.]). For related structures, see: Basu Baul et al. (2007[Basu Baul, T. S., Masharing C., Ruisi, G., Jirásko, R., HolǍpek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849-4862.]); Ebel & Rehder (2003[Ebel, M. & Rehder, D. (2003). Inorg. Chim. Acta, 356, 210-214.]); Maniukiewicz & Bukowska-Strzyżewska (2001[Maniukiewicz, W. & Bukowska-Strzyżewska, M. (2001). Acta Cryst. C57, 889-890.]); Xue et al. (2009[Xue, L.-W., Li, X.-W., Zhao, G.-Q. & Peng, Q.-L. (2009). Acta Cryst. E65, m1237.]); Qiu et al. (2008[Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745-m746.]). For the synthesis, see: Plesch et al. (1997[Plesch, G., Friebel, C., Warda, S. A., Sivý J. & Svajlenova, O. (1997). Transition Met. Chem. 22, 433-440.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H15NO3)(C3H4N2)]

  • Mr = 396.08

  • Orthorhombic, P 21 21 21

  • a = 11.5089 (11) Å

  • b = 16.6194 (16) Å

  • c = 18.9934 (19) Å

  • V = 3632.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.735, Tmax = 0.772

  • 18967 measured reflections

  • 6400 independent reflections

  • 4910 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.108

  • S = 1.02

  • 6400 reflections

  • 473 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2792 Friedel pairs

  • Flack parameter: −0.015 (16)

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.805 (3)
Ni1—N1 1.833 (3)
Ni1—O2 1.852 (3)
Ni1—N2 1.900 (3)
O1—Ni1—N1 94.55 (15)
O1—Ni1—O2 176.92 (16)
N1—Ni1—O2 86.20 (15)
O1—Ni1—N2 89.98 (16)
N1—Ni1—N2 173.95 (16)
O2—Ni1—N2 89.49 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.93 2.59 3.476 (6) 159
C14—H14⋯O6ii 0.98 2.42 3.318 (6) 153
C18—H18⋯O6iii 0.93 1.87 2.798 (5) 178
C37—H37⋯O3iv 0.93 1.85 2.756 (5) 163
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Table 3
Weak CgCg inter­molecular inter­actions of (I)[link] (Å)

Distance Cg1–Cg10 Cg3–Cg9 Cg4–Cg7 Cg4–Cg9
Centroid–centroid distance 3.940 (3) 3.709 (2) 3.526 (3) 3.932 (3)
Notes: CgICgJ = centroid–centroid distance between planes I and J (Å); Cg1: Ni1/O2/C13/C12/N1; Cg3: Ni1/O1/C1/C10/C11/N1; Cg4: C1/C2/C3/C4/C9/C10; Cg7: Ni2/O5/C32/C31/N4; Cg9: Ni2/O4/C20/C29/C30/N4; Cg10: C20/C21/C22/C23/C28/C29.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Complexes of Shiff base ligands composed of salicylaldehyde, 2-formylpyidine or their analogues, and α-amino acid always have attracted attention due to the important biomolecules–α-amino acid and manifold structure (Vergopoulos et al., 1993; Usman et al., 2003; Li et al., 2010). Several structural studies have been performed on Shiff base transition metal complex derived from 1-hydroxy-2-naphthaldehyde and α-amino acid (Ebel et al., 2003; Qiu et al., 2008; Xue et al., 2009). We report here the crystal structure of the title NiIIcomplex, (I), [Ni(C16H15N1O3)(C3H4N2)].

In the title complex, the NiIIatom is in a distorted square-planar coordination geometry (Fig. 1; table 1). Three basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an O–N–O donor set, with the fourth position occupied by one N atom from the pyrazole ligand.

The dihedral angle between the mean planes of the naphthalene and pyrazole rings is 16.(7)°. Strong and weak intermolecular C—H···O hydrogen bonds (Fig. 2; Table 2) and weak Cg···Cg π-stacking interactions [shortest centroid-centroid separation = 3.526 (3) Å] contribute to crystal packing (Table 3).

Related literature top

For complexes of Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, see: Li et al. (2010); Vergopoulos et al. (1993); Usman et al. (2003). For related structures, see: Basu Baul et al. (2007); Ebel & Rehder (2003); Maniukiewicz & Bukowska-Strzyżewska (2001); Xue et al. (2009); Qiu et al. (2008). For the synthesis, see Plesch et al. (1997).

Experimental top

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-valine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol and 5 ml of water was added 2-Hydroxy-1-naphthaldehyde (1.00 mmol in 10 ml of methanol) dropwise.The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to Ni (II) nitrate Hexahydrate (1.00 mmol) and pyrazole (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 4.0 h at 333 K. The brown solution was filtered and left for several days, brown crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement top

In (I), All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å (CH), with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C), and with N—H = 0.86 Å (NH) and Uiso(H) = 1.2Ueq(N).

Structure description top

Complexes of Shiff base ligands composed of salicylaldehyde, 2-formylpyidine or their analogues, and α-amino acid always have attracted attention due to the important biomolecules–α-amino acid and manifold structure (Vergopoulos et al., 1993; Usman et al., 2003; Li et al., 2010). Several structural studies have been performed on Shiff base transition metal complex derived from 1-hydroxy-2-naphthaldehyde and α-amino acid (Ebel et al., 2003; Qiu et al., 2008; Xue et al., 2009). We report here the crystal structure of the title NiIIcomplex, (I), [Ni(C16H15N1O3)(C3H4N2)].

In the title complex, the NiIIatom is in a distorted square-planar coordination geometry (Fig. 1; table 1). Three basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an O–N–O donor set, with the fourth position occupied by one N atom from the pyrazole ligand.

The dihedral angle between the mean planes of the naphthalene and pyrazole rings is 16.(7)°. Strong and weak intermolecular C—H···O hydrogen bonds (Fig. 2; Table 2) and weak Cg···Cg π-stacking interactions [shortest centroid-centroid separation = 3.526 (3) Å] contribute to crystal packing (Table 3).

For complexes of Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, see: Li et al. (2010); Vergopoulos et al. (1993); Usman et al. (2003). For related structures, see: Basu Baul et al. (2007); Ebel & Rehder (2003); Maniukiewicz & Bukowska-Strzyżewska (2001); Xue et al. (2009); Qiu et al. (2008). For the synthesis, see Plesch et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of the crystal packing. Hydrogen bonds are shown as red dashed lines.
{3-Methyl-2-[(1-oxido-2-naphthyl)methylideneamino- κ2O,N]butanoato-κO}(1H-pyrazole- κN2)nickel(II) top
Crystal data top
[Ni(C16H15NO3)(C3H4N2)]F(000) = 1648
Mr = 396.08Dx = 1.448 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4302 reflections
a = 11.5089 (11) Åθ = 2.4–21.1°
b = 16.6194 (16) ŵ = 1.09 mm1
c = 18.9934 (19) ÅT = 296 K
V = 3632.9 (6) Å3Block, brown
Z = 80.30 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6400 independent reflections
Radiation source: fine-focus sealed tube4910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1113
Tmin = 0.735, Tmax = 0.772k = 1919
18967 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.9539P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6400 reflectionsΔρmax = 0.53 e Å3
473 parametersΔρmin = 0.36 e Å3
0 restraintsAbsolute structure: Flack (1983), 2792 Friedel pairs [PLEASE CHECK]
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (16)
Crystal data top
[Ni(C16H15NO3)(C3H4N2)]V = 3632.9 (6) Å3
Mr = 396.08Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 11.5089 (11) ŵ = 1.09 mm1
b = 16.6194 (16) ÅT = 296 K
c = 18.9934 (19) Å0.30 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6400 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4910 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.772Rint = 0.045
18967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.53 e Å3
S = 1.02Δρmin = 0.36 e Å3
6400 reflectionsAbsolute structure: Flack (1983), 2792 Friedel pairs [PLEASE CHECK]
473 parametersAbsolute structure parameter: 0.015 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.75779 (5)0.07571 (3)0.05529 (3)0.04451 (17)
Ni20.29080 (5)0.80826 (3)0.31116 (3)0.04473 (17)
C10.5662 (4)0.1225 (3)0.1366 (3)0.0445 (12)
C20.4616 (4)0.1673 (3)0.1395 (3)0.0560 (13)
H20.43540.19330.09920.067*
C30.3991 (5)0.1734 (3)0.1993 (3)0.0598 (14)
H30.32850.20050.19860.072*
C40.4389 (5)0.1392 (3)0.2630 (3)0.0532 (14)
C50.3769 (5)0.1514 (3)0.3268 (3)0.0623 (15)
H50.30640.17870.32600.075*
C60.4201 (6)0.1231 (3)0.3901 (3)0.0672 (16)
H60.37920.13170.43160.081*
C70.5240 (5)0.0821 (3)0.3912 (3)0.0588 (14)
H70.55360.06330.43370.071*
C80.5844 (5)0.0688 (3)0.3298 (2)0.0531 (13)
H80.65370.04010.33180.064*
C90.5449 (4)0.0969 (3)0.2639 (3)0.0432 (12)
C100.6076 (4)0.0857 (3)0.1986 (2)0.0402 (10)
C110.7082 (4)0.0369 (2)0.1959 (2)0.0435 (11)
H110.72950.01020.23690.052*
C120.8739 (4)0.0294 (3)0.1441 (2)0.0464 (12)
H120.91560.02000.18830.056*
C130.9522 (5)0.0079 (3)0.0842 (3)0.0482 (12)
C140.8356 (5)0.1181 (3)0.1417 (3)0.0567 (14)
H140.77910.12530.17980.068*
C150.7731 (6)0.1393 (3)0.0738 (3)0.0812 (18)
H15A0.82840.14280.03610.122*
H15B0.71700.09830.06320.122*
H15C0.73440.19000.07910.122*
C160.9363 (6)0.1746 (4)0.1576 (4)0.092 (2)
H16A0.99170.17230.11990.139*
H16B0.90770.22860.16220.139*
H16C0.97310.15850.20070.139*
N30.6506 (5)0.1453 (3)0.0732 (3)0.0952 (18)
H3A0.58390.15440.05440.114*
C180.7893 (4)0.1369 (2)0.1493 (2)0.0391 (10)
H180.83200.13920.19090.047*
C190.8288 (5)0.1139 (3)0.0877 (3)0.0563 (14)
H190.90490.09740.07990.068*
C200.1022 (4)0.7048 (3)0.2868 (3)0.0452 (12)
C210.0003 (5)0.6677 (3)0.3148 (3)0.0568 (13)
H210.02420.68060.36010.068*
C220.0608 (5)0.6140 (3)0.2766 (3)0.0648 (16)
H220.12640.59050.29640.078*
C230.0286 (5)0.5921 (3)0.2073 (3)0.0541 (14)
C240.0923 (5)0.5350 (3)0.1676 (4)0.0743 (18)
H240.15840.51200.18740.089*
C250.0604 (6)0.5130 (4)0.1024 (4)0.086 (2)
H250.10320.47480.07770.103*
C260.0366 (6)0.5477 (4)0.0724 (4)0.0798 (19)
H260.05830.53340.02690.096*
C270.1015 (5)0.6029 (3)0.1087 (3)0.0609 (15)
H270.16630.62530.08710.073*
C280.0734 (4)0.6266 (3)0.1773 (3)0.0484 (12)
C290.1375 (4)0.6856 (3)0.2179 (2)0.0426 (11)
C300.2362 (4)0.7240 (2)0.1880 (2)0.0407 (10)
H300.25590.70990.14220.049*
C310.4015 (4)0.8117 (3)0.1815 (2)0.0440 (11)
H310.44160.76870.15580.053*
C320.4824 (5)0.8441 (3)0.2381 (2)0.0444 (11)
C330.3714 (5)0.8798 (3)0.1293 (3)0.0627 (16)
H330.44630.90120.11340.075*
C340.3129 (8)0.8482 (5)0.0640 (3)0.119 (3)
H34A0.24020.82380.07660.179*
H34B0.36200.80890.04200.179*
H34C0.29930.89180.03190.179*
C350.3109 (6)0.9496 (3)0.1654 (3)0.086 (2)
H35A0.29570.99130.13170.130*
H35B0.35970.97030.20220.130*
H35C0.23880.93130.18530.130*
N60.2387 (6)0.8183 (3)0.4640 (3)0.1060 (19)
H6A0.19600.77590.46660.127*
C370.3311 (4)0.9271 (3)0.4934 (2)0.0412 (11)
H370.36090.97040.51860.049*
C380.3433 (4)0.9138 (3)0.4260 (3)0.0578 (14)
H380.38610.94710.39640.069*
N10.7731 (3)0.0262 (2)0.14102 (18)0.0418 (9)
N20.7483 (4)0.1169 (2)0.03787 (18)0.0473 (9)
C170.6775 (6)0.1564 (3)0.1422 (3)0.0676 (17)
H170.62770.17410.17750.081*
N40.3010 (3)0.7767 (2)0.21896 (18)0.0425 (9)
N50.2891 (4)0.8490 (2)0.40427 (19)0.0480 (10)
C360.2692 (7)0.8680 (4)0.5186 (3)0.086 (2)
H360.24920.86080.56560.103*
O10.6178 (3)0.1191 (2)0.07517 (16)0.0529 (9)
O20.9049 (3)0.03658 (19)0.03564 (16)0.0501 (8)
O31.0518 (3)0.0330 (2)0.07990 (19)0.0621 (10)
O40.1546 (3)0.7567 (2)0.32823 (16)0.0541 (9)
O50.4362 (3)0.8548 (2)0.29918 (17)0.0534 (9)
O60.5840 (3)0.8613 (2)0.22488 (17)0.0587 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0446 (4)0.0483 (3)0.0407 (3)0.0047 (3)0.0006 (3)0.0060 (3)
Ni20.0416 (4)0.0469 (3)0.0456 (3)0.0031 (3)0.0020 (3)0.0033 (3)
C10.042 (3)0.041 (3)0.050 (3)0.001 (2)0.003 (2)0.002 (2)
C20.047 (3)0.059 (3)0.062 (3)0.008 (3)0.003 (3)0.004 (3)
C30.046 (3)0.053 (3)0.081 (4)0.012 (3)0.006 (3)0.001 (3)
C40.057 (4)0.041 (3)0.061 (3)0.003 (3)0.012 (3)0.004 (3)
C50.054 (3)0.054 (3)0.079 (4)0.002 (3)0.022 (3)0.013 (3)
C60.085 (5)0.058 (3)0.059 (4)0.008 (3)0.020 (3)0.005 (3)
C70.070 (4)0.059 (3)0.048 (3)0.006 (3)0.011 (3)0.000 (3)
C80.058 (3)0.051 (3)0.051 (3)0.003 (3)0.004 (3)0.001 (2)
C90.046 (3)0.033 (2)0.050 (3)0.004 (2)0.005 (2)0.002 (2)
C100.033 (2)0.039 (2)0.048 (3)0.001 (2)0.000 (2)0.003 (2)
C110.047 (3)0.046 (2)0.038 (2)0.007 (2)0.004 (2)0.001 (2)
C120.038 (3)0.055 (3)0.047 (3)0.003 (2)0.004 (2)0.008 (2)
C130.045 (3)0.048 (3)0.051 (3)0.001 (3)0.005 (2)0.008 (2)
C140.045 (3)0.051 (3)0.074 (4)0.005 (3)0.018 (3)0.013 (3)
C150.084 (5)0.066 (3)0.094 (4)0.007 (4)0.009 (4)0.008 (3)
C160.073 (4)0.072 (4)0.132 (6)0.027 (4)0.030 (4)0.038 (4)
N30.086 (4)0.104 (4)0.096 (4)0.024 (3)0.001 (3)0.011 (3)
C180.043 (3)0.045 (2)0.030 (2)0.007 (2)0.004 (2)0.0113 (18)
C190.046 (3)0.054 (3)0.069 (4)0.004 (3)0.005 (3)0.009 (3)
C200.041 (3)0.041 (3)0.054 (3)0.003 (2)0.001 (2)0.001 (2)
C210.050 (3)0.063 (3)0.057 (3)0.002 (3)0.011 (3)0.005 (3)
C220.047 (3)0.057 (3)0.091 (5)0.008 (3)0.006 (3)0.001 (3)
C230.045 (3)0.044 (3)0.073 (4)0.002 (2)0.003 (3)0.001 (3)
C240.054 (4)0.065 (4)0.104 (5)0.018 (3)0.007 (4)0.012 (4)
C250.068 (5)0.081 (4)0.108 (6)0.025 (4)0.003 (4)0.033 (4)
C260.072 (4)0.084 (4)0.084 (5)0.015 (4)0.000 (4)0.028 (4)
C270.048 (3)0.065 (3)0.070 (4)0.011 (3)0.003 (3)0.014 (3)
C280.041 (3)0.043 (3)0.061 (3)0.000 (2)0.005 (2)0.002 (2)
C290.035 (3)0.037 (2)0.057 (3)0.003 (2)0.002 (2)0.003 (2)
C300.042 (3)0.035 (2)0.045 (2)0.005 (2)0.006 (2)0.0049 (19)
C310.043 (3)0.047 (2)0.043 (3)0.001 (2)0.007 (2)0.000 (2)
C320.043 (3)0.043 (3)0.047 (3)0.003 (2)0.001 (2)0.006 (2)
C330.072 (4)0.065 (4)0.051 (3)0.013 (3)0.018 (3)0.007 (3)
C340.147 (7)0.124 (6)0.086 (5)0.000 (6)0.034 (5)0.026 (4)
C350.096 (5)0.057 (3)0.106 (5)0.001 (4)0.033 (4)0.017 (3)
N60.127 (5)0.101 (4)0.090 (4)0.023 (4)0.026 (4)0.006 (3)
C370.035 (3)0.049 (3)0.040 (3)0.013 (2)0.003 (2)0.014 (2)
C380.043 (3)0.060 (3)0.071 (4)0.006 (3)0.004 (3)0.006 (3)
N10.039 (2)0.042 (2)0.045 (2)0.0053 (19)0.0007 (19)0.0027 (16)
N20.041 (2)0.053 (2)0.048 (2)0.008 (2)0.000 (2)0.0066 (17)
C170.089 (5)0.078 (4)0.035 (3)0.002 (4)0.001 (3)0.021 (3)
N40.037 (2)0.0382 (19)0.052 (2)0.0037 (19)0.0017 (19)0.0009 (17)
N50.048 (3)0.046 (2)0.050 (2)0.007 (2)0.009 (2)0.0032 (18)
C360.111 (6)0.106 (5)0.041 (3)0.004 (5)0.008 (4)0.021 (3)
O10.051 (2)0.064 (2)0.0435 (19)0.0131 (18)0.0023 (16)0.0064 (16)
O20.042 (2)0.059 (2)0.050 (2)0.0077 (17)0.0079 (16)0.0131 (16)
O30.038 (2)0.077 (2)0.072 (3)0.009 (2)0.0085 (17)0.026 (2)
O40.053 (2)0.057 (2)0.053 (2)0.0091 (18)0.0068 (17)0.0074 (17)
O50.042 (2)0.071 (2)0.047 (2)0.0090 (18)0.0001 (16)0.0069 (17)
O60.040 (2)0.082 (2)0.055 (2)0.0127 (19)0.0029 (17)0.0037 (18)
Geometric parameters (Å, º) top
Ni1—O11.805 (3)C18—H180.9300
Ni1—N11.833 (3)C19—N21.325 (6)
Ni1—O21.852 (3)C19—H190.9300
Ni1—N21.900 (3)C20—O41.313 (5)
Ni2—O41.816 (3)C20—C291.406 (6)
Ni2—N41.832 (4)C20—C211.428 (7)
Ni2—O51.857 (3)C21—C221.349 (7)
Ni2—N51.894 (4)C21—H210.9300
C1—O11.311 (5)C22—C231.415 (7)
C1—C101.410 (6)C22—H220.9300
C1—C21.417 (7)C23—C241.417 (7)
C2—C31.347 (7)C23—C281.425 (7)
C2—H20.9300C24—C251.343 (8)
C3—C41.413 (7)C24—H240.9300
C3—H30.9300C25—C261.380 (8)
C4—C91.408 (7)C25—H250.9300
C4—C51.420 (7)C26—C271.368 (7)
C5—C61.384 (8)C26—H260.9300
C5—H50.9300C27—C281.400 (7)
C6—C71.377 (8)C27—H270.9300
C6—H60.9300C28—C291.449 (6)
C7—C81.374 (7)C29—C301.421 (6)
C7—H70.9300C30—N41.292 (5)
C8—C91.412 (7)C30—H300.9300
C8—H80.9300C31—N41.477 (6)
C9—C101.446 (6)C31—C321.522 (7)
C10—C111.415 (6)C31—C331.543 (7)
C11—N11.294 (5)C31—H310.9800
C11—H110.9300C32—O61.230 (6)
C12—N11.484 (6)C32—O51.288 (5)
C12—C131.496 (7)C33—C341.505 (8)
C12—C141.540 (7)C33—C351.517 (8)
C12—H120.9800C33—H330.9800
C13—O31.222 (6)C34—H34A0.9600
C13—O21.300 (5)C34—H34B0.9600
C14—C151.519 (7)C34—H34C0.9600
C14—C161.521 (7)C35—H35A0.9600
C14—H140.9800C35—H35B0.9600
C15—H15A0.9600C35—H35C0.9600
C15—H15B0.9600N6—C361.372 (7)
C15—H15C0.9600N6—N51.372 (6)
C16—H16A0.9600N6—H6A0.8600
C16—H16B0.9600C37—C361.304 (8)
C16—H16C0.9600C37—C381.307 (6)
N3—C171.359 (7)C37—H370.9300
N3—N21.393 (6)C38—N51.312 (6)
N3—H3A0.8600C38—H380.9300
C18—C191.312 (6)C17—H170.9300
C18—C171.334 (7)C36—H360.9300
O1—Ni1—N194.55 (15)C20—C21—H21119.6
O1—Ni1—O2176.92 (16)C21—C22—C23122.3 (5)
N1—Ni1—O286.20 (15)C21—C22—H22118.8
O1—Ni1—N289.98 (16)C23—C22—H22118.8
N1—Ni1—N2173.95 (16)C22—C23—C24122.0 (5)
O2—Ni1—N289.49 (16)C22—C23—C28118.9 (5)
O4—Ni2—N495.23 (16)C24—C23—C28119.0 (5)
O4—Ni2—O5174.97 (15)C25—C24—C23122.1 (6)
N4—Ni2—O586.79 (16)C25—C24—H24119.0
O4—Ni2—N589.59 (16)C23—C24—H24119.0
N4—Ni2—N5174.72 (17)C24—C25—C26119.2 (6)
O5—Ni2—N588.58 (16)C24—C25—H25120.4
O1—C1—C10124.9 (4)C26—C25—H25120.4
O1—C1—C2116.3 (4)C27—C26—C25120.9 (6)
C10—C1—C2118.8 (4)C27—C26—H26119.5
C3—C2—C1121.7 (5)C25—C26—H26119.5
C3—C2—H2119.1C26—C27—C28122.2 (5)
C1—C2—H2119.1C26—C27—H27118.9
C2—C3—C4121.2 (5)C28—C27—H27118.9
C2—C3—H3119.4C27—C28—C23116.6 (5)
C4—C3—H3119.4C27—C28—C29124.7 (5)
C9—C4—C3119.5 (5)C23—C28—C29118.6 (5)
C9—C4—C5119.7 (5)C20—C29—C30120.1 (4)
C3—C4—C5120.7 (5)C20—C29—C28120.1 (4)
C6—C5—C4120.8 (5)C30—C29—C28119.8 (4)
C6—C5—H5119.6N4—C30—C29125.7 (4)
C4—C5—H5119.6N4—C30—H30117.1
C7—C6—C5119.6 (5)C29—C30—H30117.1
C7—C6—H6120.2N4—C31—C32106.1 (4)
C5—C6—H6120.2N4—C31—C33115.0 (4)
C8—C7—C6120.4 (5)C32—C31—C33109.4 (4)
C8—C7—H7119.8N4—C31—H31108.7
C6—C7—H7119.8C32—C31—H31108.7
C7—C8—C9122.4 (5)C33—C31—H31108.7
C7—C8—H8118.8O6—C32—O5123.0 (4)
C9—C8—H8118.8O6—C32—C31121.3 (4)
C4—C9—C8117.1 (5)O5—C32—C31115.7 (4)
C4—C9—C10119.1 (4)C34—C33—C35115.7 (6)
C8—C9—C10123.8 (4)C34—C33—C31111.9 (5)
C1—C10—C11119.6 (4)C35—C33—C31111.9 (4)
C1—C10—C9119.4 (4)C34—C33—H33105.5
C11—C10—C9120.9 (4)C35—C33—H33105.5
N1—C11—C10125.5 (4)C31—C33—H33105.5
N1—C11—H11117.3C33—C34—H34A109.5
C10—C11—H11117.3C33—C34—H34B109.5
N1—C12—C13107.0 (4)H34A—C34—H34B109.5
N1—C12—C14111.9 (4)C33—C34—H34C109.5
C13—C12—C14112.3 (4)H34A—C34—H34C109.5
N1—C12—H12108.5H34B—C34—H34C109.5
C13—C12—H12108.5C33—C35—H35A109.5
C14—C12—H12108.5C33—C35—H35B109.5
O3—C13—O2122.7 (5)H35A—C35—H35B109.5
O3—C13—C12122.3 (4)C33—C35—H35C109.5
O2—C13—C12115.0 (4)H35A—C35—H35C109.5
C15—C14—C16112.8 (5)H35B—C35—H35C109.5
C15—C14—C12112.4 (4)C36—N6—N5107.1 (5)
C16—C14—C12111.5 (5)C36—N6—H6A126.5
C15—C14—H14106.5N5—N6—H6A126.5
C16—C14—H14106.5C36—C37—C38106.9 (5)
C12—C14—H14106.5C36—C37—H37126.5
C14—C15—H15A109.5C38—C37—H37126.5
C14—C15—H15B109.5C37—C38—N5113.3 (5)
H15A—C15—H15B109.5C37—C38—H38123.3
C14—C15—H15C109.5N5—C38—H38123.3
H15A—C15—H15C109.5C11—N1—C12120.3 (4)
H15B—C15—H15C109.5C11—N1—Ni1126.8 (3)
C14—C16—H16A109.5C12—N1—Ni1112.9 (3)
C14—C16—H16B109.5C19—N2—N3103.4 (4)
H16A—C16—H16B109.5C19—N2—Ni1127.7 (3)
C14—C16—H16C109.5N3—N2—Ni1128.1 (4)
H16A—C16—H16C109.5C18—C17—N3106.5 (5)
H16B—C16—H16C109.5C18—C17—H17126.7
C17—N3—N2109.1 (5)N3—C17—H17126.7
C17—N3—H3A125.4C30—N4—C31120.0 (4)
N2—N3—H3A125.4C30—N4—Ni2126.3 (3)
C19—C18—C17108.3 (5)C31—N4—Ni2113.5 (3)
C19—C18—H18125.8C38—N5—N6104.2 (4)
C17—C18—H18125.8C38—N5—Ni2125.6 (4)
C18—C19—N2112.6 (5)N6—N5—Ni2130.0 (3)
C18—C19—H19123.7C37—C36—N6108.4 (5)
N2—C19—H19123.7C37—C36—H36125.8
O4—C20—C29125.0 (4)N6—C36—H36125.8
O4—C20—C21115.9 (4)C1—O1—Ni1127.4 (3)
C29—C20—C21119.1 (4)C13—O2—Ni1116.1 (3)
C22—C21—C20120.9 (5)C20—O4—Ni2126.8 (3)
C22—C21—H21119.6C32—O5—Ni2115.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.593.476 (6)159
C14—H14···O6ii0.982.423.318 (6)153
C18—H18···O6iii0.931.872.798 (5)178
C37—H37···O3iv0.931.852.756 (5)163
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x, y1, z; (iii) x+3/2, y+1, z1/2; (iv) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C16H15NO3)(C3H4N2)]
Mr396.08
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)11.5089 (11), 16.6194 (16), 18.9934 (19)
V3)3632.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.735, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
18967, 6400, 4910
Rint0.045
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.108, 1.02
No. of reflections6400
No. of parameters473
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.36
Absolute structureFlack (1983), 2792 Friedel pairs [PLEASE CHECK]
Absolute structure parameter0.015 (16)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O11.805 (3)Ni1—O21.852 (3)
Ni1—N11.833 (3)Ni1—N21.900 (3)
O1—Ni1—N194.55 (15)O1—Ni1—N289.98 (16)
O1—Ni1—O2176.92 (16)N1—Ni1—N2173.95 (16)
N1—Ni1—O286.20 (15)O2—Ni1—N289.49 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.593.476 (6)158.5
C14—H14···O6ii0.982.423.318 (6)153.0
C18—H18···O6iii0.931.872.798 (5)177.5
C37—H37···O3iv0.931.852.756 (5)162.8
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x, y1, z; (iii) x+3/2, y+1, z1/2; (iv) x+3/2, y+1, z+1/2.
Weak Cg-Cg intermolecular interactions of (I) (Å) top
distanceCg1—Cg10Cg3—Cg9Cg4—Cg7Cg4—Cg9
centroid-centroid distance3.940 (3)3.709 (2)3.526 (3)3.932 (3)
Notes: CgI—CgJ = centroid-centroid distance between Plane I and J (Å); Cg1: Ni1/O2/C13/C12/N1; Cg3: Ni1/O1/C1/C10/C11/N1; Cg4: C1/C2/C3/C4/C9/C10; Cg7: Ni2/O5/C32/C31/N4; Cg9: Ni2/O4/C20/C29/C30/N4; Cg10: C20/C21/C22/C23/C28/C29.
 

Acknowledgements

This research was supported by the National Sciences Foundation of China (grant No. 20877036) and the Top-Class Foundation of Pingdingshan University (grant Nos. 2008012 and 2009001).

References

First citationBasu Baul, T. S., Masharing C., Ruisi, G., Jirásko, R., HolǍpek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849–4862.  Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEbel, M. & Rehder, D. (2003). Inorg. Chim. Acta, 356, 210–214.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J., Guo, Z., Li, L. & Wang, D. (2010). Acta Cryst. E66, m516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManiukiewicz, W. & Bukowska-Strzyżewska, M. (2001). Acta Cryst. C57, 889–890.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPlesch, G., Friebel, C., Warda, S. A., Sivý J. & Svajlenova, O. (1997). Transition Met. Chem. 22, 433–440.  Google Scholar
First citationQiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVergopoulos, V., Priebsch, W., Fritzsche, M. & Rehder, D. (1993). Inorg. Chem. 32, 1844–1849.  CSD CrossRef CAS Web of Science Google Scholar
First citationXue, L.-W., Li, X.-W., Zhao, G.-Q. & Peng, Q.-L. (2009). Acta Cryst. E65, m1237.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds