organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Amino­(iminio)meth­yl]phospho­nate

aHigh-Tech Institute of Nangjing University, Changzhou 213164, People's Republic of China, and bSchool of Chemistry & Chemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: Tinghaiyang@gmail.com, Chem100@nju.edu.cn

(Received 30 July 2010; accepted 10 August 2010; online 18 August 2010)

The title compound, CH5N2O3P, exists as a zwitterion. The N atom of the imino group is protonated and the phospho­nic acid group is deprotonated. The mol­ecular geometry about the central C atom of this zwitterionic species was found to be strictly planar with the sum of the three angles about C being precisely 360°. In the crystal, the mol­ecules are inter­linked by O—H⋯O and N—H⋯O hydrogen-bonding inter­actions, forming a three-dimensional supra­molecular network structure.

Related literature

For background to phospho­nic acid and metal phospho­nate compounds, see: Ayyappan et al. (2001[Ayyappan, P., Evans, O. R., Foxman, B. M., Wheeler, K. A., Warren, T. H. & Lin, W. B. (2001). Inorg. Chem. 40, 5954-5961.]); Clearfield (1998[Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371-510.]); Haga et al. (2007[Haga, M. A., Kobayashi, K. & Terada, K. (2007). Coord. Chem. Rev., 251 2688-2701.]); Vivani et al. (2008[Vivani, R., Alberti, G., Costantino, F. & Nocchetti, M. (2008). Microporous Mesoporous Mater. 107, 58-70.]); Bao et al. (2007[Bao, S. S., Ma, L. F., Wang, Y., Fang, L., Zhu, C. J., Li, Y. Z. & Zheng, L. M. (2007). Chem. Eur. J. 13, 2333-2343.]); Cave et al. (2006[Cave, D., Coomer, F. C., Molinos, E., Klauss, H. H. & Wood, P. T. (2006). Angew. Chem. Int. Ed. 45, 803-806.]); Cao et al. (1992[Cao, G., Hong, H. & Mallouk, T. E. (1992). Acc. Chem. Res. 25, 420-427.]); Ma et al. (2006[Ma, Y. S., Song, Y., Du, W. X., Li, Y. Z. & Zheng, L. M. (2006). Dalton Trans. pp. 3228-3235.], 2008[Ma, Y. S., Li, Y. Z., Song, Y. & Zheng, L. M. (2008). Inorg. Chem. 47, 4536-4544.]). For a related structure, see Makarov et al. (1999[Makarov, S. V., Mundoma, C., Penn, J. H., Petersen, J. L., Svarovsky, S. A. & Simoyi, R. H. (1999). Inorg. Chim. Acta, 286, 149-154.]).

[Scheme 1]

Experimental

Crystal data
  • CH5N2O3P

  • Mr = 124.04

  • Triclinic, [P \overline 1]

  • a = 4.8559 (17) Å

  • b = 5.910 (2) Å

  • c = 8.101 (3) Å

  • α = 99.570 (6)°

  • β = 90.784 (6)°

  • γ = 101.546 (6)°

  • V = 224.36 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.907, Tmax = 0.924

  • 1324 measured reflections

  • 855 independent reflections

  • 840 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.161

  • S = 1.01

  • 855 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O1i 0.96 1.75 2.611 (4) 147
N1—H1A⋯O2ii 0.86 2.06 2.903 (4) 167
N2—H2A⋯O1ii 0.86 2.09 2.924 (4) 164
N1—H1B⋯O2iii 0.86 2.02 2.812 (4) 153
N2—H2B⋯O3iv 0.86 2.21 3.008 (4) 154
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last decade considerable attention has been afforded to the synthesis of metal phosphonates due to their potential applications in ion-exchange and sorption, catalysis, magnetism and sensors (Ayyappan et al., 2001; Clearfield, 1998; Haga et al., 2007; Vivani et al., 2008; Bao et al., 2007; Cave et al., 2006; Cao et al., 1992; Ma et al., 2006, 2008). In order to synthseize metal phosphonates with novel structures and properties, many kinds of phosphonic acid ligands have been used. In order to study the crystal structure of phosphonic acid, we synthesized and determined the structure of the title compound (Fig. 1). As shown in Scheme 1, the molecular exists as a zwitterion, the imino group being protonated and the phosphonic acid group being deprotonated. The molecular geometry about the central C atom is strictly planar with the sum of the three angles about C being precisely 360°. The three bonds about the central carbon atom consist of two nearly equivalent C–N1 and C–N2 distances of 1.299 (5) Å and 1.314 (5) Å, respectively, and a C–P bond distance of 1.845 (3) Å. These two C–N bonds are considerably shorter than a typical C–N single bond distance of 1.47 Å, Similar zwitterions have been formed by other aminoiminomethanesulfonic acids (Makarov et al.,1999). The P–O distances in these compounds range from 1.4872 (2) Å to 1.5872 (2) Å. By comparision of individual P—O distances, the H atom can be located on O3. In our crystal structure, three intermolecular hydrogen-bond interactions exist, viz. between the N atom and the phosphonate O atom [N1—H1A···O2, N2—H2A···O1, N1—H1B···O2, N2—H2B···O3], and between two phosphonate O atoms [O3—H3B···O1] (Table 1). Thus the molecules are interlinked by these intermolecular hydrogen bonds, forming a three-dimensional supramolecular network structure (Fig.2).

Related literature top

For background to phosphonic acid and metal phosphonate compounds, see: Ayyappan et al. (2001); Clearfield (1998); Haga et al. (2007); Vivani et al. (2008); Bao et al. (2007); Cave et al. (2006); Cao et al. (1992); Ma et al. (2006, 2008). For a related structure, see Makarov et al. (1999).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. The title compound was prepared by the following reaction: A sample of 2,4,6-tri-(phosphonate ethyl)-1,3,5-triazine (9.8 g, 20 mmol) was dissolved in 6 mol/ ml HCl (20 ml), The mixture was heated (100 °C, 10 h) and then evaporated to dryness leaving a white solid. Crystallization was carried out by dissolution of 0.62 g of the title compound (about 0.5 mmol) in 10 ml water, followed by evaporation at room temperature. After two weeks, colorless block crystals obtained.

Refinement top

All non-hydrogen atoms were refined anisotropically, whereas the positions of all H atoms bonded to nitrogen were fixed geometrically (N—H = 0.86 Å), and included in the refinement in the riding mode, with Uĩso~(H) = 1.2U~eq~(N). The H atom in P—O—H was located in a difference Fourier map and refined with a distance restraint of O—H = 0.96 Å, and with Uĩso~(H) = 1.5U~eq~(O).

Structure description top

In the last decade considerable attention has been afforded to the synthesis of metal phosphonates due to their potential applications in ion-exchange and sorption, catalysis, magnetism and sensors (Ayyappan et al., 2001; Clearfield, 1998; Haga et al., 2007; Vivani et al., 2008; Bao et al., 2007; Cave et al., 2006; Cao et al., 1992; Ma et al., 2006, 2008). In order to synthseize metal phosphonates with novel structures and properties, many kinds of phosphonic acid ligands have been used. In order to study the crystal structure of phosphonic acid, we synthesized and determined the structure of the title compound (Fig. 1). As shown in Scheme 1, the molecular exists as a zwitterion, the imino group being protonated and the phosphonic acid group being deprotonated. The molecular geometry about the central C atom is strictly planar with the sum of the three angles about C being precisely 360°. The three bonds about the central carbon atom consist of two nearly equivalent C–N1 and C–N2 distances of 1.299 (5) Å and 1.314 (5) Å, respectively, and a C–P bond distance of 1.845 (3) Å. These two C–N bonds are considerably shorter than a typical C–N single bond distance of 1.47 Å, Similar zwitterions have been formed by other aminoiminomethanesulfonic acids (Makarov et al.,1999). The P–O distances in these compounds range from 1.4872 (2) Å to 1.5872 (2) Å. By comparision of individual P—O distances, the H atom can be located on O3. In our crystal structure, three intermolecular hydrogen-bond interactions exist, viz. between the N atom and the phosphonate O atom [N1—H1A···O2, N2—H2A···O1, N1—H1B···O2, N2—H2B···O3], and between two phosphonate O atoms [O3—H3B···O1] (Table 1). Thus the molecules are interlinked by these intermolecular hydrogen bonds, forming a three-dimensional supramolecular network structure (Fig.2).

For background to phosphonic acid and metal phosphonate compounds, see: Ayyappan et al. (2001); Clearfield (1998); Haga et al. (2007); Vivani et al. (2008); Bao et al. (2007); Cave et al. (2006); Cao et al. (1992); Ma et al. (2006, 2008). For a related structure, see Makarov et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, (NH2)2CPO3H, showing 50% probability displacement ellipsoids
[Figure 2] Fig. 2. The cell packing diagram for the title compound viewed down the a axis.
[Amino(iminio)methyl]phosphonate top
Crystal data top
CH5N2O3PZ = 2
Mr = 124.04F(000) = 128
Triclinic, P1Dx = 1.836 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8559 (17) ÅCell parameters from 1436 reflections
b = 5.910 (2) Åθ = 2.6–30.3°
c = 8.101 (3) ŵ = 0.50 mm1
α = 99.570 (6)°T = 296 K
β = 90.784 (6)°Block, colorless
γ = 101.546 (6)°0.20 × 0.18 × 0.16 mm
V = 224.36 (14) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
855 independent reflections
Radiation source: fine-focus sealed tube840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 55
Tmin = 0.907, Tmax = 0.924k = 67
1324 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1046P)2 + 0.7669P]
where P = (Fo2 + 2Fc2)/3
855 reflections(Δ/σ)max < 0.001
64 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
CH5N2O3Pγ = 101.546 (6)°
Mr = 124.04V = 224.36 (14) Å3
Triclinic, P1Z = 2
a = 4.8559 (17) ÅMo Kα radiation
b = 5.910 (2) ŵ = 0.50 mm1
c = 8.101 (3) ÅT = 296 K
α = 99.570 (6)°0.20 × 0.18 × 0.16 mm
β = 90.784 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
855 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
840 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.924Rint = 0.014
1324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.01Δρmax = 0.62 e Å3
855 reflectionsΔρmin = 0.77 e Å3
64 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.66113 (16)0.60637 (13)0.74674 (10)0.0149 (4)
O10.3963 (5)0.6733 (4)0.8092 (3)0.0225 (6)
O20.7837 (5)0.6917 (4)0.5956 (3)0.0224 (6)
O30.8828 (5)0.6695 (5)0.9016 (3)0.0224 (6)
H3B1.04810.61050.86960.034*
N10.7663 (7)0.1822 (5)0.6080 (4)0.0224 (7)
H1A0.74850.03240.59290.027*
H1B0.89180.26510.55660.027*
N20.4088 (7)0.1649 (5)0.7899 (4)0.0229 (7)
H2A0.38540.01480.77760.027*
H2B0.30470.23740.85540.027*
C10.6036 (7)0.2834 (6)0.7084 (4)0.0168 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0130 (6)0.0125 (5)0.0216 (6)0.0045 (3)0.0061 (4)0.0070 (3)
O10.0156 (13)0.0197 (13)0.0350 (14)0.0076 (10)0.0086 (10)0.0073 (10)
O20.0245 (13)0.0199 (13)0.0271 (14)0.0067 (10)0.0113 (10)0.0124 (10)
O30.0150 (13)0.0271 (14)0.0247 (13)0.0047 (10)0.0029 (10)0.0032 (10)
N10.0243 (16)0.0139 (14)0.0318 (17)0.0057 (12)0.0124 (13)0.0088 (12)
N20.0263 (16)0.0145 (14)0.0299 (17)0.0052 (12)0.0138 (13)0.0074 (12)
C10.0170 (16)0.0147 (15)0.0207 (16)0.0044 (12)0.0026 (12)0.0073 (12)
Geometric parameters (Å, º) top
P1—O21.487 (2)N1—H1A0.8600
P1—O11.490 (3)N1—H1B0.8600
P1—O31.587 (3)N2—C11.314 (5)
P1—C11.845 (3)N2—H2A0.8600
O3—H3B0.9600N2—H2B0.8600
N1—C11.299 (5)
O2—P1—O1119.46 (15)C1—N1—H1B120.0
O2—P1—O3111.94 (15)H1A—N1—H1B120.0
O1—P1—O3106.97 (15)C1—N2—H2A120.0
O2—P1—C1108.20 (15)C1—N2—H2B120.0
O1—P1—C1107.89 (15)H2A—N2—H2B120.0
O3—P1—C1100.70 (15)N1—C1—N2122.4 (3)
P1—O3—H3B109.3N1—C1—P1118.7 (3)
C1—N1—H1A120.0N2—C1—P1118.8 (3)
O2—P1—C1—N128.6 (3)O2—P1—C1—N2154.6 (3)
O1—P1—C1—N1159.2 (3)O1—P1—C1—N224.1 (3)
O3—P1—C1—N188.9 (3)O3—P1—C1—N287.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1i0.961.752.611 (4)147
N1—H1A···O2ii0.862.062.903 (4)167
N2—H2A···O1ii0.862.092.924 (4)164
N1—H1B···O2iii0.862.022.812 (4)153
N2—H2B···O3iv0.862.213.008 (4)154
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaCH5N2O3P
Mr124.04
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.8559 (17), 5.910 (2), 8.101 (3)
α, β, γ (°)99.570 (6), 90.784 (6), 101.546 (6)
V3)224.36 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.907, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
1324, 855, 840
Rint0.014
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.161, 1.01
No. of reflections855
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.77

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1i0.961.752.611 (4)147.0
N1—H1A···O2ii0.862.062.903 (4)167.0
N2—H2A···O1ii0.862.092.924 (4)164.0
N1—H1B···O2iii0.862.022.812 (4)153.0
N2—H2B···O3iv0.862.213.008 (4)154.0
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Science and Technology Bureau of Changzhou City (project No. CQ20090004) for supporting this work.

References

First citationAyyappan, P., Evans, O. R., Foxman, B. M., Wheeler, K. A., Warren, T. H. & Lin, W. B. (2001). Inorg. Chem. 40, 5954–5961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBao, S. S., Ma, L. F., Wang, Y., Fang, L., Zhu, C. J., Li, Y. Z. & Zheng, L. M. (2007). Chem. Eur. J. 13, 2333–2343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany  Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G., Hong, H. & Mallouk, T. E. (1992). Acc. Chem. Res. 25, 420–427.  CrossRef CAS Google Scholar
First citationCave, D., Coomer, F. C., Molinos, E., Klauss, H. H. & Wood, P. T. (2006). Angew. Chem. Int. Ed. 45, 803–806.  Web of Science CSD CrossRef CAS Google Scholar
First citationClearfield, A. (1998). Prog. Inorg. Chem. 47, 371–510.  CrossRef CAS Google Scholar
First citationHaga, M. A., Kobayashi, K. & Terada, K. (2007). Coord. Chem. Rev., 251 2688–2701.  Google Scholar
First citationMa, Y. S., Li, Y. Z., Song, Y. & Zheng, L. M. (2008). Inorg. Chem. 47, 4536–4544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, Y. S., Song, Y., Du, W. X., Li, Y. Z. & Zheng, L. M. (2006). Dalton Trans. pp. 3228–3235.  Web of Science CSD CrossRef Google Scholar
First citationMakarov, S. V., Mundoma, C., Penn, J. H., Petersen, J. L., Svarovsky, S. A. & Simoyi, R. H. (1999). Inorg. Chim. Acta, 286, 149–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVivani, R., Alberti, G., Costantino, F. & Nocchetti, M. (2008). Microporous Mesoporous Mater. 107, 58–70.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds