metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(2-amino­phen­yl)methanol-κ2N,O]bis­­(nitrato-κO)cobalt(II)

aDepartment of Chemistry, University of Urmiyeh, Urmyieh, Iran
*Correspondence e-mail: m.esmhosseini@urmia.ac.ir

(Received 10 August 2010; accepted 11 August 2010; online 18 August 2010)

The asymmetric unit of the title compound, [Co(NO3)2(C7H9NO)2], contains one-half of the mol­ecule. The CoII atom (site symmetry 2) is six-coordinate in a distorted octahedral configuration bonded by two N and two O atoms from two (2-amino­phen­yl)methanol ligands and two O atoms from the two nitrate anions. Crystal packing is stabilized by inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For related structures with different metal atoms, see: Bandoli et al. (2002[Bandoli, G., Dolmella, A., Gerber, T. I. A., Mpinda, D., Perils, J. & Preez, J. G. H. (2002). J. Coord. Chem. 55, 823-833.]); Lewiriski et al. (1998[Lewiriski, J., Zachara, J. & Kopec, T. (1998). Inorg. Chem. Commun. 1, 182-184.]); Esmhosseini (2010[Esmhosseini, M. (2010). Acta Cryst. E66, m1057.]); Esmhosseini & Maleki (2010[Esmhosseini, M. & Maleki, S. (2010). Acta Cryst. E66, m1052.]). For bond distances and angles, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NO3)2(C7H9NO)2]

  • Mr = 429.25

  • Orthorhombic, P n a b

  • a = 7.2554 (6) Å

  • b = 10.1685 (7) Å

  • c = 23.250 (2) Å

  • V = 1715.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 120 K

  • 0.50 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.768, Tmax = 0.861

  • 6514 measured reflections

  • 2271 independent reflections

  • 2065 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.08

  • 2271 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

O2—Co1 2.1288 (11)
Co1—O1i 2.1025 (10)
Co1—N1 2.1463 (12)
O1—Co1—O1i 84.64 (6)
O1—Co1—O2 88.90 (4)
O1i—Co1—O2 84.43 (4)
O2—Co1—O2i 170.98 (5)
O1—Co1—N1i 169.09 (5)
O1i—Co1—N1i 85.27 (4)
O2—Co1—N1i 94.26 (4)
O1—Co1—N1 85.27 (4)
O2—Co1—N1 91.22 (5)
N1i—Co1—N1 105.07 (7)
Symmetry code: (i) [-x+{\script{1\over 2}}, y, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O3ii 0.88 (2) 2.15 (2) 2.9897 (16) 158 (2)
N1—H1D⋯O4iii 0.84 (3) 2.24 (3) 3.0689 (17) 169 (2)
O1—H1E⋯O2iv 0.84 (2) 1.86 (2) 2.6908 (14) 172 (2)
C1—H1B⋯O4iii 0.97 2.54 3.4145 (18) 151
Symmetry codes: (ii) -x, -y, -z+1; (iii) [-x-{\script{1\over 2}}, y, -z+1]; (iv) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Only four metal complexes with the (2-aminophenyl)methanol, bidentate ligand have been prepared and include the Re (Bandoli et al., 2002), Al (Lewiriski et al., 1998), Zn (Esmhosseini, 2010) and Mn (Esmhosseini & Maleki, 2010) compounds. We report herein the synthesis and crystal structure of the Co analogue compound, [Co(C7H9NO)2(NO3)2].

The asymmetric unit of the title compound, [Co(C7H9NO)2(NO3)2], contains one-half of the molecule (Fig. 1). The CoII atom in the cation is six-coordinate in a distorted hexagonal configuration bonded by two N and two O atoms from two (2-aminophenyl)methanol ligands and two O atoms from the two nitrate anions. Bond distances and angles are in normal ranges (Allen, 2002). Intermolecular N—H···O, O—H···O and C—H···O hydrogen bonding stabilize the crystal structure, (Table 2, Fig. 2).

Related literature top

For related structures with different metal atoms, see: Bandoli et al. (2002); Lewiriski et al. (1998); Esmhosseini (2010); Esmhosseini & Maleki (2010). For bond distances and angles, see Allen (2002).

Experimental top

For the preparation of the title compound, a solution of (2-aminophenyl)methanol (0.25 g, 2.00 mmol) in methanol (10 ml) was added to a solution of Co(NO3)2.6H2O (0.29 g, 1.00 mmol) in methanol (10 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, light violet block crystals of the title compound were isolated (yield 0.32 g, 74.5%).

Refinement top

The H atoms on the C and N atoms were positioned geometrically, and refined as riding atoms, with C–H = 0.93 Å (CH), C–H = 0.97 Å (CH2), N–H = 0.88, 0.84 Å (NH2) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.9Ueq(N). The H on O1 was located by a Fourier map and refined isotropically.

Structure description top

Only four metal complexes with the (2-aminophenyl)methanol, bidentate ligand have been prepared and include the Re (Bandoli et al., 2002), Al (Lewiriski et al., 1998), Zn (Esmhosseini, 2010) and Mn (Esmhosseini & Maleki, 2010) compounds. We report herein the synthesis and crystal structure of the Co analogue compound, [Co(C7H9NO)2(NO3)2].

The asymmetric unit of the title compound, [Co(C7H9NO)2(NO3)2], contains one-half of the molecule (Fig. 1). The CoII atom in the cation is six-coordinate in a distorted hexagonal configuration bonded by two N and two O atoms from two (2-aminophenyl)methanol ligands and two O atoms from the two nitrate anions. Bond distances and angles are in normal ranges (Allen, 2002). Intermolecular N—H···O, O—H···O and C—H···O hydrogen bonding stabilize the crystal structure, (Table 2, Fig. 2).

For related structures with different metal atoms, see: Bandoli et al. (2002); Lewiriski et al. (1998); Esmhosseini (2010); Esmhosseini & Maleki (2010). For bond distances and angles, see Allen (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SHELXTL (Sheldrick, 2008) [Please check and confirm; usually SAINT]; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, [Co(C7H9NO)2(NO3)2], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule, [Co(C7H9NO)2(NO3)2]. Hydrogen bonds are shown as dashed lines.
Bis[(2-aminophenyl)methanol-κ2N,O]bis(nitrato- κO)cobalt(II) top
Crystal data top
[Co(NO3)2(C7H9NO)2]F(000) = 884
Mr = 429.25Dx = 1.662 Mg m3
Orthorhombic, PnabMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2bc 2nCell parameters from 1009 reflections
a = 7.2554 (6) Åθ = 2.2–29.2°
b = 10.1685 (7) ŵ = 1.05 mm1
c = 23.250 (2) ÅT = 120 K
V = 1715.3 (3) Å3Block, light violet
Z = 40.50 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2271 independent reflections
Radiation source: fine-focus sealed tube2065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 69
Tmin = 0.768, Tmax = 0.861k = 1113
6514 measured reflectionsl = 2631
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.8425P]
where P = (Fo2 + 2Fc2)/3
2271 reflections(Δ/σ)max = 0.007
135 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Co(NO3)2(C7H9NO)2]V = 1715.3 (3) Å3
Mr = 429.25Z = 4
Orthorhombic, PnabMo Kα radiation
a = 7.2554 (6) ŵ = 1.05 mm1
b = 10.1685 (7) ÅT = 120 K
c = 23.250 (2) Å0.50 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2271 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2065 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.861Rint = 0.046
6514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.46 e Å3
2271 reflectionsΔρmin = 0.46 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.06393 (16)0.10499 (10)0.53584 (5)0.0194 (2)
O40.24657 (15)0.23434 (12)0.58377 (5)0.0213 (2)
O10.18951 (16)0.45350 (10)0.44211 (4)0.0155 (2)
H1E0.142 (3)0.524 (2)0.4531 (9)0.029 (6)*
C20.2247 (2)0.32739 (15)0.35482 (6)0.0145 (3)
C40.4195 (2)0.26108 (18)0.27496 (6)0.0230 (3)
H40.47940.28160.24070.028*
N20.11401 (17)0.21530 (11)0.55146 (5)0.0135 (2)
C70.23941 (19)0.19961 (13)0.37774 (7)0.0143 (3)
O20.02236 (15)0.31708 (9)0.53328 (5)0.0151 (2)
Co10.25000.30062 (2)0.50000.01128 (10)
C60.3427 (2)0.10409 (15)0.34922 (6)0.0179 (3)
H60.35080.01950.36420.022*
C30.3146 (2)0.35577 (15)0.30337 (6)0.0188 (3)
H30.30440.43960.28770.023*
C50.4337 (2)0.13548 (16)0.29835 (7)0.0223 (3)
H50.50440.07210.27980.027*
N10.15712 (18)0.17223 (12)0.43271 (5)0.0140 (2)
H1C0.162 (3)0.088 (2)0.4413 (9)0.028 (5)*
H1D0.044 (4)0.189 (2)0.4333 (10)0.027 (6)*
C10.1144 (2)0.43142 (13)0.38520 (6)0.0158 (3)
H1A0.11810.51260.36330.019*
H1B0.01310.40360.38820.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0226 (5)0.0110 (4)0.0246 (5)0.0008 (4)0.0041 (4)0.0014 (4)
O40.0135 (5)0.0244 (6)0.0259 (6)0.0003 (4)0.0074 (4)0.0004 (5)
O10.0207 (5)0.0104 (4)0.0152 (5)0.0035 (4)0.0008 (4)0.0007 (4)
C20.0126 (6)0.0153 (6)0.0155 (6)0.0010 (5)0.0010 (5)0.0010 (5)
C40.0208 (7)0.0333 (8)0.0149 (6)0.0045 (6)0.0041 (6)0.0032 (6)
N20.0116 (5)0.0129 (5)0.0160 (5)0.0006 (4)0.0010 (4)0.0005 (4)
C70.0129 (7)0.0145 (6)0.0155 (6)0.0022 (5)0.0001 (5)0.0014 (5)
O20.0134 (5)0.0101 (4)0.0219 (5)0.0008 (3)0.0040 (4)0.0008 (4)
Co10.01166 (16)0.00913 (15)0.01306 (15)0.0000.00220 (9)0.000
C60.0174 (7)0.0175 (6)0.0190 (6)0.0009 (5)0.0002 (5)0.0043 (5)
C30.0195 (7)0.0214 (7)0.0156 (6)0.0048 (6)0.0004 (6)0.0016 (5)
C50.0195 (7)0.0267 (8)0.0206 (7)0.0012 (6)0.0027 (6)0.0092 (6)
N10.0141 (6)0.0112 (5)0.0168 (5)0.0004 (4)0.0021 (4)0.0007 (4)
C10.0151 (6)0.0148 (6)0.0175 (6)0.0015 (5)0.0011 (5)0.0016 (5)
Geometric parameters (Å, º) top
O3—N21.2338 (15)O2—Co12.1288 (11)
O4—N21.2356 (16)Co1—O1i2.1025 (10)
O1—C11.4485 (17)Co1—O2i2.1288 (11)
O1—Co12.1025 (10)Co1—N1i2.1463 (12)
O1—H1E0.83 (2)Co1—N12.1463 (12)
C2—C31.393 (2)C6—C51.392 (2)
C2—C71.408 (2)C6—H60.9300
C2—C11.503 (2)C3—H30.9300
C4—C51.392 (2)C5—H50.9300
C4—C31.394 (2)N1—H1C0.88 (2)
C4—H40.9300N1—H1D0.84 (3)
N2—O21.3008 (15)C1—H1A0.9700
C7—C61.394 (2)C1—H1B0.9700
C7—N11.4378 (19)
C1—O1—Co1123.28 (8)O1—Co1—N185.27 (4)
C1—O1—H1E104.9 (15)O1i—Co1—N1169.09 (5)
Co1—O1—H1E121.7 (14)O2—Co1—N191.22 (5)
C3—C2—C7118.74 (14)O2i—Co1—N194.26 (4)
C3—C2—C1120.48 (13)N1i—Co1—N1105.07 (7)
C7—C2—C1120.78 (13)C5—C6—C7119.95 (14)
C5—C4—C3119.28 (14)C5—C6—H6120.0
C5—C4—H4120.4C7—C6—H6120.0
C3—C4—H4120.4C2—C3—C4121.30 (15)
O3—N2—O4123.42 (12)C2—C3—H3119.3
O3—N2—O2118.50 (12)C4—C3—H3119.3
O4—N2—O2118.08 (12)C6—C5—C4120.50 (14)
C6—C7—C2120.22 (14)C6—C5—H5119.8
C6—C7—N1120.72 (13)C4—C5—H5119.8
C2—C7—N1118.92 (13)C7—N1—Co1113.56 (9)
N2—O2—Co1122.01 (8)C7—N1—H1C112.0 (14)
O1—Co1—O1i84.64 (6)Co1—N1—H1C114.4 (14)
O1—Co1—O288.90 (4)C7—N1—H1D112.5 (16)
O1i—Co1—O284.43 (4)Co1—N1—H1D100.0 (16)
O1—Co1—O2i84.43 (4)H1C—N1—H1D103 (2)
O1i—Co1—O2i88.90 (4)O1—C1—C2109.76 (11)
O2—Co1—O2i170.98 (5)O1—C1—H1A109.7
O1—Co1—N1i169.09 (5)C2—C1—H1A109.7
O1i—Co1—N1i85.27 (4)O1—C1—H1B109.7
O2—Co1—N1i94.26 (4)C2—C1—H1B109.7
O2i—Co1—N1i91.22 (5)H1A—C1—H1B108.2
C3—C2—C7—C60.2 (2)N1—C7—C6—C5174.82 (14)
C1—C2—C7—C6179.79 (13)C7—C2—C3—C40.8 (2)
C3—C2—C7—N1175.93 (13)C1—C2—C3—C4179.16 (14)
C1—C2—C7—N14.0 (2)C5—C4—C3—C20.4 (2)
O3—N2—O2—Co118.93 (17)C7—C6—C5—C41.3 (2)
O4—N2—O2—Co1160.75 (10)C3—C4—C5—C60.7 (2)
C1—O1—Co1—O1i174.89 (13)C6—C7—N1—Co1120.28 (12)
C1—O1—Co1—O290.38 (11)C2—C7—N1—Co155.46 (15)
C1—O1—Co1—O2i95.70 (11)O1—Co1—N1—C749.56 (10)
C1—O1—Co1—N1i162.6 (2)O1i—Co1—N1—C772.1 (3)
C1—O1—Co1—N10.94 (11)O2—Co1—N1—C7138.36 (10)
N2—O2—Co1—O1145.62 (10)O2i—Co1—N1—C734.48 (10)
N2—O2—Co1—O1i129.65 (10)N1i—Co1—N1—C7126.90 (11)
N2—O2—Co1—N1i44.83 (10)Co1—O1—C1—C249.00 (15)
N2—O2—Co1—N160.38 (10)C3—C2—C1—O1119.95 (14)
C2—C7—C6—C50.9 (2)C7—C2—C1—O160.01 (17)
Symmetry code: (i) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O3ii0.88 (2)2.15 (2)2.9897 (16)158 (2)
N1—H1D···O4iii0.84 (3)2.24 (3)3.0689 (17)169 (2)
O1—H1E···O2iv0.84 (2)1.86 (2)2.6908 (14)172 (2)
C1—H1B···O4iii0.972.543.4145 (18)151
Symmetry codes: (ii) x, y, z+1; (iii) x1/2, y, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(NO3)2(C7H9NO)2]
Mr429.25
Crystal system, space groupOrthorhombic, Pnab
Temperature (K)120
a, b, c (Å)7.2554 (6), 10.1685 (7), 23.250 (2)
V3)1715.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.50 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.768, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
6514, 2271, 2065
Rint0.046
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.08
No. of reflections2271
No. of parameters135
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.46

Computer programs: SMART (Bruker, 1998), SHELXTL (Sheldrick, 2008) [Please check and confirm; usually SAINT], SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O2—Co12.1288 (11)Co1—N12.1463 (12)
Co1—O1i2.1025 (10)
O1—Co1—O1i84.64 (6)O1i—Co1—N1i85.27 (4)
O1—Co1—O288.90 (4)O2—Co1—N1i94.26 (4)
O1i—Co1—O284.43 (4)O1—Co1—N185.27 (4)
O2—Co1—O2i170.98 (5)O2—Co1—N191.22 (5)
O1—Co1—N1i169.09 (5)N1i—Co1—N1105.07 (7)
Symmetry code: (i) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O3ii0.88 (2)2.15 (2)2.9897 (16)158 (2)
N1—H1D···O4iii0.84 (3)2.24 (3)3.0689 (17)169 (2)
O1—H1E···O2iv0.84 (2)1.86 (2)2.6908 (14)172 (2)
C1—H1B···O4iii0.97002.54003.4145 (18)151.00
Symmetry codes: (ii) x, y, z+1; (iii) x1/2, y, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

The authors are grateful to the University of Urmiyeh for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBandoli, G., Dolmella, A., Gerber, T. I. A., Mpinda, D., Perils, J. & Preez, J. G. H. (2002). J. Coord. Chem. 55, 823–833.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEsmhosseini, M. (2010). Acta Cryst. E66, m1057.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEsmhosseini, M. & Maleki, S. (2010). Acta Cryst. E66, m1052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLewiriski, J., Zachara, J. & Kopec, T. (1998). Inorg. Chem. Commun. 1, 182–184.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds