organic compounds
Nifedipine–pyrazine (2/1)
aSSCI (a division of Aptuit), 3065 Kent Avenue, West Lafayette, IN 47909, USA
*Correspondence e-mail: nathan.schultheiss@aptuit.com
In the title compound, 2C17H18N2O6·C4H4N2 [systematic name: 3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate–pyrazine (2/1)], the complete pyrazine molecule is generated by crystallographic inversion symmetry. The center of the pyrazine ring lies on an inversion center. The nifedipine molecules are linked into chains along the c axis through N—H⋯O hydrogen bonds, while the pyrazine molecules are organized in the structure through van der Waals interactions.
Related literature
Co-crystalline materials are of pharmaceutical interest due to their ability to alter the physicochemical properties of active pharmaceutical ingredients (APIs) (Schultheiss et al., 2009) and provide drug repositioning or life-cycle management (Trask, 2007). The corresponding of nifedipine has been reported (Triggle et al., 2003) and it also forms chains through N—H⋯O hydrogen bonds. Other crystalline forms also exist: polymorphs (Burger et al., 1996) solvates/hydrates (Caira et al., 2003) and a metal complex (Bontchev et al., 2003), as well as a non-crystalline, amorphous phase (Miyazaki et al., 2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON and Mercury (Macrae et al., 2006).
Supporting information
https://doi.org/10.1107/S1600536810031703/kj2152sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810031703/kj2152Isup2.hkl
The title compound was prepared by adding solid nifedipine to a nearly
of pyrazine in methanol and allowed to stir for ~24 h at ambient temperature before filtering. Crystals of suitable size for single-crystal analysis were obtained directly from the experiment.The amino H-atom was located in a difference Fourier map. All other H-atoms were positioned geometrically and allowed to ride on their parent atoms with U(H) set to 1.5Ueq(C) for methyl and 1.2Ueq(C) for all other carbon atoms.
Designing, preparing, and characterizing cocrystalline materials is a rapidly growing area of research, especially in the area of pharmaceutics, due to their ability to alter the physicochemical properties of active pharmaceutical ingredients (APIs) (Schultheiss et al., 2009) and provide drug repositioning or life-cycle management (Trask, 2007). Cocrystals are multi-component crystals where the individual, neutral molecules are typically held together through hydrogen-bonding. Nifedipine (1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl) -3,5-pyridine dicarboxylic acid dimethyl ester),a calcium-channel blocker, is known to exist in a variety of crystalline forms: polymorphs (Burger et al., 1996), solvates/hydrates (Caira et al., 2003), and a metal complex (Bontchev et al., 2003), as well as a non-crystalline, amorphous phase (Miyazaki et al., 2007). Suprisingly, examples of nifedipine cocrystals have yet to be published in the open literature, and thus we report here the 2:1 cocrystal of nifedipine and pyrazine.
A view of the
of the title compound and its numbering scheme are displayed in Fig. 1. The material crystallizes in a 2:1 (nifedipine:pyrazine) stoichiometric ratio, although the contains the components in a 1:0.5 ratio, because the center of the pyrazine ring resides on an inversion center. It should also be noted that the nitro-substituted phenyl ring is relatively orthogonal ("axial") to the dihydropyridine ring (Table 1) which is displayed in Fig. 1. Nonetheless, the nifedipine molecules are linked into linear, one-dimensional chains with a graph set notation of C(6) through N—H···O hydrogen bonds from the N—H moiety to a carbonyl moiety, Table 2. The hydrogen bonds are running along the crystallographic c axis. Interestingly, the pyrazine molecules are not participating in hydrogen bonding with nifedipine, but are organized in between nifedipine rows through multiple van der Waals interactions (Fig. 2). Upon extending the structure into three-dimensions, the organization of the pyrazine molecules within the are clearly shown. The pyrazine molecules are not only between one-dimensional rows of nifedipine, but also 'sandwiched' between methyl-ester groups from neighboring nifedipine molecules.Cocrystalline materials are of pharmaceutical interest due to their ability to alter the physicochemical properties of active pharmaceutical ingredients (APIs) (Schultheiss et al., 2009) and provide drug repositioning or life-cycle management (Trask, 2007). The corresponding
of nifedipine has been reported (Triggle et al., 2003) and it also forms chains through N—H···O hydrogen bonds. Other crystalline forms also exist: polymorphs (Burger et al., 1996) solvates/hydrates (Caira et al., 2003) and a metal complex (Bontchev et al., 2003), as well as a non-crystalline, amorphous phase (Miyazaki et al., 2007).Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).C19H20N3O6 | F(000) = 812 |
Mr = 386.38 | Dx = 1.429 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9767 reflections |
a = 13.6278 (14) Å | θ = 2.6–31.7° |
b = 9.1594 (9) Å | µ = 0.11 mm−1 |
c = 14.4432 (14) Å | T = 120 K |
β = 94.841 (4)° | Prism, colourless |
V = 1796.4 (3) Å3 | 0.24 × 0.18 × 0.10 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 4916 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.036 |
Graphite monochromator | θmax = 31.8°, θmin = 2.6° |
φ and ω scans | h = −20→19 |
27572 measured reflections | k = −13→13 |
6070 independent reflections | l = −17→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.070P)2 + 0.250P] where P = (Fo2 + 2Fc2)/3 |
6070 reflections | (Δ/σ)max < 0.001 |
261 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C19H20N3O6 | V = 1796.4 (3) Å3 |
Mr = 386.38 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.6278 (14) Å | µ = 0.11 mm−1 |
b = 9.1594 (9) Å | T = 120 K |
c = 14.4432 (14) Å | 0.24 × 0.18 × 0.10 mm |
β = 94.841 (4)° |
Bruker APEXII CCD diffractometer | 4916 reflections with I > 2σ(I) |
27572 measured reflections | Rint = 0.036 |
6070 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.48 e Å−3 |
6070 reflections | Δρmin = −0.24 e Å−3 |
261 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N11 | 0.91012 (7) | 0.66064 (10) | 0.58015 (6) | 0.01904 (17) | |
H11 | 0.9275 (12) | 0.6672 (17) | 0.6420 (12) | 0.033 (4)* | |
C12 | 0.96337 (7) | 0.73800 (11) | 0.52067 (6) | 0.01680 (18) | |
C13 | 0.92963 (7) | 0.74418 (11) | 0.42914 (6) | 0.01588 (17) | |
C14 | 0.82937 (7) | 0.68380 (10) | 0.39640 (6) | 0.01536 (17) | |
H14 | 0.8323 | 0.6431 | 0.3324 | 0.018* | |
C15 | 0.80215 (7) | 0.56174 (10) | 0.46039 (6) | 0.01635 (17) | |
C16 | 0.83786 (7) | 0.56204 (11) | 0.55095 (7) | 0.01793 (18) | |
C22 | 1.05495 (8) | 0.80615 (12) | 0.56668 (7) | 0.0214 (2) | |
H22A | 1.0559 | 0.9104 | 0.5515 | 0.032* | |
H22B | 1.1129 | 0.7586 | 0.5444 | 0.032* | |
H22C | 1.0558 | 0.7940 | 0.6342 | 0.032* | |
C23 | 0.98313 (7) | 0.80823 (11) | 0.35653 (7) | 0.01736 (18) | |
O23 | 1.06719 (5) | 0.87616 (9) | 0.38444 (5) | 0.02116 (16) | |
O24 | 0.95391 (6) | 0.80104 (11) | 0.27468 (5) | 0.0315 (2) | |
C25 | 0.73593 (7) | 0.44528 (11) | 0.42414 (7) | 0.01813 (18) | |
O25 | 0.71443 (6) | 0.45992 (8) | 0.33133 (5) | 0.02199 (16) | |
O26 | 0.70447 (6) | 0.34517 (9) | 0.46697 (6) | 0.02589 (17) | |
C26 | 0.80877 (9) | 0.46176 (12) | 0.62596 (7) | 0.0237 (2) | |
H26A | 0.7373 | 0.4660 | 0.6291 | 0.036* | |
H26B | 0.8418 | 0.4921 | 0.6858 | 0.036* | |
H26C | 0.8282 | 0.3616 | 0.6121 | 0.036* | |
C27 | 1.11954 (9) | 0.93700 (14) | 0.31148 (8) | 0.0264 (2) | |
H27A | 1.1818 | 0.9789 | 0.3380 | 0.040* | |
H27B | 1.0795 | 1.0136 | 0.2795 | 0.040* | |
H27C | 1.1330 | 0.8601 | 0.2671 | 0.040* | |
C28 | 0.65577 (9) | 0.34450 (13) | 0.28780 (8) | 0.0276 (2) | |
H28A | 0.6401 | 0.3676 | 0.2219 | 0.041* | |
H28B | 0.5946 | 0.3347 | 0.3184 | 0.041* | |
H28C | 0.6926 | 0.2526 | 0.2934 | 0.041* | |
C31 | 0.75049 (7) | 0.80317 (10) | 0.39303 (6) | 0.01571 (17) | |
C32 | 0.67448 (7) | 0.82130 (11) | 0.32317 (7) | 0.01755 (18) | |
N32 | 0.66655 (7) | 0.73025 (10) | 0.23900 (6) | 0.01976 (17) | |
O32 | 0.73861 (6) | 0.71650 (9) | 0.19529 (5) | 0.02539 (17) | |
O33 | 0.58615 (6) | 0.67540 (9) | 0.21593 (6) | 0.02713 (18) | |
C33 | 0.60043 (8) | 0.92431 (12) | 0.32730 (7) | 0.0219 (2) | |
H33 | 0.5497 | 0.9320 | 0.2782 | 0.026* | |
C34 | 0.60109 (8) | 1.01542 (12) | 0.40326 (8) | 0.0239 (2) | |
H34 | 0.5512 | 1.0872 | 0.4068 | 0.029* | |
C35 | 0.67529 (8) | 1.00121 (12) | 0.47455 (7) | 0.0227 (2) | |
H35 | 0.6763 | 1.0634 | 0.5273 | 0.027* | |
C36 | 0.74769 (8) | 0.89694 (11) | 0.46907 (7) | 0.01926 (19) | |
H36 | 0.7975 | 0.8886 | 0.5189 | 0.023* | |
N41 | 0.45265 (8) | 0.46068 (12) | 0.41368 (7) | 0.0302 (2) | |
C42 | 0.45577 (9) | 0.37242 (13) | 0.48684 (9) | 0.0289 (2) | |
H42 | 0.4248 | 0.2796 | 0.4805 | 0.035* | |
C43 | 0.50253 (9) | 0.41122 (14) | 0.57190 (8) | 0.0297 (2) | |
H43 | 0.5027 | 0.3439 | 0.6220 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N11 | 0.0221 (4) | 0.0250 (4) | 0.0100 (3) | −0.0011 (3) | 0.0008 (3) | 0.0011 (3) |
C12 | 0.0176 (4) | 0.0209 (4) | 0.0119 (4) | 0.0010 (3) | 0.0011 (3) | −0.0001 (3) |
C13 | 0.0159 (4) | 0.0201 (4) | 0.0116 (4) | −0.0002 (3) | 0.0012 (3) | 0.0004 (3) |
C14 | 0.0169 (4) | 0.0183 (4) | 0.0109 (4) | −0.0003 (3) | 0.0015 (3) | −0.0002 (3) |
C15 | 0.0170 (4) | 0.0175 (4) | 0.0147 (4) | 0.0003 (3) | 0.0025 (3) | 0.0005 (3) |
C16 | 0.0199 (4) | 0.0197 (4) | 0.0145 (4) | 0.0015 (3) | 0.0032 (3) | 0.0013 (3) |
C22 | 0.0200 (5) | 0.0293 (5) | 0.0143 (4) | −0.0021 (4) | −0.0014 (3) | −0.0011 (4) |
C23 | 0.0174 (4) | 0.0215 (4) | 0.0132 (4) | 0.0005 (3) | 0.0014 (3) | −0.0002 (3) |
O23 | 0.0211 (3) | 0.0285 (4) | 0.0141 (3) | −0.0065 (3) | 0.0031 (3) | −0.0004 (3) |
O24 | 0.0279 (4) | 0.0550 (6) | 0.0111 (3) | −0.0138 (4) | −0.0004 (3) | 0.0043 (3) |
C25 | 0.0182 (4) | 0.0187 (4) | 0.0178 (4) | 0.0024 (3) | 0.0029 (3) | −0.0004 (3) |
O25 | 0.0246 (4) | 0.0240 (4) | 0.0170 (3) | −0.0059 (3) | −0.0004 (3) | −0.0019 (3) |
O26 | 0.0308 (4) | 0.0224 (4) | 0.0247 (4) | −0.0055 (3) | 0.0037 (3) | 0.0025 (3) |
C26 | 0.0300 (5) | 0.0242 (5) | 0.0173 (4) | −0.0007 (4) | 0.0043 (4) | 0.0057 (4) |
C27 | 0.0270 (5) | 0.0335 (6) | 0.0196 (5) | −0.0097 (4) | 0.0066 (4) | 0.0014 (4) |
C28 | 0.0273 (5) | 0.0295 (5) | 0.0256 (5) | −0.0089 (4) | 0.0003 (4) | −0.0067 (4) |
C31 | 0.0166 (4) | 0.0175 (4) | 0.0131 (4) | −0.0010 (3) | 0.0018 (3) | 0.0015 (3) |
C32 | 0.0188 (4) | 0.0202 (4) | 0.0135 (4) | −0.0018 (3) | 0.0001 (3) | 0.0002 (3) |
N32 | 0.0221 (4) | 0.0224 (4) | 0.0142 (4) | 0.0003 (3) | −0.0022 (3) | 0.0010 (3) |
O32 | 0.0270 (4) | 0.0339 (4) | 0.0155 (3) | 0.0015 (3) | 0.0033 (3) | −0.0017 (3) |
O33 | 0.0249 (4) | 0.0304 (4) | 0.0245 (4) | −0.0054 (3) | −0.0067 (3) | −0.0025 (3) |
C33 | 0.0204 (5) | 0.0244 (5) | 0.0204 (5) | 0.0022 (4) | −0.0012 (3) | 0.0022 (4) |
C34 | 0.0252 (5) | 0.0227 (5) | 0.0237 (5) | 0.0054 (4) | 0.0014 (4) | 0.0010 (4) |
C35 | 0.0276 (5) | 0.0208 (4) | 0.0197 (5) | 0.0031 (4) | 0.0017 (4) | −0.0029 (4) |
C36 | 0.0223 (5) | 0.0204 (4) | 0.0149 (4) | 0.0009 (3) | 0.0002 (3) | −0.0008 (3) |
N41 | 0.0291 (5) | 0.0373 (5) | 0.0247 (5) | −0.0013 (4) | 0.0058 (4) | −0.0037 (4) |
C42 | 0.0283 (6) | 0.0271 (5) | 0.0327 (6) | −0.0038 (4) | 0.0101 (4) | −0.0035 (5) |
C43 | 0.0313 (6) | 0.0325 (6) | 0.0264 (5) | 0.0000 (5) | 0.0093 (4) | 0.0046 (5) |
N11—C12 | 1.3682 (13) | C27—H27A | 0.9800 |
N11—C16 | 1.3759 (13) | C27—H27B | 0.9800 |
N11—H11 | 0.906 (17) | C27—H27C | 0.9800 |
C12—C13 | 1.3636 (13) | C28—H28A | 0.9800 |
C12—C22 | 1.4996 (14) | C28—H28B | 0.9800 |
C13—C23 | 1.4507 (13) | C28—H28C | 0.9800 |
C13—C14 | 1.5125 (13) | C31—C32 | 1.3937 (13) |
C14—C15 | 1.5165 (13) | C31—C36 | 1.3973 (13) |
C14—C31 | 1.5311 (13) | C32—C33 | 1.3865 (14) |
C14—H14 | 1.0000 | C32—N32 | 1.4706 (13) |
C15—C16 | 1.3566 (13) | N32—O32 | 1.2180 (12) |
C15—C25 | 1.4651 (14) | N32—O33 | 1.2257 (12) |
C16—C26 | 1.4989 (14) | C33—C34 | 1.3778 (15) |
C22—H22A | 0.9800 | C33—H33 | 0.9500 |
C22—H22B | 0.9800 | C34—C35 | 1.3871 (15) |
C22—H22C | 0.9800 | C34—H34 | 0.9500 |
C23—O24 | 1.2170 (12) | C35—C36 | 1.3802 (14) |
C23—O23 | 1.3357 (12) | C35—H35 | 0.9500 |
O23—C27 | 1.4342 (12) | C36—H36 | 0.9500 |
C25—O26 | 1.2050 (12) | N41—C42 | 1.3282 (17) |
C25—O25 | 1.3544 (12) | N41—C43i | 1.3311 (17) |
O25—C28 | 1.4377 (13) | C42—C43 | 1.3819 (18) |
C26—H26A | 0.9800 | C42—H42 | 0.9500 |
C26—H26B | 0.9800 | C43—N41i | 1.3311 (17) |
C26—H26C | 0.9800 | C43—H43 | 0.9500 |
C12—N11—C16 | 123.46 (8) | O23—C27—H27B | 109.5 |
C12—N11—H11 | 118.4 (10) | H27A—C27—H27B | 109.5 |
C16—N11—H11 | 117.8 (10) | O23—C27—H27C | 109.5 |
C13—C12—N11 | 118.48 (9) | H27A—C27—H27C | 109.5 |
C13—C12—C22 | 127.75 (9) | H27B—C27—H27C | 109.5 |
N11—C12—C22 | 113.77 (8) | O25—C28—H28A | 109.5 |
C12—C13—C23 | 124.66 (9) | O25—C28—H28B | 109.5 |
C12—C13—C14 | 120.65 (8) | H28A—C28—H28B | 109.5 |
C23—C13—C14 | 114.68 (8) | O25—C28—H28C | 109.5 |
C13—C14—C15 | 109.88 (8) | H28A—C28—H28C | 109.5 |
C13—C14—C31 | 111.23 (8) | H28B—C28—H28C | 109.5 |
C15—C14—C31 | 109.79 (8) | C32—C31—C36 | 115.33 (9) |
C13—C14—H14 | 108.6 | C32—C31—C14 | 125.80 (8) |
C15—C14—H14 | 108.6 | C36—C31—C14 | 118.66 (8) |
C31—C14—H14 | 108.6 | C33—C32—C31 | 123.31 (9) |
C16—C15—C25 | 120.41 (9) | C33—C32—N32 | 114.74 (9) |
C16—C15—C14 | 119.99 (9) | C31—C32—N32 | 121.95 (9) |
C25—C15—C14 | 119.60 (8) | O32—N32—O33 | 123.91 (9) |
C15—C16—N11 | 119.08 (9) | O32—N32—C32 | 118.74 (9) |
C15—C16—C26 | 126.89 (9) | O33—N32—C32 | 117.32 (9) |
N11—C16—C26 | 114.01 (9) | C34—C33—C32 | 119.38 (10) |
C12—C22—H22A | 109.5 | C34—C33—H33 | 120.3 |
C12—C22—H22B | 109.5 | C32—C33—H33 | 120.3 |
H22A—C22—H22B | 109.5 | C33—C34—C35 | 119.32 (10) |
C12—C22—H22C | 109.5 | C33—C34—H34 | 120.3 |
H22A—C22—H22C | 109.5 | C35—C34—H34 | 120.3 |
H22B—C22—H22C | 109.5 | C36—C35—C34 | 120.14 (10) |
O24—C23—O23 | 121.36 (9) | C36—C35—H35 | 119.9 |
O24—C23—C13 | 122.49 (9) | C34—C35—H35 | 119.9 |
O23—C23—C13 | 116.15 (8) | C35—C36—C31 | 122.51 (9) |
C23—O23—C27 | 115.24 (8) | C35—C36—H36 | 118.7 |
O26—C25—O25 | 121.79 (9) | C31—C36—H36 | 118.7 |
O26—C25—C15 | 127.27 (9) | C42—N41—C43i | 115.38 (11) |
O25—C25—C15 | 110.91 (8) | C42—N41—C42ii | 106.16 (7) |
C25—O25—C28 | 115.21 (8) | C43i—N41—C42ii | 137.11 (8) |
C16—C26—H26A | 109.5 | N41—C42—C43 | 122.15 (11) |
C16—C26—H26B | 109.5 | N41—C42—H42 | 118.9 |
H26A—C26—H26B | 109.5 | C43—C42—H42 | 118.9 |
C16—C26—H26C | 109.5 | N41i—C43—C42 | 122.46 (11) |
H26A—C26—H26C | 109.5 | N41i—C43—H43 | 118.8 |
H26B—C26—H26C | 109.5 | C42—C43—H43 | 118.8 |
O23—C27—H27A | 109.5 | ||
C16—N11—C12—C13 | 15.45 (15) | C14—C15—C25—O26 | −176.60 (10) |
C16—N11—C12—C22 | −164.07 (9) | C16—C15—C25—O25 | −175.78 (9) |
N11—C12—C13—C23 | −173.05 (9) | C14—C15—C25—O25 | 5.23 (12) |
C22—C12—C13—C23 | 6.40 (17) | O26—C25—O25—C28 | −2.79 (14) |
N11—C12—C13—C14 | 7.81 (14) | C15—C25—O25—C28 | 175.50 (8) |
C22—C12—C13—C14 | −172.75 (9) | C13—C14—C31—C32 | 138.67 (9) |
C12—C13—C14—C15 | −27.91 (12) | C15—C14—C31—C32 | −99.50 (11) |
C23—C13—C14—C15 | 152.87 (8) | C13—C14—C31—C36 | −46.76 (11) |
C12—C13—C14—C31 | 93.88 (10) | C15—C14—C31—C36 | 75.07 (11) |
C23—C13—C14—C31 | −85.35 (10) | C36—C31—C32—C33 | −0.04 (14) |
C13—C14—C15—C16 | 28.86 (12) | C14—C31—C32—C33 | 174.69 (9) |
C31—C14—C15—C16 | −93.78 (10) | C36—C31—C32—N32 | −179.46 (9) |
C13—C14—C15—C25 | −152.15 (8) | C14—C31—C32—N32 | −4.73 (15) |
C31—C14—C15—C25 | 85.21 (10) | C33—C32—N32—O32 | 130.11 (10) |
C25—C15—C16—N11 | 171.13 (9) | C31—C32—N32—O32 | −50.42 (13) |
C14—C15—C16—N11 | −9.89 (14) | C33—C32—N32—O33 | −48.13 (12) |
C25—C15—C16—C26 | −7.30 (15) | C31—C32—N32—O33 | 131.33 (10) |
C14—C15—C16—C26 | 171.68 (9) | C31—C32—C33—C34 | 0.63 (16) |
C12—N11—C16—C15 | −14.39 (15) | N32—C32—C33—C34 | −179.91 (9) |
C12—N11—C16—C26 | 164.24 (9) | C32—C33—C34—C35 | −0.67 (16) |
C12—C13—C23—O24 | 173.91 (11) | C33—C34—C35—C36 | 0.14 (17) |
C14—C13—C23—O24 | −6.90 (14) | C34—C35—C36—C31 | 0.48 (16) |
C12—C13—C23—O23 | −6.01 (15) | C32—C31—C36—C35 | −0.51 (14) |
C14—C13—C23—O23 | 173.19 (8) | C14—C31—C36—C35 | −175.64 (9) |
O24—C23—O23—C27 | −0.71 (15) | C43i—N41—C42—C43 | −0.10 (19) |
C13—C23—O23—C27 | 179.21 (9) | C42ii—N41—C42—C43 | −169.14 (10) |
C16—C15—C25—O26 | 2.38 (16) | N41—C42—C43—N41i | 0.1 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O24iii | 0.906 (17) | 1.942 (17) | 2.8444 (12) | 173.6 (15) |
Symmetry code: (iii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C19H20N3O6 |
Mr | 386.38 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 13.6278 (14), 9.1594 (9), 14.4432 (14) |
β (°) | 94.841 (4) |
V (Å3) | 1796.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.24 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27572, 6070, 4916 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.742 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.125, 1.07 |
No. of reflections | 6070 |
No. of parameters | 261 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.48, −0.24 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O24i | 0.906 (17) | 1.942 (17) | 2.8444 (12) | 173.6 (15) |
Symmetry code: (i) x, −y+3/2, z+1/2. |
Acknowledgements
We would like to thank Dr John Desper (Kansas State Univeristy) for the data collection and structure solution. We also thank Mr Eyal Barash and Dr Richard McClurg for their careful review of this manuscript.
References
Bontchev, P. R., Mehandjiev, D. R., Ivanova, B. B. & Bontchev, R. P. (2003). Transition Met. Chem. 28, 745–748. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burger, A. & Koller, K. T. (1996). Sci. Pharm. 64, 293–301. CAS Google Scholar
Caira, M. R., Robbertse, Y., Bergh, J. J., Song, M. & De Villiers, M. M. (2003). J. Pharm. Sci. 92, 2519–2533. Web of Science CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Miyazaki, T., Yoshioka, S., Aso, Y. & Kawanishi, T. (2007). Int. J. Pharm. 336, 191–195. Web of Science CrossRef PubMed CAS Google Scholar
Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trask, A. V. (2007). Mol. Pharm. 4, 301–309. Web of Science CrossRef PubMed CAS Google Scholar
Triggle, A. M., Shefter, E. & Triggle, D. J. (2003). J. Med. Chem. 23, 1442–1445. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Designing, preparing, and characterizing cocrystalline materials is a rapidly growing area of research, especially in the area of pharmaceutics, due to their ability to alter the physicochemical properties of active pharmaceutical ingredients (APIs) (Schultheiss et al., 2009) and provide drug repositioning or life-cycle management (Trask, 2007). Cocrystals are multi-component crystals where the individual, neutral molecules are typically held together through hydrogen-bonding. Nifedipine (1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl) -3,5-pyridine dicarboxylic acid dimethyl ester),a calcium-channel blocker, is known to exist in a variety of crystalline forms: polymorphs (Burger et al., 1996), solvates/hydrates (Caira et al., 2003), and a metal complex (Bontchev et al., 2003), as well as a non-crystalline, amorphous phase (Miyazaki et al., 2007). Suprisingly, examples of nifedipine cocrystals have yet to be published in the open literature, and thus we report here the 2:1 cocrystal of nifedipine and pyrazine.
A view of the asymmetric unit of the title compound and its numbering scheme are displayed in Fig. 1. The material crystallizes in a 2:1 (nifedipine:pyrazine) stoichiometric ratio, although the asymmetric unit contains the components in a 1:0.5 ratio, because the center of the pyrazine ring resides on an inversion center. It should also be noted that the nitro-substituted phenyl ring is relatively orthogonal ("axial") to the dihydropyridine ring (Table 1) which is displayed in Fig. 1. Nonetheless, the nifedipine molecules are linked into linear, one-dimensional chains with a graph set notation of C(6) through N—H···O hydrogen bonds from the N—H moiety to a carbonyl moiety, Table 2. The hydrogen bonds are running along the crystallographic c axis. Interestingly, the pyrazine molecules are not participating in hydrogen bonding with nifedipine, but are organized in between nifedipine rows through multiple van der Waals interactions (Fig. 2). Upon extending the structure into three-dimensions, the organization of the pyrazine molecules within the crystal structure are clearly shown. The pyrazine molecules are not only between one-dimensional rows of nifedipine, but also 'sandwiched' between methyl-ester groups from neighboring nifedipine molecules.