metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1-[(4-methyl­phen­yl)imino­meth­yl]-2-naphtho­lato-κ2N,O}copper(II)

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China;
*Correspondence e-mail: chm_zhuph@ujn.edu.cn

(Received 21 July 2010; accepted 1 August 2010; online 11 August 2010)

In the title complex, [Cu(C18H14NO)2], the CuII ion lies on an inversion center and is coordinated in a slightly distorted square-planar environment. The 1-[(4-methyl­phen­yl)imino­meth­yl]-2-naphtho­late ligands are coordinated in a trans arrangement with respect to the N and O atoms.

Related literature

For background information and applications of Schiff base complexes, see: Adsule et al. (2006[Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242-7246.]); Barton et al. (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon Press.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Henrici-Olive & Olive (1984[Henrici-Olive, G. & Olive, S. (1984). The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide. Berlin: Springer.]); Erxleben & Schumacher (2001[Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. 12, 3039-3046.]). For related structures, see: Kani et al. (1998[Kani, Y., Ohba, S., Ishikawa, T., Sakamoto, M. & Nishida, Y. (1998). Acta Cryst. C54, 191-193.]); Lo et al. (1997[Lo, J.-M., Yao, H.-H., Liao, F.-L., Wang, S.-L. & Lu, T.-H. (1997). Acta Cryst. C53, 848-850.]); Ünver (2002[Ünver, H. (2002). J. Mol. Struct. 641, 35-40.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H14NO)2]

  • Mr = 584.14

  • Triclinic, [P \overline 1]

  • a = 7.0948 (6) Å

  • b = 10.2335 (7) Å

  • c = 10.5784 (10) Å

  • α = 104.559 (7)°

  • β = 98.728 (7)°

  • γ = 102.573 (7)°

  • V = 708.01 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.25 × 0.12 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.824, Tmax = 0.916

  • 7213 measured reflections

  • 2878 independent reflections

  • 2395 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.076

  • S = 1.01

  • 2878 reflections

  • 188 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O 1.8837 (12)
Cu1—N 1.9848 (14)
Oi—Cu1—O 180
Oi—Cu1—N 89.58 (5)
O—Cu1—N 90.42 (5)
N—Cu1—Ni 180
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their metal complexes have aroused considerable attention, mainly because of their interesting structures and potential applications, e.g. catalytic activity (Henrici-Olive & Olive et al., 1984), photochromic properties (Cohen et al., 1964), biological activity (Barton et al., 1979). Additionally, copper (II) complexes of Schiff bases have been reported for their applications in the design and construction of new magnetic materials (Erxleben & Schumacher, 2001), and their cellular proteasome activity (Adsule et al., 2006). Herein we report the synthesis and crystal structure of the title complex.

The molecular structure of the title complex is shown in Fig. 1. The CuII ion is coordinated by two O atoms and two N atoms of two bidentate schiff base ligands to form a square-planar geometry in a trans arrangement. The Cu—N and Cu—O bond lengths agree with those in related complexes (e.g. Kani et al., 1998; Lo et al., 1997; Ünver, 2002).

Related literature top

For background information and applications of Schiff base complexes, see: Adsule et al. (2006); Barton et al. (1979); Cohen et al. (1964); Henrici-Olive & Olive (1984); Erxleben & Schumacher (2001). For related structures, see: Kani et al. (1998); Lo et al. (1997); Ünver (2002).

Experimental top

Copper(II) acetate hydrate (0.199 g, 0.001 mol) in methanol (50 ml) and N-(p-Tolyl)-2-hydroxy-1-naphthaldimine (0.586 g, 0.002 mol) in acetonitrile(75 ml) were mixed and heated at 333 K for 1 h. The solution was filtered and the filtrate kept in a beaker at room temperature for crystallization. Black crystals started appearing after 3 days and were then collected, 0.621 g (79%) yields.

Refinement top

Hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic H atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl H atoms.

Structure description top

Schiff bases and their metal complexes have aroused considerable attention, mainly because of their interesting structures and potential applications, e.g. catalytic activity (Henrici-Olive & Olive et al., 1984), photochromic properties (Cohen et al., 1964), biological activity (Barton et al., 1979). Additionally, copper (II) complexes of Schiff bases have been reported for their applications in the design and construction of new magnetic materials (Erxleben & Schumacher, 2001), and their cellular proteasome activity (Adsule et al., 2006). Herein we report the synthesis and crystal structure of the title complex.

The molecular structure of the title complex is shown in Fig. 1. The CuII ion is coordinated by two O atoms and two N atoms of two bidentate schiff base ligands to form a square-planar geometry in a trans arrangement. The Cu—N and Cu—O bond lengths agree with those in related complexes (e.g. Kani et al., 1998; Lo et al., 1997; Ünver, 2002).

For background information and applications of Schiff base complexes, see: Adsule et al. (2006); Barton et al. (1979); Cohen et al. (1964); Henrici-Olive & Olive (1984); Erxleben & Schumacher (2001). For related structures, see: Kani et al. (1998); Lo et al. (1997); Ünver (2002).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, with atom labels and 25% probability displacement ellipsoids for non-H atoms (symmetry code: (A) -x+1, -y, -z).
Bis{1-[(4-methylphenyl)iminomethyl]-2-naphtholato- κ2N,O}copper(II) top
Crystal data top
[Cu(C18H14NO)2]Z = 1
Mr = 584.14F(000) = 303
Triclinic, P1Dx = 1.370 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0948 (6) ÅCell parameters from 1252 reflections
b = 10.2335 (7) Åθ = 2.5–23.9°
c = 10.5784 (10) ŵ = 0.81 mm1
α = 104.559 (7)°T = 293 K
β = 98.728 (7)°Block, black
γ = 102.573 (7)°0.25 × 0.12 × 0.11 mm
V = 708.01 (10) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2878 independent reflections
Radiation source: fine-focus sealed tube2395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.824, Tmax = 0.916k = 1212
7213 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
2878 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Cu(C18H14NO)2]γ = 102.573 (7)°
Mr = 584.14V = 708.01 (10) Å3
Triclinic, P1Z = 1
a = 7.0948 (6) ÅMo Kα radiation
b = 10.2335 (7) ŵ = 0.81 mm1
c = 10.5784 (10) ÅT = 293 K
α = 104.559 (7)°0.25 × 0.12 × 0.11 mm
β = 98.728 (7)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2878 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2395 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.916Rint = 0.028
7213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
2878 reflectionsΔρmin = 0.18 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.00000.03685 (13)
O0.63653 (18)0.08439 (14)0.10934 (13)0.0465 (3)
N0.3572 (2)0.06231 (15)0.14161 (14)0.0353 (3)
C0.2582 (3)0.17043 (18)0.14181 (17)0.0348 (4)
C10.3384 (3)0.00334 (19)0.23682 (18)0.0374 (4)
H10.25610.03260.29220.045*
C20.5826 (3)0.13173 (18)0.20525 (18)0.0380 (4)
C50.0594 (3)0.14665 (19)0.14435 (19)0.0403 (4)
H50.01380.05840.14190.048*
C60.0300 (3)0.2550 (2)0.15063 (19)0.0464 (5)
H60.16360.23800.15250.056*
C70.3611 (3)0.30083 (19)0.13974 (19)0.0443 (5)
H70.49290.31670.13320.053*
C80.3767 (3)0.16156 (19)0.37004 (18)0.0397 (4)
C90.0726 (3)0.3872 (2)0.15411 (19)0.0459 (5)
C100.4283 (3)0.09993 (19)0.26615 (18)0.0366 (4)
C120.2192 (3)0.1408 (2)0.43269 (19)0.0481 (5)
H120.14540.08240.40910.058*
C140.4870 (3)0.24967 (19)0.41041 (19)0.0452 (5)
C150.2694 (3)0.4076 (2)0.1473 (2)0.0493 (5)
H150.34170.49520.14780.059*
C170.0240 (4)0.5069 (2)0.1698 (3)0.0680 (7)
H17A0.16120.47140.12530.102*
H17B0.04110.57440.13080.102*
H17C0.01320.55070.26310.102*
C180.6458 (3)0.2737 (2)0.3493 (2)0.0530 (5)
H180.72050.32930.37790.064*
C190.1725 (3)0.2047 (2)0.5277 (2)0.0595 (6)
H190.06840.18890.56780.071*
C200.6920 (3)0.2190 (2)0.2516 (2)0.0493 (5)
H200.79660.23800.21360.059*
C210.2798 (4)0.2931 (2)0.5642 (2)0.0651 (6)
H210.24550.33790.62700.078*
C230.4339 (4)0.3138 (2)0.5084 (2)0.0602 (6)
H230.50670.37140.53500.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03127 (19)0.0423 (2)0.0432 (2)0.01461 (14)0.01515 (13)0.01531 (15)
O0.0397 (7)0.0623 (9)0.0530 (8)0.0251 (7)0.0218 (6)0.0273 (7)
N0.0314 (8)0.0371 (8)0.0410 (9)0.0132 (7)0.0112 (6)0.0126 (7)
C0.0350 (9)0.0366 (10)0.0338 (10)0.0135 (8)0.0105 (7)0.0072 (8)
C10.0311 (9)0.0421 (11)0.0391 (11)0.0110 (8)0.0121 (8)0.0083 (9)
C20.0334 (10)0.0379 (10)0.0413 (11)0.0095 (8)0.0072 (8)0.0100 (9)
C50.0370 (10)0.0388 (10)0.0472 (11)0.0122 (8)0.0149 (8)0.0110 (9)
C60.0369 (10)0.0510 (12)0.0538 (12)0.0192 (9)0.0159 (9)0.0098 (10)
C70.0342 (10)0.0436 (11)0.0559 (13)0.0101 (9)0.0109 (8)0.0157 (10)
C80.0415 (10)0.0365 (10)0.0368 (10)0.0058 (8)0.0065 (8)0.0086 (8)
C90.0523 (12)0.0435 (12)0.0434 (11)0.0232 (10)0.0105 (9)0.0067 (9)
C100.0349 (10)0.0374 (10)0.0373 (10)0.0095 (8)0.0082 (7)0.0107 (8)
C120.0501 (12)0.0532 (13)0.0444 (12)0.0134 (10)0.0153 (9)0.0179 (10)
C140.0548 (12)0.0391 (11)0.0396 (11)0.0107 (9)0.0063 (9)0.0120 (9)
C150.0516 (12)0.0363 (11)0.0581 (13)0.0090 (10)0.0085 (10)0.0148 (10)
C170.0777 (17)0.0590 (14)0.0781 (17)0.0410 (13)0.0208 (13)0.0175 (13)
C180.0584 (13)0.0500 (13)0.0570 (14)0.0249 (11)0.0082 (10)0.0210 (11)
C190.0625 (14)0.0696 (15)0.0463 (13)0.0101 (12)0.0208 (10)0.0184 (12)
C200.0465 (12)0.0539 (13)0.0569 (13)0.0255 (10)0.0160 (9)0.0195 (11)
C210.0892 (18)0.0648 (15)0.0485 (13)0.0162 (14)0.0222 (12)0.0289 (12)
C230.0826 (17)0.0534 (14)0.0500 (13)0.0206 (12)0.0130 (12)0.0233 (11)
Geometric parameters (Å, º) top
Cu1—Oi1.8837 (12)C8—C141.417 (3)
Cu1—O1.8837 (12)C8—C101.452 (3)
Cu1—N1.9848 (14)C9—C151.382 (3)
Cu1—Ni1.9848 (14)C9—C171.515 (2)
O—C21.302 (2)C12—C191.373 (3)
N—C11.307 (2)C12—H120.9300
N—C1.434 (2)C14—C231.414 (3)
C—C71.382 (2)C14—C181.417 (3)
C—C51.384 (2)C15—H150.9300
C1—C101.420 (2)C17—H17A0.9600
C1—H10.9300C17—H17B0.9600
C2—C101.408 (2)C17—H17C0.9600
C2—C201.431 (2)C18—C201.343 (3)
C5—C61.385 (2)C18—H180.9300
C5—H50.9300C19—C211.390 (3)
C6—C91.378 (3)C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C151.380 (2)C21—C231.350 (3)
C7—H70.9300C21—H210.9300
C8—C121.411 (3)C23—H230.9300
Oi—Cu1—O180C2—C10—C1120.13 (16)
Oi—Cu1—N89.58 (5)C2—C10—C8119.57 (16)
O—Cu1—N90.42 (5)C1—C10—C8119.94 (16)
Oi—Cu1—Ni90.42 (5)C19—C12—C8121.51 (19)
O—Cu1—Ni89.58 (5)C19—C12—H12119.2
N—Cu1—Ni180C8—C12—H12119.2
C2—O—Cu1128.62 (11)C23—C14—C8119.42 (19)
C1—N—C115.44 (14)C23—C14—C18121.54 (18)
C1—N—Cu1122.54 (12)C8—C14—C18119.03 (18)
C—N—Cu1121.94 (11)C7—C15—C9121.53 (18)
C7—C—C5118.92 (16)C7—C15—H15119.2
C7—C—N120.13 (15)C9—C15—H15119.2
C5—C—N120.95 (16)C9—C17—H17A109.5
N—C1—C10127.97 (17)C9—C17—H17B109.5
N—C1—H1116.0H17A—C17—H17B109.5
C10—C1—H1116.0C9—C17—H17C109.5
O—C2—C10124.11 (16)H17A—C17—H17C109.5
O—C2—C20116.69 (16)H17B—C17—H17C109.5
C10—C2—C20119.19 (17)C20—C18—C14122.24 (18)
C—C5—C6119.60 (17)C20—C18—H18118.9
C—C5—H5120.2C14—C18—H18118.9
C6—C5—H5120.2C12—C19—C21120.4 (2)
C9—C6—C5122.15 (17)C12—C19—H19119.8
C9—C6—H6118.9C21—C19—H19119.8
C5—C6—H6118.9C18—C20—C2120.91 (19)
C15—C7—C120.38 (17)C18—C20—H20119.5
C15—C7—H7119.8C2—C20—H20119.5
C—C7—H7119.8C23—C21—C19120.0 (2)
C12—C8—C14117.34 (17)C23—C21—H21120.0
C12—C8—C10123.66 (17)C19—C21—H21120.0
C14—C8—C10118.99 (17)C21—C23—C14121.4 (2)
C6—C9—C15117.32 (17)C21—C23—H23119.3
C6—C9—C17121.49 (18)C14—C23—H23119.3
C15—C9—C17121.16 (19)
Oi—Cu1—O—C271 (100)C20—C2—C10—C83.0 (3)
N—Cu1—O—C225.66 (16)N—C1—C10—C211.9 (3)
Ni—Cu1—O—C2154.34 (16)N—C1—C10—C8174.99 (17)
Oi—Cu1—N—C1159.10 (14)C12—C8—C10—C2177.19 (18)
O—Cu1—N—C120.90 (14)C14—C8—C10—C21.7 (3)
Ni—Cu1—N—C122 (100)C12—C8—C10—C19.7 (3)
Oi—Cu1—N—C17.40 (13)C14—C8—C10—C1171.42 (16)
O—Cu1—N—C162.60 (13)C14—C8—C12—C190.9 (3)
Ni—Cu1—N—C162 (100)C10—C8—C12—C19178.02 (18)
C1—N—C—C7127.26 (18)C12—C8—C14—C231.0 (3)
Cu1—N—C—C756.0 (2)C10—C8—C14—C23177.99 (17)
C1—N—C—C552.6 (2)C12—C8—C14—C18179.69 (18)
Cu1—N—C—C5124.13 (16)C10—C8—C14—C180.7 (3)
C—N—C1—C10176.06 (16)C—C7—C15—C91.4 (3)
Cu1—N—C1—C107.2 (3)C6—C9—C15—C71.2 (3)
Cu1—O—C2—C1015.1 (3)C17—C9—C15—C7176.7 (2)
Cu1—O—C2—C20166.16 (12)C23—C14—C18—C20176.8 (2)
C7—C—C5—C62.8 (3)C8—C14—C18—C201.9 (3)
N—C—C5—C6177.08 (17)C8—C12—C19—C210.3 (3)
C—C5—C6—C90.2 (3)C14—C18—C20—C20.6 (3)
C5—C—C7—C153.4 (3)O—C2—C20—C18179.34 (18)
N—C—C7—C15176.46 (17)C10—C2—C20—C181.9 (3)
C5—C6—C9—C151.8 (3)C12—C19—C21—C231.5 (4)
C5—C6—C9—C17176.09 (19)C19—C21—C23—C141.5 (4)
O—C2—C10—C18.6 (3)C8—C14—C23—C210.2 (3)
C20—C2—C10—C1170.11 (16)C18—C14—C23—C21178.5 (2)
O—C2—C10—C8178.34 (16)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C18H14NO)2]
Mr584.14
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0948 (6), 10.2335 (7), 10.5784 (10)
α, β, γ (°)104.559 (7), 98.728 (7), 102.573 (7)
V3)708.01 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.25 × 0.12 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.824, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
7213, 2878, 2395
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.01
No. of reflections2878
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O1.8837 (12)Cu1—N1.9848 (14)
Oi—Cu1—O180O—Cu1—N90.42 (5)
Oi—Cu1—N89.58 (5)N—Cu1—Ni180
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by Shandong Province (2007BS02016).

References

First citationAdsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242–7246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon Press.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationErxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. 12, 3039–3046.  CrossRef Google Scholar
First citationHenrici-Olive, G. & Olive, S. (1984). The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide. Berlin: Springer.  Google Scholar
First citationKani, Y., Ohba, S., Ishikawa, T., Sakamoto, M. & Nishida, Y. (1998). Acta Cryst. C54, 191–193.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLo, J.-M., Yao, H.-H., Liao, F.-L., Wang, S.-L. & Lu, T.-H. (1997). Acta Cryst. C53, 848–850.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜnver, H. (2002). J. Mol. Struct. 641, 35–40.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds