metal-organic compounds
Bis{1-[(4-methylphenyl)iminomethyl]-2-naphtholato-κ2N,O}copper(II)
aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China;
*Correspondence e-mail: chm_zhuph@ujn.edu.cn
In the title complex, [Cu(C18H14NO)2], the CuII ion lies on an inversion center and is coordinated in a slightly distorted square-planar environment. The 1-[(4-methylphenyl)iminomethyl]-2-naphtholate ligands are coordinated in a trans arrangement with respect to the N and O atoms.
Related literature
For background information and applications of Schiff base complexes, see: Adsule et al. (2006); Barton et al. (1979); Cohen et al. (1964); Henrici-Olive & Olive (1984); Erxleben & Schumacher (2001). For related structures, see: Kani et al. (1998); Lo et al. (1997); Ünver (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810030667/lh5095sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810030667/lh5095Isup2.hkl
Copper(II) acetate hydrate (0.199 g, 0.001 mol) in methanol (50 ml) and N-(p-Tolyl)-2-hydroxy-1-naphthaldimine (0.586 g, 0.002 mol) in acetonitrile(75 ml) were mixed and heated at 333 K for 1 h. The solution was filtered and the filtrate kept in a beaker at room temperature for crystallization. Black crystals started appearing after 3 days and were then collected, 0.621 g (79%) yields.
Hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic H atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl H atoms.
Schiff bases and their metal complexes have aroused considerable attention, mainly because of their interesting structures and potential applications, e.g.
(Henrici-Olive & Olive et al., 1984), photochromic properties (Cohen et al., 1964), biological activity (Barton et al., 1979). Additionally, copper (II) complexes of have been reported for their applications in the design and construction of new magnetic materials (Erxleben & Schumacher, 2001), and their cellular proteasome activity (Adsule et al., 2006). Herein we report the synthesis and of the title complex.The molecular structure of the title complex is shown in Fig. 1. The CuII ion is coordinated by two O atoms and two N atoms of two bidentate schiff base ligands to form a square-planar geometry in a trans arrangement. The Cu—N and Cu—O bond lengths agree with those in related complexes (e.g. Kani et al., 1998; Lo et al., 1997; Ünver, 2002).
For background information and applications of Schiff base complexes, see: Adsule et al. (2006); Barton et al. (1979); Cohen et al. (1964); Henrici-Olive & Olive (1984); Erxleben & Schumacher (2001). For related structures, see: Kani et al. (1998); Lo et al. (1997); Ünver (2002).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure, with atom labels and 25% probability displacement ellipsoids for non-H atoms (symmetry code: (A) -x+1, -y, -z). |
[Cu(C18H14NO)2] | Z = 1 |
Mr = 584.14 | F(000) = 303 |
Triclinic, P1 | Dx = 1.370 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0948 (6) Å | Cell parameters from 1252 reflections |
b = 10.2335 (7) Å | θ = 2.5–23.9° |
c = 10.5784 (10) Å | µ = 0.81 mm−1 |
α = 104.559 (7)° | T = 293 K |
β = 98.728 (7)° | Block, black |
γ = 102.573 (7)° | 0.25 × 0.12 × 0.11 mm |
V = 708.01 (10) Å3 |
Bruker APEXII CCD area-detector diffractometer | 2878 independent reflections |
Radiation source: fine-focus sealed tube | 2395 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
φ and ω scans | θmax = 26.4°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −8→8 |
Tmin = 0.824, Tmax = 0.916 | k = −12→12 |
7213 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0431P)2] where P = (Fo2 + 2Fc2)/3 |
2878 reflections | (Δ/σ)max = 0.001 |
188 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
[Cu(C18H14NO)2] | γ = 102.573 (7)° |
Mr = 584.14 | V = 708.01 (10) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.0948 (6) Å | Mo Kα radiation |
b = 10.2335 (7) Å | µ = 0.81 mm−1 |
c = 10.5784 (10) Å | T = 293 K |
α = 104.559 (7)° | 0.25 × 0.12 × 0.11 mm |
β = 98.728 (7)° |
Bruker APEXII CCD area-detector diffractometer | 2878 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2395 reflections with I > 2σ(I) |
Tmin = 0.824, Tmax = 0.916 | Rint = 0.028 |
7213 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.24 e Å−3 |
2878 reflections | Δρmin = −0.18 e Å−3 |
188 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.0000 | 0.0000 | 0.03685 (13) | |
O | 0.63653 (18) | −0.08439 (14) | 0.10934 (13) | 0.0465 (3) | |
N | 0.3572 (2) | 0.06231 (15) | 0.14161 (14) | 0.0353 (3) | |
C | 0.2582 (3) | 0.17043 (18) | 0.14181 (17) | 0.0348 (4) | |
C1 | 0.3384 (3) | 0.00334 (19) | 0.23682 (18) | 0.0374 (4) | |
H1 | 0.2561 | 0.0326 | 0.2922 | 0.045* | |
C2 | 0.5826 (3) | −0.13173 (18) | 0.20525 (18) | 0.0380 (4) | |
C5 | 0.0594 (3) | 0.14665 (19) | 0.14435 (19) | 0.0403 (4) | |
H5 | −0.0138 | 0.0584 | 0.1419 | 0.048* | |
C6 | −0.0300 (3) | 0.2550 (2) | 0.15063 (19) | 0.0464 (5) | |
H6 | −0.1636 | 0.2380 | 0.1525 | 0.056* | |
C7 | 0.3611 (3) | 0.30083 (19) | 0.13974 (19) | 0.0443 (5) | |
H7 | 0.4929 | 0.3167 | 0.1332 | 0.053* | |
C8 | 0.3767 (3) | −0.16156 (19) | 0.37004 (18) | 0.0397 (4) | |
C9 | 0.0726 (3) | 0.3872 (2) | 0.15411 (19) | 0.0459 (5) | |
C10 | 0.4283 (3) | −0.09993 (19) | 0.26615 (18) | 0.0366 (4) | |
C12 | 0.2192 (3) | −0.1408 (2) | 0.43269 (19) | 0.0481 (5) | |
H12 | 0.1454 | −0.0824 | 0.4091 | 0.058* | |
C14 | 0.4870 (3) | −0.24967 (19) | 0.41041 (19) | 0.0452 (5) | |
C15 | 0.2694 (3) | 0.4076 (2) | 0.1473 (2) | 0.0493 (5) | |
H15 | 0.3417 | 0.4952 | 0.1478 | 0.059* | |
C17 | −0.0240 (4) | 0.5069 (2) | 0.1698 (3) | 0.0680 (7) | |
H17A | −0.1612 | 0.4714 | 0.1253 | 0.102* | |
H17B | 0.0411 | 0.5744 | 0.1308 | 0.102* | |
H17C | −0.0132 | 0.5507 | 0.2631 | 0.102* | |
C18 | 0.6458 (3) | −0.2737 (2) | 0.3493 (2) | 0.0530 (5) | |
H18 | 0.7205 | −0.3293 | 0.3779 | 0.064* | |
C19 | 0.1725 (3) | −0.2047 (2) | 0.5277 (2) | 0.0595 (6) | |
H19 | 0.0684 | −0.1889 | 0.5678 | 0.071* | |
C20 | 0.6920 (3) | −0.2190 (2) | 0.2516 (2) | 0.0493 (5) | |
H20 | 0.7966 | −0.2380 | 0.2136 | 0.059* | |
C21 | 0.2798 (4) | −0.2931 (2) | 0.5642 (2) | 0.0651 (6) | |
H21 | 0.2455 | −0.3379 | 0.6270 | 0.078* | |
C23 | 0.4339 (4) | −0.3138 (2) | 0.5084 (2) | 0.0602 (6) | |
H23 | 0.5067 | −0.3714 | 0.5350 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03127 (19) | 0.0423 (2) | 0.0432 (2) | 0.01461 (14) | 0.01515 (13) | 0.01531 (15) |
O | 0.0397 (7) | 0.0623 (9) | 0.0530 (8) | 0.0251 (7) | 0.0218 (6) | 0.0273 (7) |
N | 0.0314 (8) | 0.0371 (8) | 0.0410 (9) | 0.0132 (7) | 0.0112 (6) | 0.0126 (7) |
C | 0.0350 (9) | 0.0366 (10) | 0.0338 (10) | 0.0135 (8) | 0.0105 (7) | 0.0072 (8) |
C1 | 0.0311 (9) | 0.0421 (11) | 0.0391 (11) | 0.0110 (8) | 0.0121 (8) | 0.0083 (9) |
C2 | 0.0334 (10) | 0.0379 (10) | 0.0413 (11) | 0.0095 (8) | 0.0072 (8) | 0.0100 (9) |
C5 | 0.0370 (10) | 0.0388 (10) | 0.0472 (11) | 0.0122 (8) | 0.0149 (8) | 0.0110 (9) |
C6 | 0.0369 (10) | 0.0510 (12) | 0.0538 (12) | 0.0192 (9) | 0.0159 (9) | 0.0098 (10) |
C7 | 0.0342 (10) | 0.0436 (11) | 0.0559 (13) | 0.0101 (9) | 0.0109 (8) | 0.0157 (10) |
C8 | 0.0415 (10) | 0.0365 (10) | 0.0368 (10) | 0.0058 (8) | 0.0065 (8) | 0.0086 (8) |
C9 | 0.0523 (12) | 0.0435 (12) | 0.0434 (11) | 0.0232 (10) | 0.0105 (9) | 0.0067 (9) |
C10 | 0.0349 (10) | 0.0374 (10) | 0.0373 (10) | 0.0095 (8) | 0.0082 (7) | 0.0107 (8) |
C12 | 0.0501 (12) | 0.0532 (13) | 0.0444 (12) | 0.0134 (10) | 0.0153 (9) | 0.0179 (10) |
C14 | 0.0548 (12) | 0.0391 (11) | 0.0396 (11) | 0.0107 (9) | 0.0063 (9) | 0.0120 (9) |
C15 | 0.0516 (12) | 0.0363 (11) | 0.0581 (13) | 0.0090 (10) | 0.0085 (10) | 0.0148 (10) |
C17 | 0.0777 (17) | 0.0590 (14) | 0.0781 (17) | 0.0410 (13) | 0.0208 (13) | 0.0175 (13) |
C18 | 0.0584 (13) | 0.0500 (13) | 0.0570 (14) | 0.0249 (11) | 0.0082 (10) | 0.0210 (11) |
C19 | 0.0625 (14) | 0.0696 (15) | 0.0463 (13) | 0.0101 (12) | 0.0208 (10) | 0.0184 (12) |
C20 | 0.0465 (12) | 0.0539 (13) | 0.0569 (13) | 0.0255 (10) | 0.0160 (9) | 0.0195 (11) |
C21 | 0.0892 (18) | 0.0648 (15) | 0.0485 (13) | 0.0162 (14) | 0.0222 (12) | 0.0289 (12) |
C23 | 0.0826 (17) | 0.0534 (14) | 0.0500 (13) | 0.0206 (12) | 0.0130 (12) | 0.0233 (11) |
Cu1—Oi | 1.8837 (12) | C8—C14 | 1.417 (3) |
Cu1—O | 1.8837 (12) | C8—C10 | 1.452 (3) |
Cu1—N | 1.9848 (14) | C9—C15 | 1.382 (3) |
Cu1—Ni | 1.9848 (14) | C9—C17 | 1.515 (2) |
O—C2 | 1.302 (2) | C12—C19 | 1.373 (3) |
N—C1 | 1.307 (2) | C12—H12 | 0.9300 |
N—C | 1.434 (2) | C14—C23 | 1.414 (3) |
C—C7 | 1.382 (2) | C14—C18 | 1.417 (3) |
C—C5 | 1.384 (2) | C15—H15 | 0.9300 |
C1—C10 | 1.420 (2) | C17—H17A | 0.9600 |
C1—H1 | 0.9300 | C17—H17B | 0.9600 |
C2—C10 | 1.408 (2) | C17—H17C | 0.9600 |
C2—C20 | 1.431 (2) | C18—C20 | 1.343 (3) |
C5—C6 | 1.385 (2) | C18—H18 | 0.9300 |
C5—H5 | 0.9300 | C19—C21 | 1.390 (3) |
C6—C9 | 1.378 (3) | C19—H19 | 0.9300 |
C6—H6 | 0.9300 | C20—H20 | 0.9300 |
C7—C15 | 1.380 (2) | C21—C23 | 1.350 (3) |
C7—H7 | 0.9300 | C21—H21 | 0.9300 |
C8—C12 | 1.411 (3) | C23—H23 | 0.9300 |
Oi—Cu1—O | 180 | C2—C10—C1 | 120.13 (16) |
Oi—Cu1—N | 89.58 (5) | C2—C10—C8 | 119.57 (16) |
O—Cu1—N | 90.42 (5) | C1—C10—C8 | 119.94 (16) |
Oi—Cu1—Ni | 90.42 (5) | C19—C12—C8 | 121.51 (19) |
O—Cu1—Ni | 89.58 (5) | C19—C12—H12 | 119.2 |
N—Cu1—Ni | 180 | C8—C12—H12 | 119.2 |
C2—O—Cu1 | 128.62 (11) | C23—C14—C8 | 119.42 (19) |
C1—N—C | 115.44 (14) | C23—C14—C18 | 121.54 (18) |
C1—N—Cu1 | 122.54 (12) | C8—C14—C18 | 119.03 (18) |
C—N—Cu1 | 121.94 (11) | C7—C15—C9 | 121.53 (18) |
C7—C—C5 | 118.92 (16) | C7—C15—H15 | 119.2 |
C7—C—N | 120.13 (15) | C9—C15—H15 | 119.2 |
C5—C—N | 120.95 (16) | C9—C17—H17A | 109.5 |
N—C1—C10 | 127.97 (17) | C9—C17—H17B | 109.5 |
N—C1—H1 | 116.0 | H17A—C17—H17B | 109.5 |
C10—C1—H1 | 116.0 | C9—C17—H17C | 109.5 |
O—C2—C10 | 124.11 (16) | H17A—C17—H17C | 109.5 |
O—C2—C20 | 116.69 (16) | H17B—C17—H17C | 109.5 |
C10—C2—C20 | 119.19 (17) | C20—C18—C14 | 122.24 (18) |
C—C5—C6 | 119.60 (17) | C20—C18—H18 | 118.9 |
C—C5—H5 | 120.2 | C14—C18—H18 | 118.9 |
C6—C5—H5 | 120.2 | C12—C19—C21 | 120.4 (2) |
C9—C6—C5 | 122.15 (17) | C12—C19—H19 | 119.8 |
C9—C6—H6 | 118.9 | C21—C19—H19 | 119.8 |
C5—C6—H6 | 118.9 | C18—C20—C2 | 120.91 (19) |
C15—C7—C | 120.38 (17) | C18—C20—H20 | 119.5 |
C15—C7—H7 | 119.8 | C2—C20—H20 | 119.5 |
C—C7—H7 | 119.8 | C23—C21—C19 | 120.0 (2) |
C12—C8—C14 | 117.34 (17) | C23—C21—H21 | 120.0 |
C12—C8—C10 | 123.66 (17) | C19—C21—H21 | 120.0 |
C14—C8—C10 | 118.99 (17) | C21—C23—C14 | 121.4 (2) |
C6—C9—C15 | 117.32 (17) | C21—C23—H23 | 119.3 |
C6—C9—C17 | 121.49 (18) | C14—C23—H23 | 119.3 |
C15—C9—C17 | 121.16 (19) | ||
Oi—Cu1—O—C2 | −71 (100) | C20—C2—C10—C8 | −3.0 (3) |
N—Cu1—O—C2 | 25.66 (16) | N—C1—C10—C2 | 11.9 (3) |
Ni—Cu1—O—C2 | −154.34 (16) | N—C1—C10—C8 | −174.99 (17) |
Oi—Cu1—N—C1 | 159.10 (14) | C12—C8—C10—C2 | −177.19 (18) |
O—Cu1—N—C1 | −20.90 (14) | C14—C8—C10—C2 | 1.7 (3) |
Ni—Cu1—N—C1 | −22 (100) | C12—C8—C10—C1 | 9.7 (3) |
Oi—Cu1—N—C | −17.40 (13) | C14—C8—C10—C1 | −171.42 (16) |
O—Cu1—N—C | 162.60 (13) | C14—C8—C12—C19 | −0.9 (3) |
Ni—Cu1—N—C | 162 (100) | C10—C8—C12—C19 | 178.02 (18) |
C1—N—C—C7 | 127.26 (18) | C12—C8—C14—C23 | 1.0 (3) |
Cu1—N—C—C7 | −56.0 (2) | C10—C8—C14—C23 | −177.99 (17) |
C1—N—C—C5 | −52.6 (2) | C12—C8—C14—C18 | 179.69 (18) |
Cu1—N—C—C5 | 124.13 (16) | C10—C8—C14—C18 | 0.7 (3) |
C—N—C1—C10 | −176.06 (16) | C—C7—C15—C9 | −1.4 (3) |
Cu1—N—C1—C10 | 7.2 (3) | C6—C9—C15—C7 | −1.2 (3) |
Cu1—O—C2—C10 | −15.1 (3) | C17—C9—C15—C7 | 176.7 (2) |
Cu1—O—C2—C20 | 166.16 (12) | C23—C14—C18—C20 | 176.8 (2) |
C7—C—C5—C6 | −2.8 (3) | C8—C14—C18—C20 | −1.9 (3) |
N—C—C5—C6 | 177.08 (17) | C8—C12—C19—C21 | −0.3 (3) |
C—C5—C6—C9 | 0.2 (3) | C14—C18—C20—C2 | 0.6 (3) |
C5—C—C7—C15 | 3.4 (3) | O—C2—C20—C18 | −179.34 (18) |
N—C—C7—C15 | −176.46 (17) | C10—C2—C20—C18 | 1.9 (3) |
C5—C6—C9—C15 | 1.8 (3) | C12—C19—C21—C23 | 1.5 (4) |
C5—C6—C9—C17 | −176.09 (19) | C19—C21—C23—C14 | −1.5 (4) |
O—C2—C10—C1 | −8.6 (3) | C8—C14—C23—C21 | 0.2 (3) |
C20—C2—C10—C1 | 170.11 (16) | C18—C14—C23—C21 | −178.5 (2) |
O—C2—C10—C8 | 178.34 (16) |
Symmetry code: (i) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C18H14NO)2] |
Mr | 584.14 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.0948 (6), 10.2335 (7), 10.5784 (10) |
α, β, γ (°) | 104.559 (7), 98.728 (7), 102.573 (7) |
V (Å3) | 708.01 (10) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.81 |
Crystal size (mm) | 0.25 × 0.12 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.824, 0.916 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7213, 2878, 2395 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.076, 1.01 |
No. of reflections | 2878 |
No. of parameters | 188 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.18 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O | 1.8837 (12) | Cu1—N | 1.9848 (14) |
Oi—Cu1—O | 180 | O—Cu1—N | 90.42 (5) |
Oi—Cu1—N | 89.58 (5) | N—Cu1—Ni | 180 |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
This work was supported by Shandong Province (2007BS02016).
References
Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242–7246. Web of Science CrossRef PubMed CAS Google Scholar
Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon Press. Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051. CrossRef Web of Science Google Scholar
Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. 12, 3039–3046. CrossRef Google Scholar
Henrici-Olive, G. & Olive, S. (1984). The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide. Berlin: Springer. Google Scholar
Kani, Y., Ohba, S., Ishikawa, T., Sakamoto, M. & Nishida, Y. (1998). Acta Cryst. C54, 191–193. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lo, J.-M., Yao, H.-H., Liao, F.-L., Wang, S.-L. & Lu, T.-H. (1997). Acta Cryst. C53, 848–850. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ünver, H. (2002). J. Mol. Struct. 641, 35–40. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases and their metal complexes have aroused considerable attention, mainly because of their interesting structures and potential applications, e.g. catalytic activity (Henrici-Olive & Olive et al., 1984), photochromic properties (Cohen et al., 1964), biological activity (Barton et al., 1979). Additionally, copper (II) complexes of Schiff bases have been reported for their applications in the design and construction of new magnetic materials (Erxleben & Schumacher, 2001), and their cellular proteasome activity (Adsule et al., 2006). Herein we report the synthesis and crystal structure of the title complex.
The molecular structure of the title complex is shown in Fig. 1. The CuII ion is coordinated by two O atoms and two N atoms of two bidentate schiff base ligands to form a square-planar geometry in a trans arrangement. The Cu—N and Cu—O bond lengths agree with those in related complexes (e.g. Kani et al., 1998; Lo et al., 1997; Ünver, 2002).