organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Dimeth­­oxy-3-[(E)-2-nitro­ethen­yl]benzene

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: ruitaozhu@126.com

(Received 23 July 2010; accepted 30 July 2010; online 11 August 2010)

The title compound, C10H11NO4, was synthesized via condensation of 2,3-dimeth­oxy­benzaldehyde with nitro­methane using microwave irradiation without solvent. The H atoms of the –CH=CH– group are in a trans configuration. The dihedral angle between the mean planes of the benzene ring and the nitro­alkenyl group is 23.90 (6)°.

Related literature

For the use of nitro­alkenes in organic synthesis, see: Ranu & Banerjee (2005[Ranu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049-3052.]); Ballini et al. (2005[Ballini, R., Bosica, G., Fiorini, D., Palmieri, A. & Petrini, M. (2005). Chem. Rev. 105, 933-971.]). For a related structure, see: Pedireddi et al. (1992[Pedireddi, V. R., Sarma, J. A. R. P. & Desiraju, G. R. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 311-320.]). For the synthetic procedure, see: Wang & Wang (2002[Wang, C.-D. & Wang, S. (2002). Synth. Commun. 32, 3481-3486.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO4

  • Mr = 209.20

  • Monoclinic, P 21 /c

  • a = 5.3558 (7) Å

  • b = 13.5897 (11) Å

  • c = 14.2646 (12) Å

  • β = 97.038 (1)°

  • V = 1030.41 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.38 × 0.35 × 0.34 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.965

  • 4852 measured reflections

  • 1798 independent reflections

  • 1351 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.226

  • S = 1.14

  • 1798 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitroalkenes are good substrates for Michael addition reactions because of the stronger electron withdrawing property of the nitro group (Ranu et al., 2005). In addition, the nitro group can provide a good nitrogen source for the synthesis of many useful organic molecules (Ballini et al., 2005). Our group has focused on new organic transformations obtained by nitroalkenes as substrates. In this paper, we report the structure of the title compound. The crystal structure of the title compound is shown in Fig. 1. The H atoms of the -CHCH- group are in a trans configuration. The dihedral angle between the mean planes of the benzene ring and the nitroalkenyl group is 23.90 (6)°. The bond lengths and angles in the tilte compound can be compared to those in (E)-β-nitrostyrene (Pedireddi et al., 1992).

Related literature top

For the use of nitroalkenes in organic synthesis, see: Ranu & Banerjee (2005); Ballini et al. (2005). For a related structure, see: Pedireddi et al. (1992). For the synthetic procedure, see: Wang & Wang (2002).

Experimental top

The title compound was prepared according to a method reported in the literature (Wang et al. (2002): A mixture of 0.83 g (5 mmol) 2,3-dimethoxy-benzaldehyde, 1.53 g (25 mmol) nitromethane and 0.35 g potassium carbonate was finely ground by agate mortar and pestle and was mixed with 5 g aluminium oxide (150mesh). The mixture was then put in a 25 ml beaker and introduced into a microwave oven. Microwave irradiation was carried out for 5 min. The mixture was cooled to ambient temperature, then water and nitromethane were removed by reduced pressure. The residue was purified by silica gel chromatography (pertroleum ether/ethyl acetate/dichloromethane. 1:1:0.3) to give the product (yield 75%). Crystals suitable for X-ray analysis were obtained after one week by slow evaporation from an ethyl alcohol solution of the title compound.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93-0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl).

Structure description top

Nitroalkenes are good substrates for Michael addition reactions because of the stronger electron withdrawing property of the nitro group (Ranu et al., 2005). In addition, the nitro group can provide a good nitrogen source for the synthesis of many useful organic molecules (Ballini et al., 2005). Our group has focused on new organic transformations obtained by nitroalkenes as substrates. In this paper, we report the structure of the title compound. The crystal structure of the title compound is shown in Fig. 1. The H atoms of the -CHCH- group are in a trans configuration. The dihedral angle between the mean planes of the benzene ring and the nitroalkenyl group is 23.90 (6)°. The bond lengths and angles in the tilte compound can be compared to those in (E)-β-nitrostyrene (Pedireddi et al., 1992).

For the use of nitroalkenes in organic synthesis, see: Ranu & Banerjee (2005); Ballini et al. (2005). For a related structure, see: Pedireddi et al. (1992). For the synthetic procedure, see: Wang & Wang (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, displacement ellipsoids are drawn at the 30% probability level.
1,2-Dimethoxy-3-[(E)-2-nitroethenyl]benzene top
Crystal data top
C10H11NO4F(000) = 440
Mr = 209.20Dx = 1.349 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1678 reflections
a = 5.3558 (7) Åθ = 3.0–25.5°
b = 13.5897 (11) ŵ = 0.11 mm1
c = 14.2646 (12) ÅT = 296 K
β = 97.038 (1)°Flake, colorless
V = 1030.41 (18) Å30.38 × 0.35 × 0.34 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1798 independent reflections
Radiation source: fine-focus sealed tube1351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.961, Tmax = 0.965k = 1615
4852 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.226 w = 1/[σ2(Fo2) + (0.1507P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1798 reflectionsΔρmax = 0.41 e Å3
139 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.17 (3)
Crystal data top
C10H11NO4V = 1030.41 (18) Å3
Mr = 209.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3558 (7) ŵ = 0.11 mm1
b = 13.5897 (11) ÅT = 296 K
c = 14.2646 (12) Å0.38 × 0.35 × 0.34 mm
β = 97.038 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1798 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1351 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.965Rint = 0.035
4852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.226H-atom parameters constrained
S = 1.14Δρmax = 0.41 e Å3
1798 reflectionsΔρmin = 0.41 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8816 (4)0.34090 (16)0.43863 (15)0.0521 (7)
O11.0954 (4)0.35541 (16)0.47743 (16)0.0740 (7)
O20.7912 (4)0.25907 (15)0.42869 (17)0.0818 (8)
O30.1183 (3)0.38811 (12)0.21248 (12)0.0532 (6)
O40.2003 (3)0.53204 (13)0.14689 (13)0.0581 (6)
C10.7376 (5)0.4265 (2)0.40583 (19)0.0544 (7)
H1A0.79900.48870.42340.065*
C20.5216 (5)0.4187 (2)0.35173 (16)0.0503 (7)
H20.46840.35560.33350.060*
C30.3580 (4)0.50020 (18)0.31776 (16)0.0454 (7)
C40.1580 (4)0.48261 (15)0.24744 (16)0.0439 (7)
C50.0092 (4)0.55801 (18)0.21569 (17)0.0470 (7)
C60.0260 (5)0.65146 (18)0.2532 (2)0.0532 (7)
H60.08440.70190.23240.064*
C70.2273 (5)0.6697 (2)0.3224 (2)0.0583 (8)
H70.25150.73280.34700.070*
C80.3908 (5)0.5959 (2)0.35469 (18)0.0546 (7)
H80.52370.60920.40120.066*
C90.2010 (7)0.3753 (2)0.1216 (2)0.0716 (9)
H9A0.11210.42020.07740.107*
H9B0.16820.30900.10050.107*
H9C0.37830.38820.12590.107*
C100.3741 (5)0.6077 (2)0.11368 (19)0.0605 (8)
H10A0.45380.63270.16550.091*
H10B0.49940.58110.06660.091*
H10C0.28580.66000.08670.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0511 (13)0.0521 (13)0.0517 (13)0.0009 (9)0.0004 (10)0.0000 (9)
O10.0514 (13)0.0756 (14)0.0899 (16)0.0045 (9)0.0114 (11)0.0064 (11)
O20.0785 (14)0.0510 (13)0.1072 (18)0.0008 (11)0.0232 (12)0.0064 (11)
O30.0637 (12)0.0361 (10)0.0589 (11)0.0052 (7)0.0039 (8)0.0025 (7)
O40.0527 (11)0.0494 (12)0.0677 (12)0.0033 (8)0.0113 (9)0.0026 (8)
C10.0542 (16)0.0471 (15)0.0607 (15)0.0005 (11)0.0027 (12)0.0022 (12)
C20.0519 (15)0.0492 (15)0.0498 (14)0.0010 (11)0.0064 (11)0.0013 (11)
C30.0460 (13)0.0461 (14)0.0443 (12)0.0015 (10)0.0064 (10)0.0018 (10)
C40.0498 (13)0.0343 (13)0.0484 (13)0.0022 (9)0.0097 (11)0.0010 (9)
C50.0473 (14)0.0442 (14)0.0497 (13)0.0013 (10)0.0064 (11)0.0017 (10)
C60.0563 (16)0.0438 (15)0.0592 (15)0.0077 (10)0.0061 (12)0.0032 (11)
C70.0644 (18)0.0476 (15)0.0614 (16)0.0029 (12)0.0023 (13)0.0131 (11)
C80.0543 (15)0.0543 (16)0.0542 (15)0.0005 (12)0.0029 (11)0.0100 (12)
C90.093 (2)0.0542 (17)0.0689 (19)0.0040 (15)0.0134 (16)0.0164 (14)
C100.0549 (16)0.0626 (18)0.0621 (17)0.0057 (13)0.0009 (13)0.0123 (13)
Geometric parameters (Å, º) top
N1—O21.214 (3)C4—C51.399 (3)
N1—O11.225 (3)C5—C61.382 (3)
N1—C11.442 (3)C6—C71.391 (4)
O3—C41.385 (3)C6—H60.9300
O3—C91.431 (3)C7—C81.374 (4)
O4—C51.375 (3)C7—H70.9300
O4—C101.428 (3)C8—H80.9300
C1—C21.314 (3)C9—H9A0.9600
C1—H1A0.9300C9—H9B0.9600
C2—C31.458 (4)C9—H9C0.9600
C2—H20.9300C10—H10A0.9600
C3—C41.395 (3)C10—H10B0.9600
C3—C81.406 (4)C10—H10C0.9600
O2—N1—O1122.5 (2)C5—C6—H6120.1
O2—N1—C1120.7 (2)C7—C6—H6120.1
O1—N1—C1116.7 (2)C8—C7—C6120.9 (2)
C4—O3—C9112.83 (19)C8—C7—H7119.5
C5—O4—C10116.8 (2)C6—C7—H7119.5
C2—C1—N1121.5 (2)C7—C8—C3120.3 (2)
C2—C1—H1A119.2C7—C8—H8119.8
N1—C1—H1A119.2C3—C8—H8119.8
C1—C2—C3125.7 (2)O3—C9—H9A109.5
C1—C2—H2117.1O3—C9—H9B109.5
C3—C2—H2117.1H9A—C9—H9B109.5
C4—C3—C8118.5 (2)O3—C9—H9C109.5
C4—C3—C2119.1 (2)H9A—C9—H9C109.5
C8—C3—C2122.4 (2)H9B—C9—H9C109.5
O3—C4—C3119.2 (2)O4—C10—H10A109.5
O3—C4—C5119.9 (2)O4—C10—H10B109.5
C3—C4—C5120.8 (2)H10A—C10—H10B109.5
O4—C5—C6124.5 (2)O4—C10—H10C109.5
O4—C5—C4115.7 (2)H10A—C10—H10C109.5
C6—C5—C4119.7 (2)H10B—C10—H10C109.5
C5—C6—C7119.7 (2)
O2—N1—C1—C210.7 (4)C10—O4—C5—C4179.7 (2)
O1—N1—C1—C2170.1 (2)O3—C4—C5—O42.8 (3)
N1—C1—C2—C3177.7 (2)C3—C4—C5—O4179.41 (19)
C1—C2—C3—C4168.5 (2)O3—C4—C5—C6177.7 (2)
C1—C2—C3—C812.9 (4)C3—C4—C5—C61.0 (4)
C9—O3—C4—C3103.4 (3)O4—C5—C6—C7179.6 (2)
C9—O3—C4—C579.9 (3)C4—C5—C6—C70.1 (4)
C8—C3—C4—O3177.9 (2)C5—C6—C7—C80.6 (4)
C2—C3—C4—O30.7 (3)C6—C7—C8—C30.4 (4)
C8—C3—C4—C51.3 (3)C4—C3—C8—C70.5 (4)
C2—C3—C4—C5177.4 (2)C2—C3—C8—C7178.1 (2)
C10—O4—C5—C60.7 (4)

Experimental details

Crystal data
Chemical formulaC10H11NO4
Mr209.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.3558 (7), 13.5897 (11), 14.2646 (12)
β (°) 97.038 (1)
V3)1030.41 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.35 × 0.34
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4852, 1798, 1351
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.226, 1.14
No. of reflections1798
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBallini, R., Bosica, G., Fiorini, D., Palmieri, A. & Petrini, M. (2005). Chem. Rev. 105, 933–971.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPedireddi, V. R., Sarma, J. A. R. P. & Desiraju, G. R. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 311–320.  CSD CrossRef Web of Science Google Scholar
First citationRanu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049–3052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-D. & Wang, S. (2002). Synth. Commun. 32, 3481–3486.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds