metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,9-Di­methyl-1,10-phenanthrolin-1-ium (6-carb­­oxy-4-hy­dr­oxy­pyridine-2-carboxyl­ato-κ3O2,N,O6)(4-hy­dr­oxy­pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)nickelate(II) 2.35-hydrate: a proton-transfer compound

aDepartment of Chemistry, Faculty of Science, Islamic Azad University, Mahshahr Branch, Mahshahr, Iran, bDepartment of Chemistry, Faculty of Sciences, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, cIran Compiling Encyclopedia Foundation, Tajrish, Tehran, Iran, and dInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: zderik@yahoo.com

(Received 30 July 2010; accepted 5 August 2010; online 11 August 2010)

The title proton-transfer compound, (C14H13N2)[Ni(C7H3NO5)(C7H4NO5)]·2.35H2O, consists of an [Ni(hypydc)(hypydcH)] anion, a dmpH+ cation and 2.35 uncoordinated water mol­ecules (where hypydcH2 = 4-hy­droxy­pyridine-2,6-dicarb­oxy­lic acid and dmp = 2,9-dimethyl-1,10-phenanthroline). The NiII atom is coordinated by two N atoms and four O atoms from the carboxyl­ate groups of the (hypydc)2− and (hypydcH) ligands, forming a distorted octa­hedral environment. In the anion, the two pyridine rings are inclined to one another by 89.24 (10)°. In the crystal, cations are linked via O—H⋯O hydrogen bonds forming dimers, graph-set [R22(16)], centered about inversion centers. These dimers are further linked by other cation O—H⋯O hydrogen bonds, graph-set [R66(42)], forming a two-dimensional network in (011). Additional inter­molecular O—H⋯O, N—H⋯O, N—H⋯N, and weak C—H⋯O hydrogen bonds, and ππ inter­actions [shortest centroid–centroid distance = 3.5442 (14) Å], connect the two dimensional networks, forming a three-dimensional arrangement. The H atoms of one of the methyl groups are disordered over two sites with equal occupancy.

Related literature

For literature on some first-row transition metal complexes of 4-hy­droxy­pyridine-2,6-dicarboxlic acid and various bases, see: Aghabozorg, Roshan et al. (2008[Aghabozorg, H., Roshan, L., Firoozi, N., Ghadermazi, M. & Bagheri, S. (2008). Acta Cryst. E64, m1208-m1209.]); Aghabozorg, Saadaty et al. (2008[Aghabozorg, H., Saadaty, S., Motyeian, E., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m466-m467.]); Aghabozorg, Motyeian et al. (2008[Aghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst. E64, m144-m145.]); Ghadermazi et al. (2009[Ghadermazi, M., Manteghi, F. & Aghabozorg, H. (2009). Acta Cryst. E65, m1374-m1375.]); Rafizadeh et al. (2008[Rafizadeh, M., Derikvand, Z. & Nemati, A. (2008). Acta Cryst. E64, m1300-m1301.]); Ramos Silva et al. (2008[Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173-m1174.]). For details of graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H13N2)[Ni(C7H3NO5)(C7H4NO5)]·2.35H2O

  • Mr = 673.53

  • Monoclinic, P 21 /c

  • a = 11.1663 (8) Å

  • b = 9.7296 (9) Å

  • c = 25.698 (2) Å

  • β = 94.330 (9)°

  • V = 2784.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 223 K

  • 0.34 × 0.30 × 0.23 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.820, Tmax = 0.839

  • 21508 measured reflections

  • 5442 independent reflections

  • 3321 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.071

  • S = 0.82

  • 5442 reflections

  • 439 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C1–C5.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O9i 0.82 (2) 2.03 (3) 2.832 (3) 166 (4)
O1W—H1WB⋯O4ii 0.84 (3) 2.15 (3) 2.942 (3) 158 (3)
O2—H2O⋯O7iii 0.83 1.65 2.399 (2) 148
N3—H3⋯O1W 0.87 2.01 2.845 (3) 161
N3—H3⋯N4 0.87 2.38 2.728 (3) 105
O2W—H2WA⋯O8iv 0.84 (3) 1.99 (3) 2.785 (3) 156 (3)
O2W—H2WA⋯O9iv 0.84 (3) 2.55 (3) 3.267 (3) 144 (3)
O2W—H2WB⋯O4 0.81 (2) 2.28 (2) 3.094 (3) 176 (5)
O5—H5O⋯O2Wv 0.83 1.75 2.570 (3) 169
O10—H10O⋯O3vi 0.83 1.81 2.597 (2) 158
C27—H27C⋯O3vii 0.97 2.55 3.480 (4) 161
C22—H22⋯Cg1iv 0.94 2.76 3.635 (3) 155
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x, -y+2, -z; (vii) x+1, y, z.

Data collection: EXPOSE (Stoe & Cie, 2000[Stoe & Cie (2000). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL (Stoe & Cie, 2000[Stoe & Cie (2000). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: INTEGRATE (Stoe & Cie, 2000[Stoe & Cie (2000). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structures of a number of first-row proton transfer complexes, where 4-hydroxypyridine-2,6-dicarboxlic acid (hypydcH2) is the proton donor, have been reported previously (Ramos Silva et al., 2008; Aghabozorg, Saadaty et al., 2008; Aghabozorg, Roshan et al., 2008; Rafizadeh et al., 2008; Aghabozorg, Motyeian et al., 2008; Ghadermazi et al. 2009). Herein, we present the crystal structure of the title complex, prepared by the reaction of nickel(II) nitrate with the same proton donnor (hypydcH2) and the proton acceptor 2,9-dimethyl-1,10-phenanthroline (dmp).

The asymmetric unit of the title compound consists of one [Ni(hypydc)(hypydcH)]- anion, one 2,9-dimethyl-1,10-phenanthrolinium cation (dmpH+) and 2.35 uncoordinated water molecules (Fig. 1). A carboxylic acid proton has been transferred to an N atom of 2,9-dimethyl-1,10-phenanthroline. In the anions, the NiII atom is six-coordinated by two N atoms (N1 and N2) that occupy the axial positions, and four O atoms, (O1, O3, O6 and O8) from the carboxylate groups of the (hypydc)2-and (hypydcH)- ligands, in the equitorial plane, so forming a distorted octahedral geometry. The (hypydc)2-and (hypydcH)- ligands are orthogonal; the two pyridine ring mean planes being inclined to one another by 89.24 (10)°. This geometry is simlar to that in the proton transfer nickel(II) complex Bis(guanidinium)bis(4-hydroxypyridine-2,6-dicarboxylato- κ3O2,N,O6)nickelate(II) dihydrate (Aghabozorg, Motyeian et al., 2008). In the dmpH+ cation there is a short N-H···N interaction as a result of the inherant planarity of the system (Table 1).

In the crystal the cations are linked via O–H···O hydrogen bonds to form dimers - graph-set [R22(16)] - centered about inversion centers (Bernstein et al., 1995; Table 1, Fig 2). These dimers are further link by other cation O-H···O hydrogen bonds - graph-set [R66(42)] - to form a two-dimensional network in (011). Additional intermolecular O–H···O, N–H···O, N–H···N, and weak C–H···O hydrogen bonds connect these two dimensional networks to form a three-dimensional arrangeemt (Fig. 3).

Another feature of the crystal structure of the title compound is the presence of ππ stacking interactions (Table 2). The shortest ππ distance is 3.5442 (14) Å involving pyridine ring (N2/C8-C12) of the (hypydc)2- anion and the central aromatic ring of the dmpH+ cation (C18-C21,C25-C26).

Footnote for Table 1: Cg1 is the centroid of ring N1,C1-C5.

Related literature top

For literature on some first-row transition metal complexes of 4-hydroxypyridine-2,6-dicarboxlic acid and various bases, see: Aghabozorg, Roshan et al. (2008); Aghabozorg, Saadaty et al. (2008); Aghabozorg, Motyeian et al. (2008); Ghadermazi et al. (2009); Rafizadeh et al. (2008); Ramos Silva et al. (2008). For details of graph-set analysis, see: Bernstein et al. (1995).

Experimental top

An aqueous solution of nickel(II) nitrate hexahydrate (0.5 mmol, 90 mg) in distilled water (5 ml) was added to an aqueous solution of 4-hydroxypyridine-2,6-dicarboxylic acid(1 mmol, 183 mg) in distilled water (20 ml) and 2,9-dimethyl-1,10-phenanthroline (1 mmol, 208 mg) in methanol (5 ml) under stirring at 333K in a 1:2:2 molar ratio for lh. Blue block-shaped crystals were obtained by slow evaporation of the solvent at the room temperature.

Refinement top

The water molecule O3W was only partially occupied and was refined with an occupancy of 0.35. Methyl group C28 was treated as an idealized disordered methyl group with two positions rotated from each other by 60°; each H-atom occupancy was set to 0.5. The water H-atoms were refined with distance restraints of O-H = 0.84 (2) Å and Uiso(H) = 1.5Ueq(O). The OH, NH and C-bound H-atoms were included in calculated positions and treated as riding on their parent atom: O-H = 0.83 Å, N-H = 0.87 Å, and C-H = 0.94 and 0.97 Å, for CH and CH3, respectively, with Uiso(H) = k × Ueq(O, N, or C), where k = 1.5 for CH3 H-atoms and 1.2 for all other H-atoms.

Structure description top

The crystal structures of a number of first-row proton transfer complexes, where 4-hydroxypyridine-2,6-dicarboxlic acid (hypydcH2) is the proton donor, have been reported previously (Ramos Silva et al., 2008; Aghabozorg, Saadaty et al., 2008; Aghabozorg, Roshan et al., 2008; Rafizadeh et al., 2008; Aghabozorg, Motyeian et al., 2008; Ghadermazi et al. 2009). Herein, we present the crystal structure of the title complex, prepared by the reaction of nickel(II) nitrate with the same proton donnor (hypydcH2) and the proton acceptor 2,9-dimethyl-1,10-phenanthroline (dmp).

The asymmetric unit of the title compound consists of one [Ni(hypydc)(hypydcH)]- anion, one 2,9-dimethyl-1,10-phenanthrolinium cation (dmpH+) and 2.35 uncoordinated water molecules (Fig. 1). A carboxylic acid proton has been transferred to an N atom of 2,9-dimethyl-1,10-phenanthroline. In the anions, the NiII atom is six-coordinated by two N atoms (N1 and N2) that occupy the axial positions, and four O atoms, (O1, O3, O6 and O8) from the carboxylate groups of the (hypydc)2-and (hypydcH)- ligands, in the equitorial plane, so forming a distorted octahedral geometry. The (hypydc)2-and (hypydcH)- ligands are orthogonal; the two pyridine ring mean planes being inclined to one another by 89.24 (10)°. This geometry is simlar to that in the proton transfer nickel(II) complex Bis(guanidinium)bis(4-hydroxypyridine-2,6-dicarboxylato- κ3O2,N,O6)nickelate(II) dihydrate (Aghabozorg, Motyeian et al., 2008). In the dmpH+ cation there is a short N-H···N interaction as a result of the inherant planarity of the system (Table 1).

In the crystal the cations are linked via O–H···O hydrogen bonds to form dimers - graph-set [R22(16)] - centered about inversion centers (Bernstein et al., 1995; Table 1, Fig 2). These dimers are further link by other cation O-H···O hydrogen bonds - graph-set [R66(42)] - to form a two-dimensional network in (011). Additional intermolecular O–H···O, N–H···O, N–H···N, and weak C–H···O hydrogen bonds connect these two dimensional networks to form a three-dimensional arrangeemt (Fig. 3).

Another feature of the crystal structure of the title compound is the presence of ππ stacking interactions (Table 2). The shortest ππ distance is 3.5442 (14) Å involving pyridine ring (N2/C8-C12) of the (hypydc)2- anion and the central aromatic ring of the dmpH+ cation (C18-C21,C25-C26).

Footnote for Table 1: Cg1 is the centroid of ring N1,C1-C5.

For literature on some first-row transition metal complexes of 4-hydroxypyridine-2,6-dicarboxlic acid and various bases, see: Aghabozorg, Roshan et al. (2008); Aghabozorg, Saadaty et al. (2008); Aghabozorg, Motyeian et al. (2008); Ghadermazi et al. (2009); Rafizadeh et al. (2008); Ramos Silva et al. (2008). For details of graph-set analysis, see: Bernstein et al. (1995).

Computing details top

Data collection: EXPOSE (Stoe & Cie, 2000); cell refinement: CELL (Stoe & Cie, 2000); data reduction: INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a-axis of the O-H···O hydrogen bonded two-dimensional network in (011), showing the formation of the graph-sets [R22(16)] and [R66(42)]. H-atoms not involved in hydrogen bonding (cyan lines) have been omitted for clarity; symmetry codes: (i) -x, -y+2, -z; (ii) -x, y-0.5, -z+0.5.
[Figure 3] Fig. 3. A view of along the a-axis of the crystal packing in the title compound. The Nickel complex is shown in black, the dmpH+ cation in red, and the water molecules are in blue, green and yellow; the various hydrogen bonds are shown as dashed lines - see Table 1 for details.
2,9-Dimethyl-1,10-phenanthrolin-1-ium (6-carboxy-4-hydroxypyridine-2- carboxylato-κ3O2,N,O6)(4-hydroxypyridine-2,6-dicarboxylato- κ3O2,N,O6)nickelate(II) 2.35-hydrate top
Crystal data top
(C14H13N2)[Ni(C7H3NO5)(C7H4NO5)]·2.35H2OF(000) = 1390
Mr = 673.53Dx = 1.607 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 11.1663 (8) Åθ = 2.2–26.1°
b = 9.7296 (9) ŵ = 0.77 mm1
c = 25.698 (2) ÅT = 223 K
β = 94.330 (9)°Block, pale-blue
V = 2784.0 (4) Å30.34 × 0.30 × 0.23 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
5442 independent reflections
Radiation source: fine-focus sealed tube3321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ rotation scansθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 1312
Tmin = 0.820, Tmax = 0.839k = 1211
21508 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0379P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.001
5442 reflectionsΔρmax = 0.29 e Å3
439 parametersΔρmin = 0.49 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (3)
Crystal data top
(C14H13N2)[Ni(C7H3NO5)(C7H4NO5)]·2.35H2OV = 2784.0 (4) Å3
Mr = 673.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1663 (8) ŵ = 0.77 mm1
b = 9.7296 (9) ÅT = 223 K
c = 25.698 (2) Å0.34 × 0.30 × 0.23 mm
β = 94.330 (9)°
Data collection top
Stoe IPDS
diffractometer
5442 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
3321 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.839Rint = 0.049
21508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.29 e Å3
5442 reflectionsΔρmin = 0.49 e Å3
439 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. The water H-atoms were refined with distance restraints of O-H = 0.84 (2) Å and Uiso(H) = 1.5Ueq(O). The OH, NH and C-bound H-atoms were included in calculated positions and treated as riding on their parent atom: O-H = 0.83 Å, N-H = 0.87 Å, C-H = 0.94 and 0.97 Å, for CH and CH3, respectively, with Uiso(H) = k × Ueq(O, N, or C), where k = 1.5 for CH3 H-atoms and 1.2 for all other H-atoms. The water molecule O3W was only partially occupied and was refined with an occupancy of 0.35. Methyl group C28 was treated as an idealized disordered methyl group with two positions rotated from each other by 60°; each H-atom occupancy was set to 0.5.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.14739 (3)0.96793 (3)0.15130 (1)0.0260 (1)
O10.15046 (15)1.07916 (16)0.22542 (6)0.0298 (5)
O20.25528 (15)1.07951 (16)0.30382 (6)0.0290 (5)
O30.21156 (15)0.82051 (17)0.09837 (6)0.0313 (6)
O40.34942 (19)0.6562 (2)0.09309 (8)0.0662 (9)
O50.58914 (17)0.7378 (2)0.27078 (7)0.0453 (7)
O60.01044 (16)0.82870 (16)0.17517 (6)0.0308 (5)
O70.18300 (17)0.77766 (19)0.15269 (7)0.0428 (7)
O80.21250 (15)1.14097 (17)0.11129 (6)0.0340 (6)
O90.15781 (17)1.28829 (18)0.04666 (7)0.0472 (7)
O100.25820 (15)1.06177 (19)0.01149 (6)0.0405 (7)
N10.28647 (17)0.88779 (18)0.19159 (7)0.0232 (6)
N20.00840 (16)1.02066 (19)0.10486 (6)0.0234 (6)
C10.3184 (2)0.9328 (2)0.23970 (8)0.0226 (7)
C20.4179 (2)0.8853 (2)0.26876 (8)0.0251 (7)
C30.4886 (2)0.7856 (3)0.24664 (9)0.0295 (8)
C40.4526 (2)0.7357 (2)0.19695 (9)0.0305 (8)
C50.3517 (2)0.7890 (2)0.17069 (8)0.0276 (8)
C60.2335 (2)1.0398 (2)0.25655 (8)0.0240 (7)
C70.3021 (2)0.7496 (3)0.11634 (9)0.0333 (9)
C80.0908 (2)0.9446 (2)0.10399 (8)0.0239 (7)
C90.1816 (2)0.9572 (3)0.06563 (8)0.0282 (7)
C100.1691 (2)1.0544 (2)0.02645 (8)0.0277 (8)
C110.0673 (2)1.1354 (2)0.02800 (8)0.0254 (7)
C120.0207 (2)1.1152 (2)0.06783 (8)0.0248 (7)
C130.0863 (2)0.8416 (2)0.14803 (9)0.0286 (8)
C140.1396 (2)1.1890 (2)0.07497 (9)0.0315 (8)
N30.85534 (18)0.40284 (19)0.10413 (7)0.0285 (6)
N40.64764 (19)0.2613 (2)0.08013 (8)0.0378 (8)
C150.9561 (2)0.4758 (3)0.11221 (9)0.0297 (7)
C161.0299 (2)0.4506 (3)0.15731 (9)0.0378 (9)
C171.0007 (2)0.3517 (3)0.19177 (9)0.0361 (9)
C180.8949 (2)0.2752 (2)0.18279 (9)0.0305 (8)
C190.8601 (3)0.1697 (3)0.21716 (10)0.0380 (9)
C200.7587 (3)0.0981 (3)0.20579 (10)0.0404 (10)
C210.6824 (2)0.1255 (3)0.15974 (10)0.0362 (9)
C220.5769 (3)0.0533 (3)0.14537 (12)0.0522 (11)
C230.5108 (3)0.0846 (3)0.10047 (12)0.0572 (11)
C240.5487 (3)0.1909 (3)0.06806 (11)0.0481 (10)
C250.7134 (2)0.2290 (3)0.12506 (9)0.0319 (8)
C260.8214 (2)0.3034 (2)0.13757 (9)0.0277 (8)
C270.9852 (3)0.5789 (3)0.07223 (10)0.0409 (9)
C280.4771 (3)0.2259 (4)0.01801 (12)0.0692 (14)
O1W0.7549 (2)0.4759 (2)0.00287 (7)0.0628 (9)
O2W0.3478 (2)0.3691 (2)0.14479 (9)0.0670 (9)
O3W0.5288 (6)0.4962 (6)0.1014 (2)0.059 (2)0.350
H20.437900.918800.302600.0300*
H2O0.211001.145400.309700.0430*
H40.496900.666400.181700.0370*
H5O0.601400.776500.299500.0680*
H90.250600.902000.065600.0340*
H10O0.239701.117300.034100.0610*
H110.058301.202800.002400.0310*
H30.808800.419400.076100.0340*
H161.100500.502300.164100.0450*
H171.052000.334700.221800.0430*
H190.908300.150300.247900.0460*
H200.737400.028300.228600.0480*
H220.551600.017300.166900.0630*
H230.439900.035700.090900.0690*
H27A0.912300.625700.059200.0610*
H27B1.020400.532800.043600.0610*
H27C1.041800.645400.087800.0610*
H28A0.488900.322000.009800.1040*0.500
H28B0.392600.209200.021900.1040*0.500
H28C0.503600.169200.010000.1040*0.500
H28D0.434500.144900.004700.1040*0.500
H28E0.530800.257800.007400.1040*0.500
H28F0.419800.297700.024400.1040*0.500
H1WA0.769 (4)0.551 (2)0.0102 (14)0.0940*
H1WB0.715 (3)0.426 (3)0.0187 (12)0.0940*
H2WA0.307 (3)0.312 (3)0.1262 (13)0.1000*
H2WB0.352 (4)0.445 (2)0.1319 (14)0.1000*
H3WA0.506 (9)0.576 (5)0.091 (4)0.0880*0.350
H3WB0.568 (8)0.470 (11)0.077 (3)0.0880*0.350
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0257 (2)0.0274 (2)0.0242 (2)0.0010 (2)0.0024 (1)0.0008 (1)
O10.0285 (10)0.0309 (9)0.0290 (8)0.0058 (7)0.0042 (8)0.0019 (7)
O20.0354 (10)0.0282 (9)0.0232 (8)0.0086 (7)0.0003 (7)0.0042 (7)
O30.0323 (11)0.0367 (10)0.0243 (8)0.0016 (8)0.0021 (8)0.0020 (7)
O40.0577 (15)0.0876 (17)0.0509 (12)0.0291 (13)0.0117 (11)0.0451 (12)
O50.0437 (13)0.0535 (12)0.0366 (10)0.0256 (10)0.0112 (9)0.0100 (9)
O60.0339 (11)0.0323 (9)0.0257 (8)0.0008 (8)0.0002 (8)0.0056 (7)
O70.0367 (12)0.0463 (11)0.0451 (11)0.0130 (9)0.0020 (9)0.0193 (9)
O80.0284 (10)0.0358 (10)0.0366 (10)0.0092 (8)0.0044 (8)0.0017 (8)
O90.0497 (13)0.0363 (11)0.0551 (12)0.0168 (9)0.0013 (10)0.0150 (9)
O100.0315 (11)0.0624 (14)0.0265 (9)0.0060 (9)0.0059 (8)0.0124 (8)
N10.0231 (11)0.0243 (10)0.0220 (10)0.0004 (8)0.0006 (8)0.0015 (8)
N20.0249 (11)0.0219 (9)0.0231 (9)0.0007 (9)0.0001 (8)0.0001 (8)
C10.0248 (13)0.0226 (12)0.0206 (11)0.0019 (9)0.0030 (10)0.0012 (9)
C20.0294 (14)0.0252 (12)0.0204 (11)0.0012 (10)0.0007 (10)0.0002 (9)
C30.0295 (15)0.0299 (12)0.0284 (12)0.0061 (11)0.0021 (11)0.0021 (10)
C40.0321 (15)0.0297 (13)0.0299 (13)0.0089 (11)0.0032 (11)0.0043 (10)
C50.0316 (15)0.0271 (13)0.0240 (12)0.0025 (11)0.0021 (11)0.0039 (10)
C60.0256 (13)0.0215 (11)0.0247 (11)0.0025 (11)0.0012 (10)0.0008 (10)
C70.0313 (16)0.0401 (16)0.0282 (13)0.0000 (12)0.0007 (11)0.0057 (12)
C80.0230 (13)0.0253 (13)0.0235 (11)0.0025 (10)0.0029 (10)0.0006 (9)
C90.0220 (13)0.0364 (14)0.0260 (11)0.0068 (11)0.0015 (10)0.0017 (11)
C100.0261 (14)0.0361 (15)0.0206 (11)0.0042 (11)0.0001 (10)0.0015 (10)
C110.0277 (14)0.0269 (13)0.0218 (11)0.0022 (11)0.0029 (10)0.0040 (9)
C120.0287 (14)0.0193 (12)0.0269 (12)0.0021 (10)0.0050 (10)0.0005 (9)
C130.0339 (16)0.0272 (13)0.0247 (12)0.0012 (12)0.0027 (12)0.0021 (10)
C140.0311 (16)0.0301 (14)0.0334 (14)0.0032 (11)0.0023 (12)0.0019 (11)
N30.0318 (12)0.0292 (11)0.0243 (10)0.0022 (9)0.0007 (9)0.0026 (8)
N40.0284 (13)0.0515 (14)0.0333 (12)0.0057 (11)0.0021 (10)0.0028 (10)
C150.0296 (14)0.0297 (12)0.0299 (12)0.0017 (12)0.0029 (10)0.0064 (11)
C160.0349 (16)0.0407 (16)0.0373 (14)0.0067 (13)0.0009 (12)0.0061 (12)
C170.0386 (17)0.0383 (15)0.0301 (13)0.0061 (13)0.0061 (12)0.0049 (11)
C180.0362 (16)0.0290 (13)0.0266 (12)0.0072 (11)0.0051 (11)0.0043 (10)
C190.0487 (19)0.0346 (15)0.0314 (14)0.0103 (13)0.0069 (13)0.0016 (11)
C200.056 (2)0.0307 (14)0.0364 (15)0.0029 (14)0.0161 (14)0.0036 (12)
C210.0389 (17)0.0351 (14)0.0362 (14)0.0027 (12)0.0137 (13)0.0034 (11)
C220.051 (2)0.056 (2)0.0519 (18)0.0163 (16)0.0190 (15)0.0012 (15)
C230.0418 (19)0.074 (2)0.0570 (19)0.0245 (16)0.0112 (16)0.0073 (16)
C240.0316 (17)0.069 (2)0.0441 (16)0.0098 (15)0.0051 (13)0.0071 (14)
C250.0298 (15)0.0364 (14)0.0304 (13)0.0007 (11)0.0081 (11)0.0047 (11)
C260.0304 (15)0.0268 (13)0.0267 (12)0.0023 (11)0.0066 (11)0.0038 (10)
C270.0492 (18)0.0384 (15)0.0354 (14)0.0116 (13)0.0053 (13)0.0033 (11)
C280.037 (2)0.112 (3)0.057 (2)0.0174 (19)0.0064 (16)0.0023 (19)
O1W0.0982 (19)0.0473 (13)0.0392 (11)0.0271 (13)0.0194 (11)0.0131 (10)
O2W0.0778 (18)0.0594 (16)0.0572 (14)0.0216 (13)0.0377 (12)0.0033 (11)
O3W0.061 (4)0.048 (4)0.066 (4)0.019 (3)0.007 (3)0.007 (3)
Geometric parameters (Å, º) top
Ni1—O12.1887 (16)C8—C91.365 (3)
Ni1—O32.1373 (17)C8—C131.510 (3)
Ni1—O62.1660 (17)C9—C101.396 (3)
Ni1—O82.1291 (17)C10—C111.381 (3)
Ni1—N11.9619 (19)C11—C121.378 (3)
Ni1—N21.9536 (17)C12—C141.508 (3)
O1—C61.239 (3)C2—H20.9400
O2—C61.280 (3)C4—H40.9400
O3—C71.281 (3)C9—H90.9400
O4—C71.229 (3)C11—H110.9400
O5—C31.325 (3)C15—C161.392 (3)
O6—C131.247 (3)C15—C271.489 (4)
O7—C131.260 (3)C16—C171.364 (4)
O8—C141.280 (3)C17—C181.401 (3)
O9—C141.235 (3)C18—C191.427 (4)
O10—C101.341 (3)C18—C261.398 (3)
O2—H2O0.8300C19—C201.343 (5)
O5—H5O0.8300C20—C211.430 (4)
O10—H10O0.8300C21—C221.397 (4)
O1W—H1WA0.82 (2)C21—C251.405 (4)
O1W—H1WB0.84 (3)C22—C231.357 (4)
O2W—H2WB0.81 (2)C23—C241.413 (4)
O2W—H2WA0.84 (3)C24—C281.501 (4)
O3W—H3WB0.83 (8)C25—C261.422 (3)
O3W—H3WA0.85 (6)C16—H160.9400
N1—C51.342 (3)C17—H170.9400
N1—C11.335 (3)C19—H190.9400
N2—C121.338 (3)C20—H200.9400
N2—C81.331 (3)C22—H220.9400
N3—C151.333 (3)C23—H230.9400
N3—C261.367 (3)C27—H27B0.9700
N4—C241.317 (4)C27—H27A0.9700
N4—C251.358 (3)C27—H27C0.9700
N3—H30.8700C28—H28F0.9700
C1—C21.371 (3)C28—H28A0.9700
C1—C61.494 (3)C28—H28B0.9700
C2—C31.398 (3)C28—H28C0.9700
C3—C41.397 (3)C28—H28D0.9700
C4—C51.371 (3)C28—H28E0.9700
C5—C71.513 (3)
O1—Ni1—O3154.38 (6)C3—C2—H2121.00
O1—Ni1—O691.59 (6)C3—C4—H4120.00
O1—Ni1—O892.62 (6)C5—C4—H4120.00
O1—Ni1—N177.14 (7)C8—C9—H9121.00
O1—Ni1—N2111.18 (7)C10—C9—H9121.00
O3—Ni1—O692.20 (6)C12—C11—H11121.00
O3—Ni1—O894.60 (6)C10—C11—H11121.00
O3—Ni1—N177.24 (7)C16—C15—C27123.1 (2)
O3—Ni1—N294.39 (7)N3—C15—C16118.4 (2)
O6—Ni1—O8154.88 (7)N3—C15—C27118.5 (2)
O6—Ni1—N198.61 (7)C15—C16—C17120.6 (2)
O6—Ni1—N277.99 (7)C16—C17—C18120.5 (2)
O8—Ni1—N1106.47 (7)C17—C18—C19123.1 (2)
O8—Ni1—N277.40 (7)C19—C18—C26119.0 (2)
N1—Ni1—N2170.92 (8)C17—C18—C26117.9 (2)
Ni1—O1—C6111.77 (14)C18—C19—C20120.2 (2)
Ni1—O3—C7115.18 (15)C19—C20—C21121.6 (3)
Ni1—O6—C13112.27 (14)C20—C21—C22124.3 (3)
Ni1—O8—C14114.80 (14)C22—C21—C25115.8 (2)
C6—O2—H2O109.00C20—C21—C25119.9 (2)
C3—O5—H5O109.00C21—C22—C23120.4 (3)
C10—O10—H10O109.00C22—C23—C24119.9 (3)
H1WA—O1W—H1WB111 (3)N4—C24—C28117.8 (3)
H2WA—O2W—H2WB114 (3)N4—C24—C23121.7 (3)
H3WA—O3W—H3WB102 (10)C23—C24—C28120.5 (3)
Ni1—N1—C1120.26 (15)N4—C25—C21124.2 (2)
C1—N1—C5119.38 (19)C21—C25—C26117.8 (2)
Ni1—N1—C5120.35 (14)N4—C25—C26118.0 (2)
C8—N2—C12120.02 (18)C18—C26—C25121.5 (2)
Ni1—N2—C8119.08 (14)N3—C26—C18119.2 (2)
Ni1—N2—C12119.71 (15)N3—C26—C25119.3 (2)
C15—N3—C26123.4 (2)C15—C16—H16120.00
C24—N4—C25118.1 (2)C17—C16—H16120.00
C15—N3—H3118.00C18—C17—H17120.00
C26—N3—H3118.00C16—C17—H17120.00
N1—C1—C6111.48 (18)C18—C19—H19120.00
C2—C1—C6125.65 (19)C20—C19—H19120.00
N1—C1—C2122.87 (19)C19—C20—H20119.00
C1—C2—C3118.13 (19)C21—C20—H20119.00
O5—C3—C4118.8 (2)C23—C22—H22120.00
C2—C3—C4118.7 (2)C21—C22—H22120.00
O5—C3—C2122.5 (2)C22—C23—H23120.00
C3—C4—C5119.2 (2)C24—C23—H23120.00
C4—C5—C7126.1 (2)C15—C27—H27B110.00
N1—C5—C4121.64 (19)H27A—C27—H27C109.00
N1—C5—C7112.27 (19)C15—C27—H27C110.00
O1—C6—O2126.8 (2)H27A—C27—H27B109.00
O1—C6—C1119.26 (18)C15—C27—H27A109.00
O2—C6—C1113.95 (18)H27B—C27—H27C109.00
O3—C7—C5114.9 (2)C24—C28—H28C110.00
O4—C7—C5119.7 (2)C24—C28—H28E109.00
O3—C7—O4125.4 (2)C24—C28—H28F110.00
N2—C8—C9122.3 (2)C24—C28—H28D109.00
C9—C8—C13125.6 (2)C24—C28—H28A109.00
N2—C8—C13112.08 (18)C24—C28—H28B109.00
C8—C9—C10118.2 (2)H28A—C28—H28E56.00
C9—C10—C11119.5 (2)H28A—C28—H28F56.00
O10—C10—C9116.83 (19)H28B—C28—H28C110.00
O10—C10—C11123.65 (19)H28B—C28—H28D56.00
C10—C11—C12118.62 (19)H28B—C28—H28E141.00
N2—C12—C14112.17 (18)H28B—C28—H28F56.00
N2—C12—C11121.4 (2)H28C—C28—H28D56.00
C11—C12—C14126.44 (19)H28C—C28—H28E56.00
O7—C13—C8114.8 (2)H28C—C28—H28F141.00
O6—C13—O7127.6 (2)H28D—C28—H28E110.00
O6—C13—C8117.68 (19)H28D—C28—H28F109.00
O8—C14—C12114.87 (18)H28E—C28—H28F109.00
O8—C14—O9126.2 (2)H28A—C28—H28B109.00
O9—C14—C12118.9 (2)H28A—C28—H28C109.00
C1—C2—H2121.00H28A—C28—H28D141.00
O3—Ni1—O1—C60.8 (2)C24—N4—C25—C210.3 (4)
O6—Ni1—O1—C697.65 (15)C25—N4—C24—C230.0 (4)
O8—Ni1—O1—C6107.12 (15)C25—N4—C24—C28179.3 (3)
N1—Ni1—O1—C60.82 (15)C24—N4—C25—C26178.9 (2)
N2—Ni1—O1—C6175.38 (14)N1—C1—C2—C30.2 (3)
O1—Ni1—O3—C72.0 (3)N1—C1—C6—O2175.37 (18)
O6—Ni1—O3—C796.33 (17)C6—C1—C2—C3179.3 (2)
O8—Ni1—O3—C7107.87 (17)N1—C1—C6—O13.4 (3)
N1—Ni1—O3—C72.00 (17)C2—C1—C6—O1176.1 (2)
N2—Ni1—O3—C7174.44 (17)C2—C1—C6—O25.2 (3)
O1—Ni1—O6—C13114.42 (15)C1—C2—C3—C42.2 (3)
O3—Ni1—O6—C1390.93 (15)C1—C2—C3—O5177.0 (2)
O8—Ni1—O6—C1314.8 (2)C2—C3—C4—C52.2 (3)
N1—Ni1—O6—C13168.35 (15)O5—C3—C4—C5177.1 (2)
N2—Ni1—O6—C133.09 (15)C3—C4—C5—C7178.3 (2)
O1—Ni1—O8—C14116.33 (15)C3—C4—C5—N10.1 (3)
O3—Ni1—O8—C1488.27 (15)N1—C5—C7—O33.5 (3)
O6—Ni1—O8—C1416.9 (2)N1—C5—C7—O4176.9 (2)
N1—Ni1—O8—C14166.30 (15)C4—C5—C7—O44.5 (4)
N2—Ni1—O8—C145.21 (15)C4—C5—C7—O3175.1 (2)
O1—Ni1—N1—C11.16 (16)N2—C8—C9—C100.5 (3)
O1—Ni1—N1—C5179.94 (17)C13—C8—C9—C10177.3 (2)
O3—Ni1—N1—C1178.86 (18)N2—C8—C13—O68.0 (3)
O3—Ni1—N1—C50.09 (16)N2—C8—C13—O7172.29 (19)
O6—Ni1—N1—C190.83 (17)C9—C8—C13—O6169.1 (2)
O6—Ni1—N1—C590.40 (16)C9—C8—C13—O710.6 (3)
O8—Ni1—N1—C187.78 (17)C8—C9—C10—O10178.2 (2)
O8—Ni1—N1—C590.99 (17)C8—C9—C10—C110.9 (3)
O1—Ni1—N2—C895.09 (16)C9—C10—C11—C121.6 (3)
O1—Ni1—N2—C1297.40 (16)O10—C10—C11—C12177.5 (2)
O3—Ni1—N2—C883.25 (16)C10—C11—C12—C14177.4 (2)
O3—Ni1—N2—C1284.27 (16)C10—C11—C12—N20.8 (3)
O6—Ni1—N2—C88.07 (15)N2—C12—C14—O86.5 (3)
O6—Ni1—N2—C12175.58 (17)C11—C12—C14—O8171.8 (2)
O8—Ni1—N2—C8176.99 (16)C11—C12—C14—O98.8 (3)
O8—Ni1—N2—C129.48 (15)N2—C12—C14—O9172.8 (2)
Ni1—O1—C6—O2176.12 (18)N3—C15—C16—C171.3 (4)
Ni1—O1—C6—C12.5 (2)C27—C15—C16—C17177.8 (3)
Ni1—O3—C7—O4176.9 (2)C15—C16—C17—C181.0 (4)
Ni1—O3—C7—C53.5 (3)C16—C17—C18—C19179.5 (2)
Ni1—O6—C13—O7178.64 (19)C16—C17—C18—C260.2 (4)
Ni1—O6—C13—C81.7 (2)C17—C18—C19—C20178.6 (3)
Ni1—O8—C14—O9179.95 (19)C26—C18—C19—C200.6 (4)
Ni1—O8—C14—C120.8 (2)C17—C18—C26—N30.3 (3)
Ni1—N1—C1—C2176.87 (16)C17—C18—C26—C25179.0 (2)
Ni1—N1—C1—C62.6 (2)C19—C18—C26—N3179.0 (2)
C5—N1—C1—C21.9 (3)C19—C18—C26—C250.3 (3)
C5—N1—C1—C6178.60 (18)C18—C19—C20—C210.6 (4)
Ni1—N1—C5—C4176.87 (16)C19—C20—C21—C22179.0 (3)
Ni1—N1—C5—C71.8 (2)C19—C20—C21—C250.3 (4)
C1—N1—C5—C41.9 (3)C20—C21—C22—C23178.9 (3)
C1—N1—C5—C7179.42 (19)C25—C21—C22—C230.2 (4)
Ni1—N2—C8—C9166.20 (18)C20—C21—C25—N4179.2 (2)
Ni1—N2—C8—C1311.0 (2)C20—C21—C25—C260.0 (4)
C12—N2—C8—C91.3 (3)C22—C21—C25—N40.4 (4)
C12—N2—C8—C13178.47 (18)C22—C21—C25—C26178.8 (2)
Ni1—N2—C12—C11166.80 (16)C21—C22—C23—C240.1 (5)
Ni1—N2—C12—C1411.7 (2)C22—C23—C24—N40.2 (5)
C8—N2—C12—C110.6 (3)C22—C23—C24—C28179.5 (3)
C8—N2—C12—C14179.07 (18)N4—C25—C26—N30.5 (3)
C15—N3—C26—C180.0 (3)N4—C25—C26—C18179.2 (2)
C26—N3—C15—C160.8 (4)C21—C25—C26—N3178.7 (2)
C26—N3—C15—C27178.4 (2)C21—C25—C26—C180.0 (4)
C15—N3—C26—C25178.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C1–C5.
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O9i0.82 (2)2.03 (3)2.832 (3)166 (4)
O1W—H1WB···O4ii0.84 (3)2.15 (3)2.942 (3)158 (3)
O2—H2O···O7iii0.831.652.399 (2)148
N3—H3···O1W0.872.012.845 (3)161
N3—H3···N40.872.382.728 (3)105
O2W—H2WA···O8iv0.84 (3)1.99 (3)2.785 (3)156 (3)
O2W—H2WA···O9iv0.84 (3)2.55 (3)3.267 (3)144 (3)
O2W—H2WB···O40.81 (2)2.28 (2)3.094 (3)176 (5)
O5—H5O···O2Wv0.831.752.570 (3)169
O10—H10O···O3vi0.831.812.597 (2)158
C27—H27C···O3vii0.972.553.480 (4)161
C22—H22···Cg1iv0.942.763.635 (3)155
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y1, z; (v) x+1, y+1/2, z+1/2; (vi) x, y+2, z; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C14H13N2)[Ni(C7H3NO5)(C7H4NO5)]·2.35H2O
Mr673.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)11.1663 (8), 9.7296 (9), 25.698 (2)
β (°) 94.330 (9)
V3)2784.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.34 × 0.30 × 0.23
Data collection
DiffractometerStoe IPDS
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.820, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
21508, 5442, 3321
Rint0.049
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.071, 0.82
No. of reflections5442
No. of parameters439
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.49

Computer programs: EXPOSE (Stoe & Cie, 2000), CELL (Stoe & Cie, 2000), INTEGRATE (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C1–C5.
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O9i0.82 (2)2.03 (3)2.832 (3)166 (4)
O1W—H1WB···O4ii0.84 (3)2.15 (3)2.942 (3)158 (3)
O2—H2O···O7iii0.831.652.399 (2)148
N3—H3···O1W0.872.012.845 (3)161
N3—H3···N40.872.382.728 (3)105
O2W—H2WA···O8iv0.84 (3)1.99 (3)2.785 (3)156 (3)
O2W—H2WA···O9iv0.84 (3)2.55 (3)3.267 (3)144 (3)
O2W—H2WB···O40.81 (2)2.28 (2)3.094 (3)176 (5)
O5—H5O···O2Wv0.831.752.570 (3)169
O10—H10O···O3vi0.831.812.597 (2)158
C27—H27C···O3vii0.972.553.480 (4)161
C22—H22···Cg1iv0.942.763.635 (3)155
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y1, z; (v) x+1, y+1/2, z+1/2; (vi) x, y+2, z; (vii) x+1, y, z.
π···π interactions [Å]
Cg1 is the centroid of ring N1,C1-C5; Cg2 is the centroid of ring N2,C8-C12; Cg3 is the centroid of ring N3,C15-C18,C26; Cg4 is the centroid of ring N4,C21-C25; Cg5 is the centroid of ring C18-C19,C25,C26;
Symmetry codes : (i) -x+1, y+0.5, -z+0.5; (ii) x-1, y+1, z
top
CgICgJCentroid-to-Centroid
Cg1Cg5i3.7818 (14)
Cg2Cg3ii3.9022 (13)
Cg2Cg4ii3.8946 (15)
Cg2Cg5ii3.5442 (14)
 

References

First citationAghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst. E64, m144–m145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Roshan, L., Firoozi, N., Ghadermazi, M. & Bagheri, S. (2008). Acta Cryst. E64, m1208–m1209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Saadaty, S., Motyeian, E., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationGhadermazi, M., Manteghi, F. & Aghabozorg, H. (2009). Acta Cryst. E65, m1374–m1375.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRafizadeh, M., Derikvand, Z. & Nemati, A. (2008). Acta Cryst. E64, m1300–m1301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173–m1174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds