metal-organic compounds
Benzoyldicarbonyl(η5-indenyl)ruthenium(II)
aDepartment of Chemistry, The University of Wisconsin-Stevens Point, 2001 Fourth Avenue, Stevens Point, WI 54481, USA, bDepartment of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA, cDepartment of Chemistry, UMass Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and dDepartment of Chemistry and Biochemistry, 9500 Gilman Drive, MC 0332, La Jolla, CA 92093, USA
*Correspondence e-mail: jdacchio@uwsp.edu
In the title molecule, [Ru(C9H7)(C7H5O)(CO)2], the dihedral angle between the mean plane of the indene ring system and the phenyl ring is 86.28 (8)°. The is stabilized by weak intermolecular C—H⋯O and C—H⋯π(arene) interactions. The Ru—η5-cyclopentadienyl centroid bond length is 1.946 (11) Å
Related literature
For background information, see: Chung et al. (1982). For the synthetic procedure, see: Badger et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810033180/lh5113sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033180/lh5113Isup2.hkl
All reactions were performed under nitrogen using standard Schlenk techniques. THF was dried using a MBraun solvent purification system and used fresh. The compound benzoyldicarbonyl(η5-indenyl)ruthenium(II) was prepared by reaction of tricarbonyl(η5-indenyl)ruthenium(II) tetrafluoroborate with the Grignard reagent phenyl-magnesium bromide; tricarbonyl(η5-indenyl)ruthenium(II) tetrafluoroborate was prepared according to a previously established procedure (Badger et al., 2009).
To a 100 ml three-neck round-bottom flask containing 15 ml of anhydrous THF at 273 K was added 142 mg tricarbonyl(η6-indenyl)ruthenium(II) tetrafluoroborate. Approximately 1.3 ml of 0.5 M phenyl-magnesium bromide (1.7 mol excess relative to tricarbonyl(η5-indenyl)ruthenium(II) tetrafluoroborate) was added to the flask. The solution changed from pale yellow to orange, and was allowed to stir for 10 minutes at 273 K. Excess Grignard reagent was killed with several drops of dilute HCl.
Solid magnesium salts precipitated out of the reaction mixture. The material was filtered via gravity filtration, and the solid was discarded. The mother liquor was extracted into diethyl ether and washed with two 10 ml aliquots of distilled water in a seperatory funnel. The organic layer was dried over MgSO4. The ether layer was removed via roto-evaporation, yielding a dark-yellow oil. X-ray diffraction-quality crystals precipitated from the oil on standing overnight.
All hydrogen atoms were placed in calculated positions with appropriate riding models. Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) with U(H) = 1.2 U(C).
The title compound was synthesized via attack of the Grignard reagent phenyl-magnesium bromide on [tricarbonyl(η5-indenyl)ruthenium(II)]+. It is well established that coordination of MLn fragments (M = for example Fe, Ru, Rh; Ln = for example CO, phosphines) to an arene ring can result in nucleophilic or electrophilic attack at the arene ring or the carbonyl ligand (Chung et al., 1982). The latter case is the subject of this structural study.
The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the mean plane of the indene ring system and the phenyl ring is 86.28 (8)°. The π(arene) interactions.
is stabilized by weak intermolecular C-H···O and C-H···For background information, see: Chung et al. (1982). For the synthetic procedure, see: Badger et al. (2009).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. |
[Ru(C9H7)(C7H5O)(CO)2] | F(000) = 752 |
Mr = 377.35 | Dx = 1.728 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5236 reflections |
a = 11.531 (3) Å | θ = 2.7–28.1° |
b = 8.731 (2) Å | µ = 1.09 mm−1 |
c = 15.158 (4) Å | T = 100 K |
β = 108.150 (3)° | Block, yellow |
V = 1450.2 (7) Å3 | 0.30 × 0.10 × 0.10 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 3332 independent reflections |
Radiation source: fine-focus sealed tube | 2730 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 28.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −15→15 |
Tmin = 0.736, Tmax = 0.899 | k = −11→11 |
11223 measured reflections | l = −19→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0372P)2 + 1.048P] where P = (Fo2 + 2Fc2)/3 |
3332 reflections | (Δ/σ)max = 0.013 |
199 parameters | Δρmax = 1.07 e Å−3 |
0 restraints | Δρmin = −0.63 e Å−3 |
[Ru(C9H7)(C7H5O)(CO)2] | V = 1450.2 (7) Å3 |
Mr = 377.35 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.531 (3) Å | µ = 1.09 mm−1 |
b = 8.731 (2) Å | T = 100 K |
c = 15.158 (4) Å | 0.30 × 0.10 × 0.10 mm |
β = 108.150 (3)° |
Bruker APEXII CCD diffractometer | 3332 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2730 reflections with I > 2σ(I) |
Tmin = 0.736, Tmax = 0.899 | Rint = 0.037 |
11223 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.07 e Å−3 |
3332 reflections | Δρmin = −0.63 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.44803 (2) | 0.32604 (3) | 0.139849 (16) | 0.01609 (9) | |
O1 | 0.2399 (2) | 0.5526 (3) | 0.07196 (17) | 0.0285 (5) | |
O2 | 0.4145 (2) | 0.2330 (3) | 0.32314 (17) | 0.0328 (6) | |
O3 | 0.67033 (18) | 0.4987 (3) | 0.20243 (16) | 0.0239 (5) | |
C1 | 0.4696 (3) | 0.2829 (4) | 0.0000 (2) | 0.0214 (7) | |
H1A | 0.4618 | 0.3618 | −0.0494 | 0.026* | |
C2 | 0.5797 (3) | 0.2380 (4) | 0.0669 (2) | 0.0229 (7) | |
H2A | 0.6621 | 0.2819 | 0.0736 | 0.027* | |
C3 | 0.5550 (3) | 0.1181 (4) | 0.1223 (2) | 0.0208 (6) | |
H3A | 0.6170 | 0.0622 | 0.1732 | 0.025* | |
C4 | 0.4273 (3) | 0.0737 (4) | 0.0800 (2) | 0.0193 (6) | |
C5 | 0.3748 (3) | 0.1751 (3) | 0.0039 (2) | 0.0203 (7) | |
C6 | 0.2508 (3) | 0.1615 (4) | −0.0498 (2) | 0.0238 (7) | |
H6A | 0.2153 | 0.2294 | −0.0999 | 0.029* | |
C7 | 0.1830 (3) | 0.0471 (4) | −0.0273 (2) | 0.0270 (7) | |
H7A | 0.0996 | 0.0354 | −0.0628 | 0.032* | |
C8 | 0.2350 (3) | −0.0538 (4) | 0.0478 (2) | 0.0248 (7) | |
H8A | 0.1859 | −0.1325 | 0.0609 | 0.030* | |
C9 | 0.3538 (3) | −0.0408 (3) | 0.1020 (2) | 0.0216 (7) | |
H9A | 0.3866 | −0.1073 | 0.1534 | 0.026* | |
C10 | 0.3210 (3) | 0.4708 (4) | 0.1019 (2) | 0.0216 (7) | |
C11 | 0.4272 (3) | 0.2735 (4) | 0.2550 (2) | 0.0205 (7) | |
C12 | 0.5661 (3) | 0.4974 (3) | 0.2068 (2) | 0.0179 (6) | |
C13 | 0.5309 (3) | 0.6283 (3) | 0.2604 (2) | 0.0170 (6) | |
C14 | 0.4295 (3) | 0.6266 (4) | 0.2918 (2) | 0.0184 (6) | |
H14A | 0.3732 | 0.5441 | 0.2752 | 0.022* | |
C15 | 0.4098 (3) | 0.7448 (4) | 0.3472 (2) | 0.0206 (7) | |
H15A | 0.3418 | 0.7409 | 0.3699 | 0.025* | |
C16 | 0.4894 (3) | 0.8680 (4) | 0.3694 (2) | 0.0234 (7) | |
H16A | 0.4760 | 0.9487 | 0.4071 | 0.028* | |
C17 | 0.5889 (3) | 0.8731 (4) | 0.3362 (2) | 0.0215 (7) | |
H17A | 0.6425 | 0.9587 | 0.3503 | 0.026* | |
C18 | 0.6106 (3) | 0.7542 (4) | 0.2827 (2) | 0.0190 (6) | |
H18A | 0.6795 | 0.7580 | 0.2611 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01864 (15) | 0.01520 (14) | 0.01457 (14) | 0.00019 (10) | 0.00536 (10) | −0.00036 (9) |
O1 | 0.0257 (13) | 0.0278 (13) | 0.0293 (13) | 0.0065 (11) | 0.0045 (10) | 0.0040 (11) |
O2 | 0.0520 (16) | 0.0240 (12) | 0.0297 (14) | 0.0046 (12) | 0.0233 (13) | 0.0050 (11) |
O3 | 0.0189 (11) | 0.0248 (12) | 0.0284 (13) | −0.0022 (10) | 0.0081 (10) | −0.0058 (10) |
C1 | 0.0278 (17) | 0.0195 (15) | 0.0186 (16) | −0.0024 (14) | 0.0096 (14) | −0.0029 (13) |
C2 | 0.0268 (17) | 0.0247 (17) | 0.0201 (16) | −0.0011 (14) | 0.0117 (14) | −0.0052 (14) |
C3 | 0.0228 (16) | 0.0174 (15) | 0.0215 (16) | 0.0029 (13) | 0.0062 (13) | −0.0047 (13) |
C4 | 0.0229 (16) | 0.0197 (15) | 0.0150 (15) | 0.0035 (13) | 0.0056 (12) | −0.0024 (12) |
C5 | 0.0279 (17) | 0.0197 (15) | 0.0145 (15) | 0.0020 (13) | 0.0085 (13) | −0.0037 (12) |
C6 | 0.0291 (18) | 0.0242 (17) | 0.0160 (16) | 0.0021 (14) | 0.0039 (14) | −0.0026 (13) |
C7 | 0.0248 (17) | 0.0313 (19) | 0.0230 (17) | −0.0035 (15) | 0.0048 (14) | −0.0115 (15) |
C8 | 0.0328 (19) | 0.0208 (16) | 0.0238 (17) | −0.0047 (14) | 0.0130 (15) | −0.0054 (14) |
C9 | 0.0270 (17) | 0.0160 (15) | 0.0229 (16) | −0.0005 (13) | 0.0092 (14) | −0.0028 (13) |
C10 | 0.0242 (17) | 0.0208 (15) | 0.0198 (15) | −0.0061 (14) | 0.0070 (13) | −0.0035 (13) |
C11 | 0.0245 (17) | 0.0141 (14) | 0.0229 (17) | 0.0037 (13) | 0.0072 (14) | −0.0016 (13) |
C12 | 0.0191 (15) | 0.0181 (15) | 0.0155 (14) | 0.0005 (12) | 0.0040 (12) | 0.0030 (12) |
C13 | 0.0195 (15) | 0.0159 (14) | 0.0134 (14) | 0.0024 (12) | 0.0019 (12) | 0.0007 (12) |
C14 | 0.0199 (15) | 0.0160 (14) | 0.0183 (15) | 0.0015 (12) | 0.0046 (12) | 0.0021 (12) |
C15 | 0.0229 (16) | 0.0204 (16) | 0.0204 (16) | 0.0048 (13) | 0.0092 (13) | 0.0026 (13) |
C16 | 0.0264 (17) | 0.0217 (16) | 0.0215 (16) | 0.0035 (14) | 0.0065 (14) | −0.0008 (13) |
C17 | 0.0232 (16) | 0.0194 (15) | 0.0202 (16) | −0.0035 (13) | 0.0042 (13) | −0.0014 (13) |
C18 | 0.0184 (15) | 0.0222 (16) | 0.0161 (15) | 0.0006 (13) | 0.0049 (12) | 0.0002 (13) |
Ru1—C10 | 1.884 (3) | C5—C6 | 1.413 (5) |
Ru1—C11 | 1.891 (3) | C6—C7 | 1.376 (5) |
Ru1—C12 | 2.064 (3) | C6—H6A | 0.9500 |
Ru1—C1 | 2.243 (3) | C7—C8 | 1.416 (5) |
Ru1—C3 | 2.257 (3) | C7—H7A | 0.9500 |
Ru1—C2 | 2.272 (3) | C8—C9 | 1.365 (5) |
Ru1—C4 | 2.367 (3) | C8—H8A | 0.9500 |
Ru1—C5 | 2.369 (3) | C9—H9A | 0.9500 |
O1—C10 | 1.152 (4) | C12—C13 | 1.528 (4) |
O2—C11 | 1.144 (4) | C13—C14 | 1.393 (4) |
O3—C12 | 1.225 (3) | C13—C18 | 1.405 (4) |
C1—C2 | 1.412 (5) | C14—C15 | 1.394 (4) |
C1—C5 | 1.458 (4) | C14—H14A | 0.9500 |
C1—H1A | 1.0000 | C15—C16 | 1.386 (5) |
C2—C3 | 1.425 (5) | C15—H15A | 0.9500 |
C2—H2A | 1.0000 | C16—C17 | 1.389 (4) |
C3—C4 | 1.464 (4) | C16—H16A | 0.9500 |
C3—H3A | 1.0000 | C17—C18 | 1.387 (4) |
C4—C9 | 1.416 (4) | C17—H17A | 0.9500 |
C4—C5 | 1.431 (4) | C18—H18A | 0.9500 |
C10—Ru1—C11 | 97.72 (13) | C9—C4—C3 | 132.7 (3) |
C10—Ru1—C12 | 89.69 (13) | C5—C4—C3 | 107.7 (3) |
C11—Ru1—C12 | 88.61 (13) | C9—C4—Ru1 | 124.3 (2) |
C10—Ru1—C1 | 97.41 (13) | C5—C4—Ru1 | 72.53 (17) |
C11—Ru1—C1 | 156.27 (13) | C3—C4—Ru1 | 67.50 (16) |
C12—Ru1—C1 | 109.65 (11) | C6—C5—C4 | 120.7 (3) |
C10—Ru1—C3 | 154.88 (13) | C6—C5—C1 | 131.9 (3) |
C11—Ru1—C3 | 98.33 (12) | C4—C5—C1 | 107.4 (3) |
C12—Ru1—C3 | 109.88 (12) | C6—C5—Ru1 | 124.7 (2) |
C1—Ru1—C3 | 61.82 (12) | C4—C5—Ru1 | 72.31 (18) |
C10—Ru1—C2 | 130.72 (13) | C1—C5—Ru1 | 66.91 (16) |
C11—Ru1—C2 | 131.54 (13) | C7—C6—C5 | 118.0 (3) |
C12—Ru1—C2 | 92.65 (12) | C7—C6—H6A | 121.0 |
C1—Ru1—C2 | 36.43 (12) | C5—C6—H6A | 121.0 |
C3—Ru1—C2 | 36.67 (12) | C6—C7—C8 | 121.3 (3) |
C10—Ru1—C4 | 122.10 (12) | C6—C7—H7A | 119.4 |
C11—Ru1—C4 | 95.82 (12) | C8—C7—H7A | 119.4 |
C12—Ru1—C4 | 146.71 (11) | C9—C8—C7 | 121.8 (3) |
C1—Ru1—C4 | 60.58 (11) | C9—C8—H8A | 119.1 |
C3—Ru1—C4 | 36.83 (11) | C7—C8—H8A | 119.1 |
C2—Ru1—C4 | 60.11 (11) | C8—C9—C4 | 118.6 (3) |
C10—Ru1—C5 | 94.31 (12) | C8—C9—H9A | 120.7 |
C11—Ru1—C5 | 123.70 (12) | C4—C9—H9A | 120.7 |
C12—Ru1—C5 | 146.36 (11) | O1—C10—Ru1 | 174.3 (3) |
C1—Ru1—C5 | 36.72 (11) | O2—C11—Ru1 | 176.0 (3) |
C3—Ru1—C5 | 60.65 (11) | O3—C12—C13 | 116.7 (3) |
C2—Ru1—C5 | 59.98 (11) | O3—C12—Ru1 | 119.2 (2) |
C4—Ru1—C5 | 35.16 (10) | C13—C12—Ru1 | 124.1 (2) |
C2—C1—C5 | 108.0 (3) | C14—C13—C18 | 118.8 (3) |
C2—C1—Ru1 | 72.91 (18) | C14—C13—C12 | 124.3 (3) |
C5—C1—Ru1 | 76.37 (17) | C18—C13—C12 | 116.8 (3) |
C2—C1—H1A | 125.5 | C13—C14—C15 | 120.7 (3) |
C5—C1—H1A | 125.5 | C13—C14—H14A | 119.7 |
Ru1—C1—H1A | 125.5 | C15—C14—H14A | 119.7 |
C1—C2—C3 | 109.1 (3) | C16—C15—C14 | 120.1 (3) |
C1—C2—Ru1 | 70.65 (17) | C16—C15—H15A | 120.0 |
C3—C2—Ru1 | 71.08 (17) | C14—C15—H15A | 120.0 |
C1—C2—H2A | 125.4 | C15—C16—C17 | 119.8 (3) |
C3—C2—H2A | 125.4 | C15—C16—H16A | 120.1 |
Ru1—C2—H2A | 125.4 | C17—C16—H16A | 120.1 |
C2—C3—C4 | 107.1 (3) | C18—C17—C16 | 120.5 (3) |
C2—C3—Ru1 | 72.25 (18) | C18—C17—H17A | 119.8 |
C4—C3—Ru1 | 75.67 (17) | C16—C17—H17A | 119.8 |
C2—C3—H3A | 126.0 | C17—C18—C13 | 120.2 (3) |
C4—C3—H3A | 126.0 | C17—C18—H18A | 119.9 |
Ru1—C3—H3A | 126.0 | C13—C18—H18A | 119.9 |
C9—C4—C5 | 119.6 (3) | ||
C10—Ru1—C1—C2 | 158.7 (2) | C2—C1—C5—C6 | −176.7 (3) |
C11—Ru1—C1—C2 | −72.1 (4) | Ru1—C1—C5—C6 | 116.7 (3) |
C12—Ru1—C1—C2 | 66.4 (2) | C2—C1—C5—C4 | 5.3 (3) |
C3—Ru1—C1—C2 | −36.26 (19) | Ru1—C1—C5—C4 | −61.4 (2) |
C4—Ru1—C1—C2 | −78.5 (2) | C2—C1—C5—Ru1 | 66.6 (2) |
C5—Ru1—C1—C2 | −114.0 (3) | C10—Ru1—C5—C6 | −29.4 (3) |
C10—Ru1—C1—C5 | −87.27 (19) | C11—Ru1—C5—C6 | 72.8 (3) |
C11—Ru1—C1—C5 | 41.9 (4) | C12—Ru1—C5—C6 | −125.4 (3) |
C12—Ru1—C1—C5 | −179.61 (18) | C1—Ru1—C5—C6 | −126.0 (4) |
C3—Ru1—C1—C5 | 77.78 (19) | C3—Ru1—C5—C6 | 152.7 (3) |
C2—Ru1—C1—C5 | 114.0 (3) | C2—Ru1—C5—C6 | −164.8 (3) |
C4—Ru1—C1—C5 | 35.54 (17) | C4—Ru1—C5—C6 | 115.5 (3) |
C5—C1—C2—C3 | −8.0 (3) | C10—Ru1—C5—C4 | −144.92 (18) |
Ru1—C1—C2—C3 | 60.9 (2) | C11—Ru1—C5—C4 | −42.7 (2) |
C5—C1—C2—Ru1 | −69.0 (2) | C12—Ru1—C5—C4 | 119.1 (2) |
C10—Ru1—C2—C1 | −28.4 (3) | C1—Ru1—C5—C4 | 118.5 (3) |
C11—Ru1—C2—C1 | 149.2 (2) | C3—Ru1—C5—C4 | 37.23 (17) |
C12—Ru1—C2—C1 | −120.3 (2) | C2—Ru1—C5—C4 | 79.68 (19) |
C3—Ru1—C2—C1 | 119.2 (3) | C10—Ru1—C5—C1 | 96.6 (2) |
C4—Ru1—C2—C1 | 79.9 (2) | C11—Ru1—C5—C1 | −161.14 (19) |
C5—Ru1—C2—C1 | 39.09 (18) | C12—Ru1—C5—C1 | 0.7 (3) |
C10—Ru1—C2—C3 | −147.6 (2) | C3—Ru1—C5—C1 | −81.2 (2) |
C11—Ru1—C2—C3 | 30.0 (3) | C2—Ru1—C5—C1 | −38.78 (19) |
C12—Ru1—C2—C3 | 120.5 (2) | C4—Ru1—C5—C1 | −118.5 (3) |
C1—Ru1—C2—C3 | −119.2 (3) | C4—C5—C6—C7 | −0.8 (4) |
C4—Ru1—C2—C3 | −39.30 (18) | C1—C5—C6—C7 | −178.7 (3) |
C5—Ru1—C2—C3 | −80.1 (2) | Ru1—C5—C6—C7 | −89.7 (3) |
C1—C2—C3—C4 | 7.6 (3) | C5—C6—C7—C8 | 0.5 (5) |
Ru1—C2—C3—C4 | 68.2 (2) | C6—C7—C8—C9 | 1.0 (5) |
C1—C2—C3—Ru1 | −60.7 (2) | C7—C8—C9—C4 | −2.1 (4) |
C10—Ru1—C3—C2 | 73.1 (3) | C5—C4—C9—C8 | 1.8 (4) |
C11—Ru1—C3—C2 | −157.7 (2) | C3—C4—C9—C8 | 180.0 (3) |
C12—Ru1—C3—C2 | −66.2 (2) | Ru1—C4—C9—C8 | 90.1 (3) |
C1—Ru1—C3—C2 | 36.03 (19) | C11—Ru1—C10—O1 | −128 (3) |
C4—Ru1—C3—C2 | 113.7 (3) | C12—Ru1—C10—O1 | 143 (3) |
C5—Ru1—C3—C2 | 78.1 (2) | C1—Ru1—C10—O1 | 34 (3) |
C10—Ru1—C3—C4 | −40.6 (4) | C3—Ru1—C10—O1 | 1 (3) |
C11—Ru1—C3—C4 | 88.60 (19) | C2—Ru1—C10—O1 | 50 (3) |
C12—Ru1—C3—C4 | −179.86 (17) | C4—Ru1—C10—O1 | −26 (3) |
C1—Ru1—C3—C4 | −77.63 (19) | C5—Ru1—C10—O1 | −3 (3) |
C2—Ru1—C3—C4 | −113.7 (3) | C10—Ru1—C11—O2 | 128 (4) |
C5—Ru1—C3—C4 | −35.53 (16) | C12—Ru1—C11—O2 | −142 (4) |
C2—C3—C4—C9 | 177.5 (3) | C1—Ru1—C11—O2 | −1 (4) |
Ru1—C3—C4—C9 | −116.6 (3) | C3—Ru1—C11—O2 | −32 (4) |
C2—C3—C4—C5 | −4.2 (3) | C2—Ru1—C11—O2 | −50 (4) |
Ru1—C3—C4—C5 | 61.7 (2) | C4—Ru1—C11—O2 | 5 (4) |
C2—C3—C4—Ru1 | −65.9 (2) | C5—Ru1—C11—O2 | 28 (4) |
C10—Ru1—C4—C9 | −71.8 (3) | C10—Ru1—C12—O3 | −139.5 (3) |
C11—Ru1—C4—C9 | 31.1 (3) | C11—Ru1—C12—O3 | 122.8 (3) |
C12—Ru1—C4—C9 | 127.5 (3) | C1—Ru1—C12—O3 | −41.7 (3) |
C1—Ru1—C4—C9 | −151.4 (3) | C3—Ru1—C12—O3 | 24.5 (3) |
C3—Ru1—C4—C9 | 127.3 (3) | C2—Ru1—C12—O3 | −8.7 (3) |
C2—Ru1—C4—C9 | 166.4 (3) | C4—Ru1—C12—O3 | 24.3 (4) |
C5—Ru1—C4—C9 | −114.3 (3) | C5—Ru1—C12—O3 | −42.1 (4) |
C10—Ru1—C4—C5 | 42.6 (2) | C10—Ru1—C12—C13 | 38.8 (2) |
C11—Ru1—C4—C5 | 145.47 (19) | C11—Ru1—C12—C13 | −59.0 (2) |
C12—Ru1—C4—C5 | −118.2 (2) | C1—Ru1—C12—C13 | 136.5 (2) |
C1—Ru1—C4—C5 | −37.12 (18) | C3—Ru1—C12—C13 | −157.3 (2) |
C3—Ru1—C4—C5 | −118.4 (2) | C2—Ru1—C12—C13 | 169.5 (2) |
C2—Ru1—C4—C5 | −79.28 (19) | C4—Ru1—C12—C13 | −157.5 (2) |
C10—Ru1—C4—C3 | 160.97 (18) | C5—Ru1—C12—C13 | 136.1 (2) |
C11—Ru1—C4—C3 | −96.13 (19) | O3—C12—C13—C14 | −163.6 (3) |
C12—Ru1—C4—C3 | 0.2 (3) | Ru1—C12—C13—C14 | 18.1 (4) |
C1—Ru1—C4—C3 | 81.28 (19) | O3—C12—C13—C18 | 13.1 (4) |
C2—Ru1—C4—C3 | 39.12 (18) | Ru1—C12—C13—C18 | −165.1 (2) |
C5—Ru1—C4—C3 | 118.4 (2) | C18—C13—C14—C15 | −2.4 (5) |
C9—C4—C5—C6 | −0.4 (4) | C12—C13—C14—C15 | 174.3 (3) |
C3—C4—C5—C6 | −179.0 (3) | C13—C14—C15—C16 | 2.0 (5) |
Ru1—C4—C5—C6 | −120.4 (3) | C14—C15—C16—C17 | −0.1 (5) |
C9—C4—C5—C1 | 178.0 (3) | C15—C16—C17—C18 | −1.4 (5) |
C3—C4—C5—C1 | −0.6 (3) | C16—C17—C18—C13 | 0.9 (5) |
Ru1—C4—C5—C1 | 57.92 (19) | C14—C13—C18—C17 | 0.9 (5) |
C9—C4—C5—Ru1 | 120.0 (3) | C12—C13—C18—C17 | −176.0 (3) |
C3—C4—C5—Ru1 | −58.55 (19) |
Cg is the centroid of the C13–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O3i | 0.95 | 2.55 | 3.204 (4) | 126 |
C9—H9A···Cgii | 0.95 | 2.72 | 3.657 (3) | 169 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Ru(C9H7)(C7H5O)(CO)2] |
Mr | 377.35 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 11.531 (3), 8.731 (2), 15.158 (4) |
β (°) | 108.150 (3) |
V (Å3) | 1450.2 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.09 |
Crystal size (mm) | 0.30 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.736, 0.899 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11223, 3332, 2730 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.662 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.084, 1.05 |
No. of reflections | 3332 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.07, −0.63 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).
Cg is the centroid of the C13–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O3i | 0.95 | 2.55 | 3.204 (4) | 126 |
C9—H9A···Cgii | 0.95 | 2.72 | 3.657 (3) | 169 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x, y−1, z. |
Acknowledgements
JSD, TAO, and BJW would like to thank Professor Nathan Bowling and Professor Robert Badger for fruitful discussions on Grignard chemistry. JSD would like to thank Professor Dwight Sweigart for stimulating discussions on ligand substitution chemistry. TAO and BJW thank the UWSP CoLS for Undergraduate Education Initiative grants. JSD gratefully acknowledges a University Professional Development grant, as well as assistance from the Department of Chemistry.
References
Badger, R. C., D'Acchioli, J. S., Gamoke, B. C., Kim, S. B., Oudenhoven, T. A., Sweigart, D. A. & Tanke, R. S. (2009). Organometallics, 28, 418–424. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chung, Y., Williard, P. & Sweigart, D. (1982). Organometallics, 1, 1053–1056. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was synthesized via attack of the Grignard reagent phenyl-magnesium bromide on [tricarbonyl(η5-indenyl)ruthenium(II)]+. It is well established that coordination of MLn fragments (M = for example Fe, Ru, Rh; Ln = for example CO, phosphines) to an arene ring can result in nucleophilic or electrophilic attack at the arene ring or the carbonyl ligand (Chung et al., 1982). The latter case is the subject of this structural study.
The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the mean plane of the indene ring system and the phenyl ring is 86.28 (8)°. The crystal structure is stabilized by weak intermolecular C-H···O and C-H···π(arene) interactions.