metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzoyl­dicarbon­yl(η5-inden­yl)ruthenium(II)

aDepartment of Chemistry, The University of Wisconsin-Stevens Point, 2001 Fourth Avenue, Stevens Point, WI 54481, USA, bDepartment of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA, cDepartment of Chemistry, UMass Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and dDepartment of Chemistry and Biochemistry, 9500 Gilman Drive, MC 0332, La Jolla, CA 92093, USA
*Correspondence e-mail: jdacchio@uwsp.edu

(Received 4 August 2010; accepted 17 August 2010; online 25 August 2010)

In the title mol­ecule, [Ru(C9H7)(C7H5O)(CO)2], the dihedral angle between the mean plane of the indene ring system and the phenyl ring is 86.28 (8)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O and C—H⋯π(arene) inter­actions. The Ru—η5-cyclopentadienyl centroid bond length is 1.946 (11) Å

Related literature

For background information, see: Chung et al. (1982[Chung, Y., Williard, P. & Sweigart, D. (1982). Organometallics, 1, 1053-1056.]). For the synthetic procedure, see: Badger et al. (2009[Badger, R. C., D'Acchioli, J. S., Gamoke, B. C., Kim, S. B., Oudenhoven, T. A., Sweigart, D. A. & Tanke, R. S. (2009). Organometallics, 28, 418-424.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C9H7)(C7H5O)(CO)2]

  • Mr = 377.35

  • Monoclinic, P 21 /n

  • a = 11.531 (3) Å

  • b = 8.731 (2) Å

  • c = 15.158 (4) Å

  • β = 108.150 (3)°

  • V = 1450.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.736, Tmax = 0.899

  • 11223 measured reflections

  • 3332 independent reflections

  • 2730 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.05

  • 3332 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O3i 0.95 2.55 3.204 (4) 126
C9—H9ACgii 0.95 2.72 3.657 (3) 169
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound was synthesized via attack of the Grignard reagent phenyl-magnesium bromide on [tricarbonyl(η5-indenyl)ruthenium(II)]+. It is well established that coordination of MLn fragments (M = for example Fe, Ru, Rh; Ln = for example CO, phosphines) to an arene ring can result in nucleophilic or electrophilic attack at the arene ring or the carbonyl ligand (Chung et al., 1982). The latter case is the subject of this structural study.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the mean plane of the indene ring system and the phenyl ring is 86.28 (8)°. The crystal structure is stabilized by weak intermolecular C-H···O and C-H···π(arene) interactions.

Related literature top

For background information, see: Chung et al. (1982). For the synthetic procedure, see: Badger et al. (2009).

Experimental top

All reactions were performed under nitrogen using standard Schlenk techniques. THF was dried using a MBraun solvent purification system and used fresh. The compound benzoyldicarbonyl(η5-indenyl)ruthenium(II) was prepared by reaction of tricarbonyl(η5-indenyl)ruthenium(II) tetrafluoroborate with the Grignard reagent phenyl-magnesium bromide; tricarbonyl(η5-indenyl)ruthenium(II) tetrafluoroborate was prepared according to a previously established procedure (Badger et al., 2009).

To a 100 ml three-neck round-bottom flask containing 15 ml of anhydrous THF at 273 K was added 142 mg tricarbonyl(η6-indenyl)ruthenium(II) tetrafluoroborate. Approximately 1.3 ml of 0.5 M phenyl-magnesium bromide (1.7 mol excess relative to tricarbonyl(η5-indenyl)ruthenium(II) tetrafluoroborate) was added to the flask. The solution changed from pale yellow to orange, and was allowed to stir for 10 minutes at 273 K. Excess Grignard reagent was killed with several drops of dilute HCl.

Solid magnesium salts precipitated out of the reaction mixture. The material was filtered via gravity filtration, and the solid was discarded. The mother liquor was extracted into diethyl ether and washed with two 10 ml aliquots of distilled water in a seperatory funnel. The organic layer was dried over MgSO4. The ether layer was removed via roto-evaporation, yielding a dark-yellow oil. X-ray diffraction-quality crystals precipitated from the oil on standing overnight.

Refinement top

All hydrogen atoms were placed in calculated positions with appropriate riding models. Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) with U(H) = 1.2 U(C).

Structure description top

The title compound was synthesized via attack of the Grignard reagent phenyl-magnesium bromide on [tricarbonyl(η5-indenyl)ruthenium(II)]+. It is well established that coordination of MLn fragments (M = for example Fe, Ru, Rh; Ln = for example CO, phosphines) to an arene ring can result in nucleophilic or electrophilic attack at the arene ring or the carbonyl ligand (Chung et al., 1982). The latter case is the subject of this structural study.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the mean plane of the indene ring system and the phenyl ring is 86.28 (8)°. The crystal structure is stabilized by weak intermolecular C-H···O and C-H···π(arene) interactions.

For background information, see: Chung et al. (1982). For the synthetic procedure, see: Badger et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Benzoyldicarbonyl(η5-indenyl)ruthenium(II) top
Crystal data top
[Ru(C9H7)(C7H5O)(CO)2]F(000) = 752
Mr = 377.35Dx = 1.728 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5236 reflections
a = 11.531 (3) Åθ = 2.7–28.1°
b = 8.731 (2) ŵ = 1.09 mm1
c = 15.158 (4) ÅT = 100 K
β = 108.150 (3)°Block, yellow
V = 1450.2 (7) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3332 independent reflections
Radiation source: fine-focus sealed tube2730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 28.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.736, Tmax = 0.899k = 1111
11223 measured reflectionsl = 1913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0372P)2 + 1.048P]
where P = (Fo2 + 2Fc2)/3
3332 reflections(Δ/σ)max = 0.013
199 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Ru(C9H7)(C7H5O)(CO)2]V = 1450.2 (7) Å3
Mr = 377.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.531 (3) ŵ = 1.09 mm1
b = 8.731 (2) ÅT = 100 K
c = 15.158 (4) Å0.30 × 0.10 × 0.10 mm
β = 108.150 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3332 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2730 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.899Rint = 0.037
11223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 1.07 e Å3
3332 reflectionsΔρmin = 0.63 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.44803 (2)0.32604 (3)0.139849 (16)0.01609 (9)
O10.2399 (2)0.5526 (3)0.07196 (17)0.0285 (5)
O20.4145 (2)0.2330 (3)0.32314 (17)0.0328 (6)
O30.67033 (18)0.4987 (3)0.20243 (16)0.0239 (5)
C10.4696 (3)0.2829 (4)0.0000 (2)0.0214 (7)
H1A0.46180.36180.04940.026*
C20.5797 (3)0.2380 (4)0.0669 (2)0.0229 (7)
H2A0.66210.28190.07360.027*
C30.5550 (3)0.1181 (4)0.1223 (2)0.0208 (6)
H3A0.61700.06220.17320.025*
C40.4273 (3)0.0737 (4)0.0800 (2)0.0193 (6)
C50.3748 (3)0.1751 (3)0.0039 (2)0.0203 (7)
C60.2508 (3)0.1615 (4)0.0498 (2)0.0238 (7)
H6A0.21530.22940.09990.029*
C70.1830 (3)0.0471 (4)0.0273 (2)0.0270 (7)
H7A0.09960.03540.06280.032*
C80.2350 (3)0.0538 (4)0.0478 (2)0.0248 (7)
H8A0.18590.13250.06090.030*
C90.3538 (3)0.0408 (3)0.1020 (2)0.0216 (7)
H9A0.38660.10730.15340.026*
C100.3210 (3)0.4708 (4)0.1019 (2)0.0216 (7)
C110.4272 (3)0.2735 (4)0.2550 (2)0.0205 (7)
C120.5661 (3)0.4974 (3)0.2068 (2)0.0179 (6)
C130.5309 (3)0.6283 (3)0.2604 (2)0.0170 (6)
C140.4295 (3)0.6266 (4)0.2918 (2)0.0184 (6)
H14A0.37320.54410.27520.022*
C150.4098 (3)0.7448 (4)0.3472 (2)0.0206 (7)
H15A0.34180.74090.36990.025*
C160.4894 (3)0.8680 (4)0.3694 (2)0.0234 (7)
H16A0.47600.94870.40710.028*
C170.5889 (3)0.8731 (4)0.3362 (2)0.0215 (7)
H17A0.64250.95870.35030.026*
C180.6106 (3)0.7542 (4)0.2827 (2)0.0190 (6)
H18A0.67950.75800.26110.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01864 (15)0.01520 (14)0.01457 (14)0.00019 (10)0.00536 (10)0.00036 (9)
O10.0257 (13)0.0278 (13)0.0293 (13)0.0065 (11)0.0045 (10)0.0040 (11)
O20.0520 (16)0.0240 (12)0.0297 (14)0.0046 (12)0.0233 (13)0.0050 (11)
O30.0189 (11)0.0248 (12)0.0284 (13)0.0022 (10)0.0081 (10)0.0058 (10)
C10.0278 (17)0.0195 (15)0.0186 (16)0.0024 (14)0.0096 (14)0.0029 (13)
C20.0268 (17)0.0247 (17)0.0201 (16)0.0011 (14)0.0117 (14)0.0052 (14)
C30.0228 (16)0.0174 (15)0.0215 (16)0.0029 (13)0.0062 (13)0.0047 (13)
C40.0229 (16)0.0197 (15)0.0150 (15)0.0035 (13)0.0056 (12)0.0024 (12)
C50.0279 (17)0.0197 (15)0.0145 (15)0.0020 (13)0.0085 (13)0.0037 (12)
C60.0291 (18)0.0242 (17)0.0160 (16)0.0021 (14)0.0039 (14)0.0026 (13)
C70.0248 (17)0.0313 (19)0.0230 (17)0.0035 (15)0.0048 (14)0.0115 (15)
C80.0328 (19)0.0208 (16)0.0238 (17)0.0047 (14)0.0130 (15)0.0054 (14)
C90.0270 (17)0.0160 (15)0.0229 (16)0.0005 (13)0.0092 (14)0.0028 (13)
C100.0242 (17)0.0208 (15)0.0198 (15)0.0061 (14)0.0070 (13)0.0035 (13)
C110.0245 (17)0.0141 (14)0.0229 (17)0.0037 (13)0.0072 (14)0.0016 (13)
C120.0191 (15)0.0181 (15)0.0155 (14)0.0005 (12)0.0040 (12)0.0030 (12)
C130.0195 (15)0.0159 (14)0.0134 (14)0.0024 (12)0.0019 (12)0.0007 (12)
C140.0199 (15)0.0160 (14)0.0183 (15)0.0015 (12)0.0046 (12)0.0021 (12)
C150.0229 (16)0.0204 (16)0.0204 (16)0.0048 (13)0.0092 (13)0.0026 (13)
C160.0264 (17)0.0217 (16)0.0215 (16)0.0035 (14)0.0065 (14)0.0008 (13)
C170.0232 (16)0.0194 (15)0.0202 (16)0.0035 (13)0.0042 (13)0.0014 (13)
C180.0184 (15)0.0222 (16)0.0161 (15)0.0006 (13)0.0049 (12)0.0002 (13)
Geometric parameters (Å, º) top
Ru1—C101.884 (3)C5—C61.413 (5)
Ru1—C111.891 (3)C6—C71.376 (5)
Ru1—C122.064 (3)C6—H6A0.9500
Ru1—C12.243 (3)C7—C81.416 (5)
Ru1—C32.257 (3)C7—H7A0.9500
Ru1—C22.272 (3)C8—C91.365 (5)
Ru1—C42.367 (3)C8—H8A0.9500
Ru1—C52.369 (3)C9—H9A0.9500
O1—C101.152 (4)C12—C131.528 (4)
O2—C111.144 (4)C13—C141.393 (4)
O3—C121.225 (3)C13—C181.405 (4)
C1—C21.412 (5)C14—C151.394 (4)
C1—C51.458 (4)C14—H14A0.9500
C1—H1A1.0000C15—C161.386 (5)
C2—C31.425 (5)C15—H15A0.9500
C2—H2A1.0000C16—C171.389 (4)
C3—C41.464 (4)C16—H16A0.9500
C3—H3A1.0000C17—C181.387 (4)
C4—C91.416 (4)C17—H17A0.9500
C4—C51.431 (4)C18—H18A0.9500
C10—Ru1—C1197.72 (13)C9—C4—C3132.7 (3)
C10—Ru1—C1289.69 (13)C5—C4—C3107.7 (3)
C11—Ru1—C1288.61 (13)C9—C4—Ru1124.3 (2)
C10—Ru1—C197.41 (13)C5—C4—Ru172.53 (17)
C11—Ru1—C1156.27 (13)C3—C4—Ru167.50 (16)
C12—Ru1—C1109.65 (11)C6—C5—C4120.7 (3)
C10—Ru1—C3154.88 (13)C6—C5—C1131.9 (3)
C11—Ru1—C398.33 (12)C4—C5—C1107.4 (3)
C12—Ru1—C3109.88 (12)C6—C5—Ru1124.7 (2)
C1—Ru1—C361.82 (12)C4—C5—Ru172.31 (18)
C10—Ru1—C2130.72 (13)C1—C5—Ru166.91 (16)
C11—Ru1—C2131.54 (13)C7—C6—C5118.0 (3)
C12—Ru1—C292.65 (12)C7—C6—H6A121.0
C1—Ru1—C236.43 (12)C5—C6—H6A121.0
C3—Ru1—C236.67 (12)C6—C7—C8121.3 (3)
C10—Ru1—C4122.10 (12)C6—C7—H7A119.4
C11—Ru1—C495.82 (12)C8—C7—H7A119.4
C12—Ru1—C4146.71 (11)C9—C8—C7121.8 (3)
C1—Ru1—C460.58 (11)C9—C8—H8A119.1
C3—Ru1—C436.83 (11)C7—C8—H8A119.1
C2—Ru1—C460.11 (11)C8—C9—C4118.6 (3)
C10—Ru1—C594.31 (12)C8—C9—H9A120.7
C11—Ru1—C5123.70 (12)C4—C9—H9A120.7
C12—Ru1—C5146.36 (11)O1—C10—Ru1174.3 (3)
C1—Ru1—C536.72 (11)O2—C11—Ru1176.0 (3)
C3—Ru1—C560.65 (11)O3—C12—C13116.7 (3)
C2—Ru1—C559.98 (11)O3—C12—Ru1119.2 (2)
C4—Ru1—C535.16 (10)C13—C12—Ru1124.1 (2)
C2—C1—C5108.0 (3)C14—C13—C18118.8 (3)
C2—C1—Ru172.91 (18)C14—C13—C12124.3 (3)
C5—C1—Ru176.37 (17)C18—C13—C12116.8 (3)
C2—C1—H1A125.5C13—C14—C15120.7 (3)
C5—C1—H1A125.5C13—C14—H14A119.7
Ru1—C1—H1A125.5C15—C14—H14A119.7
C1—C2—C3109.1 (3)C16—C15—C14120.1 (3)
C1—C2—Ru170.65 (17)C16—C15—H15A120.0
C3—C2—Ru171.08 (17)C14—C15—H15A120.0
C1—C2—H2A125.4C15—C16—C17119.8 (3)
C3—C2—H2A125.4C15—C16—H16A120.1
Ru1—C2—H2A125.4C17—C16—H16A120.1
C2—C3—C4107.1 (3)C18—C17—C16120.5 (3)
C2—C3—Ru172.25 (18)C18—C17—H17A119.8
C4—C3—Ru175.67 (17)C16—C17—H17A119.8
C2—C3—H3A126.0C17—C18—C13120.2 (3)
C4—C3—H3A126.0C17—C18—H18A119.9
Ru1—C3—H3A126.0C13—C18—H18A119.9
C9—C4—C5119.6 (3)
C10—Ru1—C1—C2158.7 (2)C2—C1—C5—C6176.7 (3)
C11—Ru1—C1—C272.1 (4)Ru1—C1—C5—C6116.7 (3)
C12—Ru1—C1—C266.4 (2)C2—C1—C5—C45.3 (3)
C3—Ru1—C1—C236.26 (19)Ru1—C1—C5—C461.4 (2)
C4—Ru1—C1—C278.5 (2)C2—C1—C5—Ru166.6 (2)
C5—Ru1—C1—C2114.0 (3)C10—Ru1—C5—C629.4 (3)
C10—Ru1—C1—C587.27 (19)C11—Ru1—C5—C672.8 (3)
C11—Ru1—C1—C541.9 (4)C12—Ru1—C5—C6125.4 (3)
C12—Ru1—C1—C5179.61 (18)C1—Ru1—C5—C6126.0 (4)
C3—Ru1—C1—C577.78 (19)C3—Ru1—C5—C6152.7 (3)
C2—Ru1—C1—C5114.0 (3)C2—Ru1—C5—C6164.8 (3)
C4—Ru1—C1—C535.54 (17)C4—Ru1—C5—C6115.5 (3)
C5—C1—C2—C38.0 (3)C10—Ru1—C5—C4144.92 (18)
Ru1—C1—C2—C360.9 (2)C11—Ru1—C5—C442.7 (2)
C5—C1—C2—Ru169.0 (2)C12—Ru1—C5—C4119.1 (2)
C10—Ru1—C2—C128.4 (3)C1—Ru1—C5—C4118.5 (3)
C11—Ru1—C2—C1149.2 (2)C3—Ru1—C5—C437.23 (17)
C12—Ru1—C2—C1120.3 (2)C2—Ru1—C5—C479.68 (19)
C3—Ru1—C2—C1119.2 (3)C10—Ru1—C5—C196.6 (2)
C4—Ru1—C2—C179.9 (2)C11—Ru1—C5—C1161.14 (19)
C5—Ru1—C2—C139.09 (18)C12—Ru1—C5—C10.7 (3)
C10—Ru1—C2—C3147.6 (2)C3—Ru1—C5—C181.2 (2)
C11—Ru1—C2—C330.0 (3)C2—Ru1—C5—C138.78 (19)
C12—Ru1—C2—C3120.5 (2)C4—Ru1—C5—C1118.5 (3)
C1—Ru1—C2—C3119.2 (3)C4—C5—C6—C70.8 (4)
C4—Ru1—C2—C339.30 (18)C1—C5—C6—C7178.7 (3)
C5—Ru1—C2—C380.1 (2)Ru1—C5—C6—C789.7 (3)
C1—C2—C3—C47.6 (3)C5—C6—C7—C80.5 (5)
Ru1—C2—C3—C468.2 (2)C6—C7—C8—C91.0 (5)
C1—C2—C3—Ru160.7 (2)C7—C8—C9—C42.1 (4)
C10—Ru1—C3—C273.1 (3)C5—C4—C9—C81.8 (4)
C11—Ru1—C3—C2157.7 (2)C3—C4—C9—C8180.0 (3)
C12—Ru1—C3—C266.2 (2)Ru1—C4—C9—C890.1 (3)
C1—Ru1—C3—C236.03 (19)C11—Ru1—C10—O1128 (3)
C4—Ru1—C3—C2113.7 (3)C12—Ru1—C10—O1143 (3)
C5—Ru1—C3—C278.1 (2)C1—Ru1—C10—O134 (3)
C10—Ru1—C3—C440.6 (4)C3—Ru1—C10—O11 (3)
C11—Ru1—C3—C488.60 (19)C2—Ru1—C10—O150 (3)
C12—Ru1—C3—C4179.86 (17)C4—Ru1—C10—O126 (3)
C1—Ru1—C3—C477.63 (19)C5—Ru1—C10—O13 (3)
C2—Ru1—C3—C4113.7 (3)C10—Ru1—C11—O2128 (4)
C5—Ru1—C3—C435.53 (16)C12—Ru1—C11—O2142 (4)
C2—C3—C4—C9177.5 (3)C1—Ru1—C11—O21 (4)
Ru1—C3—C4—C9116.6 (3)C3—Ru1—C11—O232 (4)
C2—C3—C4—C54.2 (3)C2—Ru1—C11—O250 (4)
Ru1—C3—C4—C561.7 (2)C4—Ru1—C11—O25 (4)
C2—C3—C4—Ru165.9 (2)C5—Ru1—C11—O228 (4)
C10—Ru1—C4—C971.8 (3)C10—Ru1—C12—O3139.5 (3)
C11—Ru1—C4—C931.1 (3)C11—Ru1—C12—O3122.8 (3)
C12—Ru1—C4—C9127.5 (3)C1—Ru1—C12—O341.7 (3)
C1—Ru1—C4—C9151.4 (3)C3—Ru1—C12—O324.5 (3)
C3—Ru1—C4—C9127.3 (3)C2—Ru1—C12—O38.7 (3)
C2—Ru1—C4—C9166.4 (3)C4—Ru1—C12—O324.3 (4)
C5—Ru1—C4—C9114.3 (3)C5—Ru1—C12—O342.1 (4)
C10—Ru1—C4—C542.6 (2)C10—Ru1—C12—C1338.8 (2)
C11—Ru1—C4—C5145.47 (19)C11—Ru1—C12—C1359.0 (2)
C12—Ru1—C4—C5118.2 (2)C1—Ru1—C12—C13136.5 (2)
C1—Ru1—C4—C537.12 (18)C3—Ru1—C12—C13157.3 (2)
C3—Ru1—C4—C5118.4 (2)C2—Ru1—C12—C13169.5 (2)
C2—Ru1—C4—C579.28 (19)C4—Ru1—C12—C13157.5 (2)
C10—Ru1—C4—C3160.97 (18)C5—Ru1—C12—C13136.1 (2)
C11—Ru1—C4—C396.13 (19)O3—C12—C13—C14163.6 (3)
C12—Ru1—C4—C30.2 (3)Ru1—C12—C13—C1418.1 (4)
C1—Ru1—C4—C381.28 (19)O3—C12—C13—C1813.1 (4)
C2—Ru1—C4—C339.12 (18)Ru1—C12—C13—C18165.1 (2)
C5—Ru1—C4—C3118.4 (2)C18—C13—C14—C152.4 (5)
C9—C4—C5—C60.4 (4)C12—C13—C14—C15174.3 (3)
C3—C4—C5—C6179.0 (3)C13—C14—C15—C162.0 (5)
Ru1—C4—C5—C6120.4 (3)C14—C15—C16—C170.1 (5)
C9—C4—C5—C1178.0 (3)C15—C16—C17—C181.4 (5)
C3—C4—C5—C10.6 (3)C16—C17—C18—C130.9 (5)
Ru1—C4—C5—C157.92 (19)C14—C13—C18—C170.9 (5)
C9—C4—C5—Ru1120.0 (3)C12—C13—C18—C17176.0 (3)
C3—C4—C5—Ru158.55 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O3i0.952.553.204 (4)126
C9—H9A···Cgii0.952.723.657 (3)169
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ru(C9H7)(C7H5O)(CO)2]
Mr377.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.531 (3), 8.731 (2), 15.158 (4)
β (°) 108.150 (3)
V3)1450.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.736, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
11223, 3332, 2730
Rint0.037
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.05
No. of reflections3332
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.63

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O3i0.952.553.204 (4)126
C9—H9A···Cgii0.952.723.657 (3)169
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

JSD, TAO, and BJW would like to thank Professor Nathan Bowling and Professor Robert Badger for fruitful discussions on Grignard chemistry. JSD would like to thank Professor Dwight Sweigart for stimulating discussions on ligand substitution chemistry. TAO and BJW thank the UWSP CoLS for Undergraduate Education Initiative grants. JSD gratefully acknowledges a University Professional Development grant, as well as assistance from the Department of Chemistry.

References

First citationBadger, R. C., D'Acchioli, J. S., Gamoke, B. C., Kim, S. B., Oudenhoven, T. A., Sweigart, D. A. & Tanke, R. S. (2009). Organometallics, 28, 418–424.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChung, Y., Williard, P. & Sweigart, D. (1982). Organometallics, 1, 1053–1056.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds