organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Fluoro­benzyl­­idene)-2,2-di­methyl-1,3-dioxane-4,6-dione

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 8 August 2010; accepted 17 August 2010; online 21 August 2010)

The title compound, C13H11FO4, was prepared by the reaction of 2,2-dimethyl-1,3-dioxane-4,6-dione and 4-fluoro­benz­alde­hyde in ethanol. The 1,3-dioxane ring adopts an envelope conformation. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background information on the use of Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) in organic synthesis, see: Kuhn et al. (2003[Kuhn, N., Al-Sheikh, A. & Steimann, M. (2003). Z. Naturforsch. 58, 381-384.]); Casadesus et al. (2006[Casadesus, M., Coogan, M. P. & Ooi, L. L. (2006). Org. Biomol. Chem. 58, 3822-3830.]). For a related structure, see: Zeng & Jian (2009[Zeng, W.-L. & Jian, F.-F. (2009). Acta Cryst. E65, o2587.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11FO4

  • Mr = 250.22

  • Monoclinic, P 21 /c

  • a = 10.607 (2) Å

  • b = 10.413 (2) Å

  • c = 11.366 (2) Å

  • β = 106.09 (3)°

  • V = 1206.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.17 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 11341 measured reflections

  • 2748 independent reflections

  • 1773 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.182

  • S = 1.16

  • 2748 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.93 2.47 3.373 (3) 164
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Starting with its discovery and correct structural assignment, Meldrum's acid has become a widely used reagent in organic synthesis (Kuhn et al., 2003; Casadesus et al., 2006). We have recently reported the crystal structure of 5-(2-fluorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (Zeng & Jian, 2009). As part of our search for new Meldrum's acid derivatives the title compound,(I)(Fig. 1), has been synthesized and its crystal structure is reported herein. The crystal structure analysis confirms the title compound with atom C7 connected to a benzene ring via the C7-C8 single bond [1.451 (2)Å] and a 1,3-dioxane ring via the C7C5 double bond [1.349 (2)Å]. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For background information on the use of Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) in organic synthesis, see: Kuhn et al. (2003); Casadesus et al. (2006). For a related structure, see: Zeng & Jian (2009).

Experimental top

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303K. After dissolving, propan-2-one (3.48 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 2 h. The mixture was cooled and filtered, and then an ethanol solution of 4-fluorobenzaldehyde (7.67g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an petroleum ether-ethylacetate (3:1 v/v) solution of (I) at room temperature over a period of several days.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.96 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Starting with its discovery and correct structural assignment, Meldrum's acid has become a widely used reagent in organic synthesis (Kuhn et al., 2003; Casadesus et al., 2006). We have recently reported the crystal structure of 5-(2-fluorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (Zeng & Jian, 2009). As part of our search for new Meldrum's acid derivatives the title compound,(I)(Fig. 1), has been synthesized and its crystal structure is reported herein. The crystal structure analysis confirms the title compound with atom C7 connected to a benzene ring via the C7-C8 single bond [1.451 (2)Å] and a 1,3-dioxane ring via the C7C5 double bond [1.349 (2)Å]. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

For background information on the use of Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) in organic synthesis, see: Kuhn et al. (2003); Casadesus et al. (2006). For a related structure, see: Zeng & Jian (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
5-(4-Fluorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione top
Crystal data top
C13H11FO4F(000) = 520
Mr = 250.22Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2748 reflections
a = 10.607 (2) Åθ = 3.0–27.5°
b = 10.413 (2) ŵ = 0.11 mm1
c = 11.366 (2) ÅT = 293 K
β = 106.09 (3)°Block, colorless
V = 1206.2 (4) Å30.17 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1773 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
φ and ω scansh = 1313
11341 measured reflectionsk = 1313
2748 independent reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2748 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H11FO4V = 1206.2 (4) Å3
Mr = 250.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.607 (2) ŵ = 0.11 mm1
b = 10.413 (2) ÅT = 293 K
c = 11.366 (2) Å0.17 × 0.15 × 0.10 mm
β = 106.09 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1773 reflections with I > 2σ(I)
11341 measured reflectionsRint = 0.042
2748 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.16Δρmax = 0.16 e Å3
2748 reflectionsΔρmin = 0.24 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.19531 (11)0.04581 (14)0.03108 (11)0.0683 (4)
O40.48662 (11)0.09217 (13)0.12156 (11)0.0669 (4)
O10.29516 (11)0.01292 (14)0.12672 (11)0.0685 (4)
C70.46120 (16)0.27281 (18)0.07462 (14)0.0588 (4)
H7A0.44520.30290.14620.071*
O30.27783 (14)0.17669 (16)0.18433 (12)0.0848 (5)
C50.38086 (15)0.17577 (16)0.02221 (13)0.0541 (4)
C40.39340 (15)0.09646 (17)0.08040 (15)0.0566 (4)
C80.56723 (16)0.34028 (17)0.04331 (14)0.0577 (4)
C60.28220 (17)0.13664 (19)0.08633 (16)0.0625 (5)
C30.17201 (16)0.0255 (2)0.09776 (16)0.0661 (5)
C130.65632 (18)0.4046 (2)0.13807 (17)0.0693 (5)
H13A0.64600.40080.21660.083*
C90.5822 (2)0.3527 (2)0.07392 (17)0.0706 (5)
H9A0.52260.31280.13940.085*
F10.86826 (14)0.55357 (17)0.01890 (16)0.1227 (6)
C100.6833 (2)0.4228 (2)0.0945 (2)0.0837 (6)
H10A0.69280.43060.17310.100*
C20.0951 (2)0.1370 (2)0.16850 (19)0.0837 (6)
H2A0.14440.21490.14620.126*
H2B0.01280.14470.14940.126*
H2C0.07940.12220.25470.126*
C120.75946 (19)0.4739 (2)0.1185 (2)0.0806 (6)
H12A0.82000.51440.18280.097*
C110.7695 (2)0.4809 (2)0.0023 (2)0.0814 (6)
C10.1052 (2)0.1014 (2)0.1254 (2)0.0918 (7)
H1A0.15970.16690.07750.138*
H1B0.09000.12050.21090.138*
H1C0.02290.09860.10580.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0660 (7)0.0800 (9)0.0650 (8)0.0019 (6)0.0283 (6)0.0010 (6)
O40.0655 (7)0.0787 (9)0.0648 (8)0.0073 (6)0.0321 (6)0.0021 (6)
O10.0620 (7)0.0813 (9)0.0663 (8)0.0011 (6)0.0244 (6)0.0140 (6)
C70.0654 (9)0.0671 (11)0.0449 (8)0.0118 (8)0.0173 (7)0.0042 (7)
O30.0943 (10)0.1107 (13)0.0621 (8)0.0072 (8)0.0427 (7)0.0087 (7)
C50.0562 (8)0.0627 (10)0.0464 (8)0.0083 (7)0.0192 (6)0.0048 (7)
C40.0580 (9)0.0631 (10)0.0500 (8)0.0089 (7)0.0169 (7)0.0027 (7)
C80.0615 (9)0.0602 (10)0.0516 (9)0.0086 (7)0.0162 (7)0.0035 (7)
C60.0659 (10)0.0709 (12)0.0552 (10)0.0076 (8)0.0244 (8)0.0058 (8)
C30.0568 (9)0.0811 (13)0.0635 (10)0.0024 (8)0.0219 (8)0.0051 (9)
C130.0696 (11)0.0759 (13)0.0609 (10)0.0036 (9)0.0157 (8)0.0028 (9)
C90.0817 (12)0.0749 (13)0.0558 (10)0.0003 (10)0.0199 (9)0.0067 (8)
F10.0936 (9)0.1271 (13)0.1624 (16)0.0198 (9)0.0608 (10)0.0147 (10)
C100.0994 (15)0.0889 (16)0.0738 (13)0.0043 (12)0.0424 (12)0.0138 (11)
C20.0683 (11)0.0995 (16)0.0783 (13)0.0120 (11)0.0121 (10)0.0050 (12)
C120.0655 (11)0.0870 (15)0.0845 (14)0.0003 (10)0.0130 (10)0.0014 (11)
C110.0621 (10)0.0815 (14)0.1091 (16)0.0033 (10)0.0377 (11)0.0108 (13)
C10.0819 (13)0.0876 (16)0.1103 (18)0.0143 (11)0.0337 (12)0.0196 (13)
Geometric parameters (Å, º) top
O2—C61.348 (2)C13—C121.379 (3)
O2—C31.432 (2)C13—H13A0.9300
O4—C41.2063 (19)C9—C101.370 (3)
O1—C41.347 (2)C9—H9A0.9300
O1—C31.4388 (19)F1—C111.367 (2)
C7—C51.349 (2)C10—C111.362 (3)
C7—C81.451 (2)C10—H10A0.9300
C7—H7A0.9300C2—H2A0.9600
O3—C61.202 (2)C2—H2B0.9600
C5—C41.465 (2)C2—H2C0.9600
C5—C61.488 (2)C12—C111.356 (3)
C8—C91.391 (2)C12—H12A0.9300
C8—C131.392 (3)C1—H1A0.9600
C3—C11.491 (3)C1—H1B0.9600
C3—C21.516 (3)C1—H1C0.9600
C6—O2—C3118.82 (14)C8—C13—H13A119.1
C4—O1—C3120.31 (14)C10—C9—C8121.03 (19)
C5—C7—C8133.77 (16)C10—C9—H9A119.5
C5—C7—H7A113.1C8—C9—H9A119.5
C8—C7—H7A113.1C11—C10—C9118.7 (2)
C7—C5—C4126.02 (15)C11—C10—H10A120.6
C7—C5—C6115.63 (15)C9—C10—H10A120.6
C4—C5—C6117.82 (15)C3—C2—H2A109.5
O4—C4—O1116.92 (15)C3—C2—H2B109.5
O4—C4—C5126.49 (16)H2A—C2—H2B109.5
O1—C4—C5116.36 (14)C3—C2—H2C109.5
C9—C8—C13117.60 (18)H2A—C2—H2C109.5
C9—C8—C7125.56 (16)H2B—C2—H2C109.5
C13—C8—C7116.70 (15)C11—C12—C13117.8 (2)
O3—C6—O2118.56 (17)C11—C12—H12A121.1
O3—C6—C5124.86 (18)C13—C12—H12A121.1
O2—C6—C5116.53 (15)C12—C11—C10123.1 (2)
O2—C3—O1109.70 (13)C12—C11—F1118.2 (2)
O2—C3—C1106.49 (17)C10—C11—F1118.6 (2)
O1—C3—C1106.23 (16)C3—C1—H1A109.5
O2—C3—C2110.14 (16)C3—C1—H1B109.5
O1—C3—C2109.73 (16)H1A—C1—H1B109.5
C1—C3—C2114.39 (16)C3—C1—H1C109.5
C12—C13—C8121.71 (19)H1A—C1—H1C109.5
C12—C13—H13A119.1H1B—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.932.473.373 (3)164
Symmetry code: (i) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H11FO4
Mr250.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.607 (2), 10.413 (2), 11.366 (2)
β (°) 106.09 (3)
V3)1206.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.17 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11341, 2748, 1773
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.182, 1.16
No. of reflections2748
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.932.473.373 (3)164
Symmetry code: (i) x+1, y+1/2, z1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasadesus, M., Coogan, M. P. & Ooi, L. L. (2006). Org. Biomol. Chem. 58, 3822–3830.  Web of Science CSD CrossRef Google Scholar
First citationKuhn, N., Al-Sheikh, A. & Steimann, M. (2003). Z. Naturforsch. 58, 381–384.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W.-L. & Jian, F.-F. (2009). Acta Cryst. E65, o2587.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds