organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­amino­pyridinium (2E,4E)-hexa-2,4-dienoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 10 August 2010; accepted 13 August 2010; online 21 August 2010)

In the title salt, C5H8N3+·C6H7O2, the pyridine N atom of the 2,3-diamino­pyridine mol­ecule is protonated. The 2,3-diamino­pyridinium cation is essentially planar, with a maximum deviation of 0.068 (2) Å for one of the amino N atoms. The sorbate anion adopts an extended conformation. In the crystal structure, the protonated N atom and one of the two amino-group H atoms are hydrogen bonded to the sorbate anion through a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The ion pairs are further connected via inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming two-dimensional networks parallel to (100).

Related literature

For details of non-covalent inter­actions, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629-1658.]); Biradha & Fujita (2002[Biradha, K. & Fujita, M. (2002). Angew. Chem. Int. Ed. 41, 3392-3395.]). For applications of sorbic acid, see: Martindale (1996[Martindale, W. (1996). The Extra Pharmacopoeia, 30th ed. London: Pharmaceutical Press.]); Richards (1972[Richards, R. M. E. (1972). Pharm. J. 2, 91.]). For related structures, see: Cox (1994[Cox, P. J. (1994). Acta Cryst. C50, 1620-1622.]); Thanigaimani et al. (2007[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4450-o4451.]); Raj et al. (2003[Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70-76.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C6H7O2

  • Mr = 221.26

  • Monoclinic, P 21 /c

  • a = 9.0440 (3) Å

  • b = 10.6964 (3) Å

  • c = 12.4632 (4) Å

  • β = 94.947 (2)°

  • V = 1201.18 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.15 × 0.15 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.993

  • 8260 measured reflections

  • 2736 independent reflections

  • 1794 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.111

  • S = 1.02

  • 2736 reflections

  • 205 parameters

  • All H-atom parameters refined

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 1.00 (2) 1.66 (2) 2.6591 (19) 174.7 (18)
N2—H1N2⋯O2 0.86 (2) 2.05 (2) 2.9065 (18) 173.1 (17)
N2—H2N2⋯O1 0.94 (2) 1.90 (2) 2.8432 (19) 176.2 (18)
N3—H1N3⋯O2 0.89 (2) 2.04 (2) 2.930 (2) 174 (2)
N3—H2N3⋯O1i 0.91 (2) 2.11 (2) 2.913 (2) 146.9 (16)
C10—H10⋯O1ii 0.983 (19) 2.531 (18) 3.330 (2) 138.2 (14)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x-1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Non-covalent interactions, such as hydrogen bonds, π···π staking and the C—H···π interactions, play important roles in determining the conformation of molecules, crystal packing and molecular assembly in an organized supramolecular structure (Desiraju, 1995; Moulton & Zaworotko, 2001; Biradha & Fujita, 2002). Sorbic acid (2,4-hexadienoic acid) exhibits antibacterial and antifungal properties (Martindale, 1996) and has been used to prevent spoilage of syrup by moulds (Richards, 1972). The crystal structure of sorbic acid (Cox, 1994), 2,4-diamino-6-phenyl-1,3,5-triazine-sorbic acid (Thanigaimani et al., 2007) and trimethoprim sorbate (Raj et al., 2003) have been reported in the literature. Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented herein.

The asymmetric unit of the title compound, (Fig 1), contains one 2,3-diaminopyridinium cation and one sorbate anion. The bond lengths (Allen et al., 1987) and angles are normal. The 2,3-diaminopyridinium cation is planar with a maximum deviation of 0.068 (2) Å for atom N3. Protonation of atom N1 has resulted in a slight increase in the magnitude of angle C1—N1—C5 [122.86 (16)°]. The sorbic acid moiety is in the EE configuration. The extended conformation of the sorbic acid can be described by the torsion angles C6-C7-C8-C9 = -173.77 (16)°, C7-C8-C9-C10 = 176.15 (18)°, C8-C9-C10-C11 = -176.92 (18)° and O2-C6-C7-C8 = 171.14 (16)°. This conformation is similar to that found in the trimethoprim sorbate dihydrate (Raj et al., 2003).

In the crystal structure, (Fig. 2), the protonated N1 atom and the 2-amino group N atom (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N1—H1N1···O2 and N2—H2N2···O1 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via N2—H1N2···O2i; N3—H1N3···O2i; N3—H2N3···O1ii and C10—H10···O1iii hydrogen bonds (see Table 1 for symmetry codes) forming two-dimensional networks parallel to (100).

Related literature top

For details of non-covalent interactions, see: Desiraju (1995); Moulton & Zaworotko (2001); Biradha & Fujita (2002). For applications of sorbic acid, see: Martindale (1996); Richards (1972). For related structures, see: Cox (1994); Thanigaimani et al. (2007); Raj et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A hot methanol solution (20 ml) of 2,3-diaminopyridine (59 mg, Aldrich) and sorbic acid (56 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All H atoms were located in a difference Fourier map and refined freely [C–H = 0.94 (2)–1.04 (2) Å and N–H = 0.86 (2)–1.00 (2) Å].

Structure description top

Non-covalent interactions, such as hydrogen bonds, π···π staking and the C—H···π interactions, play important roles in determining the conformation of molecules, crystal packing and molecular assembly in an organized supramolecular structure (Desiraju, 1995; Moulton & Zaworotko, 2001; Biradha & Fujita, 2002). Sorbic acid (2,4-hexadienoic acid) exhibits antibacterial and antifungal properties (Martindale, 1996) and has been used to prevent spoilage of syrup by moulds (Richards, 1972). The crystal structure of sorbic acid (Cox, 1994), 2,4-diamino-6-phenyl-1,3,5-triazine-sorbic acid (Thanigaimani et al., 2007) and trimethoprim sorbate (Raj et al., 2003) have been reported in the literature. Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented herein.

The asymmetric unit of the title compound, (Fig 1), contains one 2,3-diaminopyridinium cation and one sorbate anion. The bond lengths (Allen et al., 1987) and angles are normal. The 2,3-diaminopyridinium cation is planar with a maximum deviation of 0.068 (2) Å for atom N3. Protonation of atom N1 has resulted in a slight increase in the magnitude of angle C1—N1—C5 [122.86 (16)°]. The sorbic acid moiety is in the EE configuration. The extended conformation of the sorbic acid can be described by the torsion angles C6-C7-C8-C9 = -173.77 (16)°, C7-C8-C9-C10 = 176.15 (18)°, C8-C9-C10-C11 = -176.92 (18)° and O2-C6-C7-C8 = 171.14 (16)°. This conformation is similar to that found in the trimethoprim sorbate dihydrate (Raj et al., 2003).

In the crystal structure, (Fig. 2), the protonated N1 atom and the 2-amino group N atom (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N1—H1N1···O2 and N2—H2N2···O1 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via N2—H1N2···O2i; N3—H1N3···O2i; N3—H2N3···O1ii and C10—H10···O1iii hydrogen bonds (see Table 1 for symmetry codes) forming two-dimensional networks parallel to (100).

For details of non-covalent interactions, see: Desiraju (1995); Moulton & Zaworotko (2001); Biradha & Fujita (2002). For applications of sorbic acid, see: Martindale (1996); Richards (1972). For related structures, see: Cox (1994); Thanigaimani et al. (2007); Raj et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) showing hydrogen bonds as dashed lines. H atoms not involved in the intermolecular interactions have been omitted for clarity.
2,3-Diaminopyridinium (2E,4E)-hexa-2,4-dienoate top
Crystal data top
C5H8N3+·C6H7O2F(000) = 472
Mr = 221.26Dx = 1.224 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1444 reflections
a = 9.0440 (3) Åθ = 3.3–28.9°
b = 10.6964 (3) ŵ = 0.09 mm1
c = 12.4632 (4) ÅT = 296 K
β = 94.947 (2)°Block, red
V = 1201.18 (6) Å30.15 × 0.15 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2736 independent reflections
Radiation source: fine-focus sealed tube1794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 118
Tmin = 0.987, Tmax = 0.993k = 1311
8260 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.1735P]
where P = (Fo2 + 2Fc2)/3
2736 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C5H8N3+·C6H7O2V = 1201.18 (6) Å3
Mr = 221.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0440 (3) ŵ = 0.09 mm1
b = 10.6964 (3) ÅT = 296 K
c = 12.4632 (4) Å0.15 × 0.15 × 0.09 mm
β = 94.947 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2736 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1794 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.993Rint = 0.053
8260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.02Δρmax = 0.22 e Å3
2736 reflectionsΔρmin = 0.22 e Å3
205 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19667 (13)0.14636 (12)0.53361 (8)0.0233 (3)
O20.04642 (13)0.18916 (12)0.40526 (8)0.0241 (3)
C60.14500 (18)0.12200 (17)0.44625 (11)0.0180 (4)
H70.148 (2)0.0069 (18)0.3182 (13)0.026 (5)*
H80.364 (2)0.0391 (18)0.4703 (14)0.030 (5)*
H90.317 (2)0.1811 (18)0.2736 (14)0.028 (5)*
H100.545 (2)0.2085 (19)0.4233 (15)0.037 (6)*
H11A0.672 (3)0.307 (2)0.2669 (16)0.050 (6)*
H11B0.556 (2)0.407 (2)0.3260 (14)0.031 (5)*
H11C0.507 (2)0.3389 (19)0.2230 (15)0.034 (5)*
C70.1975 (2)0.01064 (18)0.38280 (12)0.0224 (4)
C80.3120 (2)0.06038 (18)0.40571 (12)0.0209 (4)
C90.3730 (2)0.16160 (17)0.33880 (13)0.0219 (4)
C100.4924 (2)0.22749 (18)0.35940 (14)0.0252 (4)
C110.5606 (2)0.3280 (2)0.28818 (17)0.0309 (5)
H2N30.224 (2)0.516 (2)0.8425 (15)0.035 (6)*
N10.09874 (16)0.36086 (15)0.52745 (10)0.0212 (4)
N20.00087 (17)0.28443 (16)0.67865 (12)0.0236 (4)
N30.1886 (2)0.44680 (19)0.80698 (11)0.0286 (4)
C10.1867 (2)0.43933 (19)0.47441 (14)0.0278 (5)
C20.2698 (2)0.5265 (2)0.52935 (15)0.0324 (5)
C30.2682 (2)0.53273 (19)0.64186 (14)0.0276 (5)
C40.18421 (19)0.45140 (18)0.69625 (12)0.0222 (4)
C50.09207 (18)0.36429 (17)0.63493 (12)0.0193 (4)
H10.178 (2)0.4288 (18)0.3983 (14)0.027 (5)*
H20.324 (2)0.586 (2)0.4933 (15)0.038 (6)*
H30.326 (2)0.599 (2)0.6825 (14)0.032 (5)*
H1N10.039 (2)0.297 (2)0.4839 (15)0.037 (6)*
H1N20.021 (2)0.291 (2)0.7442 (17)0.038 (6)*
H2N20.065 (2)0.236 (2)0.6330 (16)0.036 (6)*
H1N30.113 (3)0.407 (2)0.8330 (16)0.049 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0270 (7)0.0241 (8)0.0191 (5)0.0026 (6)0.0040 (5)0.0010 (5)
O20.0274 (7)0.0258 (8)0.0193 (5)0.0058 (6)0.0023 (5)0.0002 (5)
C60.0193 (9)0.0172 (11)0.0170 (7)0.0011 (8)0.0020 (6)0.0033 (7)
C70.0238 (10)0.0241 (12)0.0190 (7)0.0022 (9)0.0005 (7)0.0010 (7)
C80.0206 (9)0.0205 (12)0.0211 (7)0.0050 (8)0.0006 (7)0.0010 (7)
C90.0237 (10)0.0191 (12)0.0225 (8)0.0016 (8)0.0002 (7)0.0009 (7)
C100.0243 (10)0.0218 (12)0.0295 (9)0.0013 (9)0.0023 (7)0.0001 (8)
C110.0272 (11)0.0276 (14)0.0373 (10)0.0041 (10)0.0007 (9)0.0009 (10)
N10.0237 (8)0.0201 (9)0.0197 (6)0.0022 (7)0.0010 (6)0.0009 (6)
N20.0252 (9)0.0272 (11)0.0187 (7)0.0052 (8)0.0034 (6)0.0046 (7)
N30.0309 (10)0.0300 (11)0.0246 (7)0.0088 (8)0.0012 (7)0.0094 (7)
C10.0320 (11)0.0280 (13)0.0235 (8)0.0025 (9)0.0033 (8)0.0042 (8)
C20.0346 (12)0.0280 (14)0.0351 (9)0.0075 (10)0.0053 (9)0.0068 (9)
C30.0293 (11)0.0183 (12)0.0346 (9)0.0039 (9)0.0001 (8)0.0032 (8)
C40.0207 (9)0.0206 (11)0.0249 (8)0.0029 (8)0.0003 (7)0.0029 (8)
C50.0185 (9)0.0167 (11)0.0223 (7)0.0030 (8)0.0006 (6)0.0012 (7)
Geometric parameters (Å, º) top
O1—C61.2488 (18)N1—C11.366 (2)
O2—C61.285 (2)N1—H1N11.00 (2)
C6—C71.485 (2)N2—C51.336 (2)
C7—C81.335 (2)N2—H1N20.86 (2)
C7—H70.974 (17)N2—H2N20.95 (2)
C8—C91.446 (2)N3—C41.378 (2)
C8—H80.993 (18)N3—H2N30.91 (2)
C9—C101.333 (3)N3—H1N30.89 (3)
C9—H91.017 (18)C1—C21.347 (3)
C10—C111.493 (3)C1—H10.952 (16)
C10—H100.982 (19)C2—C31.405 (2)
C11—H11A1.04 (2)C2—H20.94 (2)
C11—H11B0.97 (2)C3—C41.372 (3)
C11—H11C0.99 (2)C3—H30.99 (2)
N1—C51.3466 (19)C4—C51.427 (2)
O1—C6—O2123.69 (16)C1—N1—H1N1117.8 (11)
O1—C6—C7120.34 (15)C5—N2—H1N2122.4 (14)
O2—C6—C7115.97 (14)C5—N2—H2N2119.2 (12)
C8—C7—C6124.12 (15)H1N2—N2—H2N2115.5 (18)
C8—C7—H7119.4 (11)C4—N3—H2N3116.1 (12)
C6—C7—H7116.4 (11)C4—N3—H1N3115.1 (14)
C7—C8—C9124.52 (16)H2N3—N3—H1N3117.3 (19)
C7—C8—H8118.2 (11)C2—C1—N1120.15 (16)
C9—C8—H8117.1 (11)C2—C1—H1125.5 (12)
C10—C9—C8124.02 (16)N1—C1—H1114.3 (12)
C10—C9—H9121.0 (11)C1—C2—C3119.12 (19)
C8—C9—H9114.9 (11)C1—C2—H2121.0 (12)
C9—C10—C11124.47 (17)C3—C2—H2119.8 (12)
C9—C10—H10120.1 (12)C4—C3—C2121.12 (19)
C11—C10—H10115.3 (12)C4—C3—H3119.4 (11)
C10—C11—H11A109.4 (13)C2—C3—H3119.5 (11)
C10—C11—H11B110.0 (11)C3—C4—N3123.23 (17)
H11A—C11—H11B108.2 (17)C3—C4—C5118.16 (15)
C10—C11—H11C111.7 (11)N3—C4—C5118.57 (17)
H11A—C11—H11C110.2 (16)N2—C5—N1118.07 (16)
H11B—C11—H11C107.3 (16)N2—C5—C4123.47 (15)
C5—N1—C1122.86 (16)N1—C5—C4118.45 (16)
C5—N1—H1N1119.3 (11)
O1—C6—C7—C88.5 (3)C2—C3—C4—N3174.29 (19)
O2—C6—C7—C8171.14 (16)C2—C3—C4—C53.3 (3)
C6—C7—C8—C9173.77 (16)C1—N1—C5—N2179.13 (17)
C7—C8—C9—C10176.15 (18)C1—N1—C5—C41.8 (3)
C8—C9—C10—C11176.92 (18)C3—C4—C5—N2177.03 (18)
C5—N1—C1—C21.2 (3)N3—C4—C5—N25.3 (3)
N1—C1—C2—C32.0 (3)C3—C4—C5—N14.0 (3)
C1—C2—C3—C40.3 (3)N3—C4—C5—N1173.69 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O21.00 (2)1.66 (2)2.6591 (19)174.7 (18)
N2—H1N2···O20.86 (2)2.05 (2)2.9065 (18)173.1 (17)
N2—H2N2···O10.94 (2)1.90 (2)2.8432 (19)176.2 (18)
N3—H1N3···O20.89 (2)2.04 (2)2.930 (2)174 (2)
N3—H2N3···O1i0.91 (2)2.11 (2)2.913 (2)146.9 (16)
C10—H10···O1ii0.983 (19)2.531 (18)3.330 (2)138.2 (14)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C6H7O2
Mr221.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.0440 (3), 10.6964 (3), 12.4632 (4)
β (°) 94.947 (2)
V3)1201.18 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.15 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.987, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8260, 2736, 1794
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.111, 1.02
No. of reflections2736
No. of parameters205
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O21.00 (2)1.66 (2)2.6591 (19)174.7 (18)
N2—H1N2···O20.86 (2)2.05 (2)2.9065 (18)173.1 (17)
N2—H2N2···O10.94 (2)1.90 (2)2.8432 (19)176.2 (18)
N3—H1N3···O20.89 (2)2.04 (2)2.930 (2)174 (2)
N3—H2N3···O1i0.91 (2)2.11 (2)2.913 (2)146.9 (16)
C10—H10···O1ii0.983 (19)2.531 (18)3.330 (2)138.2 (14)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiradha, K. & Fujita, M. (2002). Angew. Chem. Int. Ed. 41, 3392–3395.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J. (1994). Acta Cryst. C50, 1620–1622.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationMartindale, W. (1996). The Extra Pharmacopoeia, 30th ed. London: Pharmaceutical Press.  Google Scholar
First citationMoulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationRichards, R. M. E. (1972). Pharm. J. 2, 91.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4450–o4451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds