organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 16 August 2010; accepted 25 August 2010; online 28 August 2010)

The title compound, known as odorine or roxburghiline {systematic name: (S)-N-[(R)-1-cinnamoylpyrrolidin-2-yl]-2-methyl­butanamide}, C18H24N2O2, is a nitro­genous compound isolated from the leaves of Aglaia odorata. The absolute configuration was determined by refinement of the Flack parameter with data collected using Cu Kα radiation showing positions 2 and 2′ to be S and R, respectively. The pyrrolidine ring adopts an envelope conformation. In the crystal, mol­ecules are linked into chains along [010] by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to the Aglaia plants and their biological activity, see: Brader et al. (1998[Brader, G., Vajrodaya, S., Greger, H., Bacher, M., Kalchhauser, H. & Hofer, O. (1998). J. Nat. Prod. 61, 1482-1490.]); Cui et al. (1997[Cui, B., Chai, H., Santisuk, T., Reutrakul, V., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M. & Kinghorn, A. D. (1997). Tetrahedron. 53, 17625-17632.]); Engelmeier et al. (2000[Engelmeier, D., Hadacek, F., Pacher, T., Vajrodaya, S. & Harald, G. (2000). J. Agric. Food Chem. 48, 1400-1404.]); Hayashi et al. (1982[Hayashi, N., Lee, K.-H., Hall, I. H., McPhail, A. T. & Huan-Chang, H. (1982). Phytochemistry, 21, 2371-2373.]); Inada et al. (2001[Inada, A., Nishino, H., Kuchide, M., Takayasu, J., Mukainaka, T., Nobukuni, Y., Okuda, M. & Tokuda, H. (2001). Biol. Pharm. Bull. 24, 1282-1285.]); Nugroho et al. (1999[Nugroho, B. W., Edradaa, R. A., Wrayb, V., Wittec, L., Bringmannd, G., Gehlinge, M. & Prokscha, P. (1999). Phytochemistry, 51, 367-376.]); Purushothaman et al. 1979[Purushothaman, K. K., Sarada, A., Connolly, J. D. & Akinniyi, J. A. (1979). J. Chem. Soc. Perkin Trans 1, pp. 3171-3179.]); Saifah et al. (1993[Saifah, E., Puripattanavong, J., Likhitwitayawuid, K., Cordell, G. A., Chai, H. & Pezzuto, J. M. (1993). J. Nat. Prod. 56, 473-477.]); Shiengthong et al. (1979[Shiengthong, D., Ungphakorn, A., Lewis, D. E. & Massy-Westropp, R. A. (1979). Tetrahedron Lett. 24, 2247-2250.]). For related structures, see: Babidge et al. (1980[Babidge, P. J., Massy-Westropp, R. A., Pyne, S. G., Shiengthong, D., Ungphakorn, A. & Veerachat, G. (1980). Aust. J. Chem. 33, 1841-1845.]); Dumontet et al. (1996[Dumontet, V., Thoison, O., Omobuwajo, O. R., Martin, M. T., Perromat, G., Chiaroni, A., Riche, C., Païs, M. & Sévenet, T. (1996). Tetrahedron, 52, 6931-6942.]); Hayashi et al. (1982[Hayashi, N., Lee, K.-H., Hall, I. H., McPhail, A. T. & Huan-Chang, H. (1982). Phytochemistry, 21, 2371-2373.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24N2O2

  • Mr = 300.39

  • Monoclinic, C 2

  • a = 18.8909 (3) Å

  • b = 6.8398 (1) Å

  • c = 13.4174 (2) Å

  • β = 107.054 (1)°

  • V = 1657.43 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 100 K

  • 0.57 × 0.16 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.718, Tmax = 0.924

  • 10656 measured reflections

  • 2625 independent reflections

  • 2606 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.16

  • 2625 reflections

  • 205 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1036 Friedel pairs

  • Flack parameter: 0.03 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.81 (2) 2.09 (2) 2.8789 (16) 163 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Several species of the genus Aglaia of the family Meliaceae are of ethnomedicinal values and have insecticidal (Brader et al., 1998), antifungal (Engelmeier et al., 2000) and cytotoxic (Saifah et al., 1993; Cui et al., 1997) activities. These interesting activities have prompted us to screen for further bioactive compounds from Aglaia odorata. Aglaia odorata known locally in Thai as "Pra-yong" or "Hom-glai" is a small tree occurring primarily in South-East Asia. The leaves and roots of this plant have been used in local folk medicine as a heart stimulant, febrifuge and to retrieve toxin by causing vomiting. The isolated compounds from this plant also show interesting biological activities such as anticancer (Inada et al., 2001), insecticidal (Nugroho et al., 1999) and anti-leukemic (Hayashi et al., 1982) activities. In the course of our research of chemical constituents and bioactive compounds from the leaves of A. odorata which were collected from Songkhla province in the southern part of Thailand, the title aminopyrrolidine odorine (I), also known as odorine (Shiengthong et al., 1979) or roxburghiline or N-cinnamoyl-2-(2-methylbutanoylamino)pyrrolidine (Purushothaman et al., 1979) was isolated. The previous report showed that (I) possesses cancer-chemopreventive activity (Inada et al., 2001). The absolute configuration of (I) was determined by making use of the anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.03 (18). We report herein the crystal structure of (I).

Fig. 1 shows that the molecule of (I) possesses a 2-aminopyrrolidine ring linked by two amide functions to 2-methylbutyric acid and cinnamic acid. The pyrrolidine ring adopts an envelope conformation with the puckered C12 atom having a deviation of 0.223 (1) Å and with the puckering parameters Q = 0.3522 (15) Å and θ = 281.3 (2)° (Cremer & Pople, 1975). Atoms of the cinnamoyl (C1–C9/O1) moiety essentially lie on the same plane (r.m.s. 0.0216 (1) Å) with a max. deviation of 0.0583 (1) Å for atom O1. Atoms C13, C14, C15, N2 and O2 lie on the same plane (r.m.s. 0.0216 (1) Å). The mean plane through C13/C14/C15/N2/O2 makes the dihedral angle of 88.80 (7)° with the mean plane through the cinnamoyl moiety. The 2-methylbutanamide chain at C13 is pseudo-axial with the C14–N2–C13–C12 torsion angle = 125.55 (13)°. The orientation of the butyl group is described by the torsion angle C14–C15–C17–C18 = 68.78 (18)°. The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable with the related structures which are odorinol (Hayashi et al., 1982) and forbaglin A (Dumontet et al., 1996). The absolute configuration at atoms C15 and C13 or positions 2 and 2' of the odorine are S,R configurations which agree with the previous stereochemistry of odorine (Babidge et al., 1980).

In the crystal packing of (I) (Fig. 2), the molecules are linked into chains along [010] through N2—H1N2···O1i hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For ring conformations, see: Cremer & Pople (1975). For standard bond-length data, see: Allen et al. (1987). For background to the Aglaia plants and their biological activity, see: Brader et al. (1998); Cui et al. (1997); Engelmeier et al. (2000); Hayashi et al. (1982); Inada et al. (2001); Nugroho et al. (1999); Purushothaman et al. 1979); Saifah et al. (1993); Shiengthong et al. (1979). For related structures, see: Babidge et al. (1980); Dumontet et al. (1996); Hayashi et al. (1982). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

Ground-dried leaves of A. odorata (53.70 g) were extracted with CH2Cl2 and CH3OH (each of 2 x 2 L) for a duration of 3 days at room temperature. The solvents were evaporated under reduced pressure to afford CH2Cl2 (23.50 g) and CH3OH (5.23 g) crude extracts, respectively. The CH2Cl2 crude extract (23.50 g) was further purified by quick column chromatography (QCC) over silica gel using hexane as eluent and increasing polarity with EtOAc and CH3OH to afford 10 fractions (F1-F10). Fraction F10 (231.6 mg) was further separated by column chromatography with acetone-hexane (3:7), yielding the title compound as white solid (15.6 mg). Colorless needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from CH2Cl2 by the slow evaporation of the solvent at room temperature after several days, Mp. 476-478 K.

Refinement top

The amide H atom was located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions with (C—H) = 0.98 for CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.73 Å from C6 and the deepest hole is located at 0.71 Å from C9. 1036 Friedel pairs were used to determine the absolute configuration.

Structure description top

Several species of the genus Aglaia of the family Meliaceae are of ethnomedicinal values and have insecticidal (Brader et al., 1998), antifungal (Engelmeier et al., 2000) and cytotoxic (Saifah et al., 1993; Cui et al., 1997) activities. These interesting activities have prompted us to screen for further bioactive compounds from Aglaia odorata. Aglaia odorata known locally in Thai as "Pra-yong" or "Hom-glai" is a small tree occurring primarily in South-East Asia. The leaves and roots of this plant have been used in local folk medicine as a heart stimulant, febrifuge and to retrieve toxin by causing vomiting. The isolated compounds from this plant also show interesting biological activities such as anticancer (Inada et al., 2001), insecticidal (Nugroho et al., 1999) and anti-leukemic (Hayashi et al., 1982) activities. In the course of our research of chemical constituents and bioactive compounds from the leaves of A. odorata which were collected from Songkhla province in the southern part of Thailand, the title aminopyrrolidine odorine (I), also known as odorine (Shiengthong et al., 1979) or roxburghiline or N-cinnamoyl-2-(2-methylbutanoylamino)pyrrolidine (Purushothaman et al., 1979) was isolated. The previous report showed that (I) possesses cancer-chemopreventive activity (Inada et al., 2001). The absolute configuration of (I) was determined by making use of the anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.03 (18). We report herein the crystal structure of (I).

Fig. 1 shows that the molecule of (I) possesses a 2-aminopyrrolidine ring linked by two amide functions to 2-methylbutyric acid and cinnamic acid. The pyrrolidine ring adopts an envelope conformation with the puckered C12 atom having a deviation of 0.223 (1) Å and with the puckering parameters Q = 0.3522 (15) Å and θ = 281.3 (2)° (Cremer & Pople, 1975). Atoms of the cinnamoyl (C1–C9/O1) moiety essentially lie on the same plane (r.m.s. 0.0216 (1) Å) with a max. deviation of 0.0583 (1) Å for atom O1. Atoms C13, C14, C15, N2 and O2 lie on the same plane (r.m.s. 0.0216 (1) Å). The mean plane through C13/C14/C15/N2/O2 makes the dihedral angle of 88.80 (7)° with the mean plane through the cinnamoyl moiety. The 2-methylbutanamide chain at C13 is pseudo-axial with the C14–N2–C13–C12 torsion angle = 125.55 (13)°. The orientation of the butyl group is described by the torsion angle C14–C15–C17–C18 = 68.78 (18)°. The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable with the related structures which are odorinol (Hayashi et al., 1982) and forbaglin A (Dumontet et al., 1996). The absolute configuration at atoms C15 and C13 or positions 2 and 2' of the odorine are S,R configurations which agree with the previous stereochemistry of odorine (Babidge et al., 1980).

In the crystal packing of (I) (Fig. 2), the molecules are linked into chains along [010] through N2—H1N2···O1i hydrogen bonds (Fig. 2 and Table 1).

For ring conformations, see: Cremer & Pople (1975). For standard bond-length data, see: Allen et al. (1987). For background to the Aglaia plants and their biological activity, see: Brader et al. (1998); Cui et al. (1997); Engelmeier et al. (2000); Hayashi et al. (1982); Inada et al. (2001); Nugroho et al. (1999); Purushothaman et al. 1979); Saifah et al. (1993); Shiengthong et al. (1979). For related structures, see: Babidge et al. (1980); Dumontet et al. (1996); Hayashi et al. (1982). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I) viewed approximately along the c axis, showing one dimensional chains along [0 1 0]. N—H···O hydrogen bonds are shown as dashed lines.
(S)-N-[(R)-1-cinnamoylpyrrolidin-2-yl]-2-methylbutanamide top
Crystal data top
C18H24N2O2F(000) = 648
Mr = 300.39Dx = 1.204 Mg m3
Monoclinic, C2Melting point = 476–478 K
Hall symbol: C 2yCu Kα radiation, λ = 1.54178 Å
a = 18.8909 (3) ÅCell parameters from 2625 reflections
b = 6.8398 (1) Åθ = 6.8–67.4°
c = 13.4174 (2) ŵ = 0.63 mm1
β = 107.054 (1)°T = 100 K
V = 1657.43 (4) Å3Needle, colorless
Z = 40.57 × 0.16 × 0.13 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2625 independent reflections
Radiation source: sealed tube2606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 67.4°, θmin = 6.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.718, Tmax = 0.924k = 76
10656 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.2381P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
2625 reflectionsΔρmax = 0.21 e Å3
205 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 1036 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (18)
Crystal data top
C18H24N2O2V = 1657.43 (4) Å3
Mr = 300.39Z = 4
Monoclinic, C2Cu Kα radiation
a = 18.8909 (3) ŵ = 0.63 mm1
b = 6.8398 (1) ÅT = 100 K
c = 13.4174 (2) Å0.57 × 0.16 × 0.13 mm
β = 107.054 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2625 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2606 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.924Rint = 0.042
10656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.21 e Å3
S = 1.16Δρmin = 0.27 e Å3
2625 reflectionsAbsolute structure: Flack (1983), 1036 Friedel pairs
205 parametersAbsolute structure parameter: 0.03 (18)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68617 (5)0.99471 (16)0.55658 (7)0.0243 (2)
O20.97777 (6)0.88734 (17)0.73395 (8)0.0315 (3)
N10.79446 (6)0.99195 (19)0.51776 (8)0.0218 (2)
H1N20.8859 (10)0.691 (3)0.5433 (14)0.030 (5)*
N20.90244 (6)0.78710 (19)0.57796 (9)0.0217 (3)
C10.87323 (8)0.9894 (3)0.92951 (11)0.0299 (3)
H1A0.90381.00590.88700.036*
C20.90374 (8)0.9818 (3)1.03621 (11)0.0348 (4)
H2A0.95480.99231.06510.042*
C30.85882 (8)0.9585 (3)1.10083 (11)0.0325 (4)
H3A0.87970.95381.17280.039*
C40.78306 (9)0.9425 (3)1.05783 (11)0.0337 (4)
H4A0.75280.92731.10080.040*
C50.75221 (8)0.9490 (2)0.95025 (11)0.0285 (3)
H5A0.70120.93760.92170.034*
C60.79653 (7)0.9725 (2)0.88465 (10)0.0233 (3)
C70.76210 (7)0.9768 (2)0.77145 (10)0.0236 (3)
H7A0.71070.96790.74810.028*
C80.79691 (7)0.9920 (2)0.69898 (9)0.0219 (3)
H8A0.84831.00190.71900.026*
C90.75502 (7)0.9936 (2)0.58677 (9)0.0207 (3)
C100.75678 (7)0.9890 (2)0.40514 (9)0.0233 (3)
H10A0.73081.11090.38260.028*
H10B0.72170.88190.38710.028*
C110.81922 (8)0.9613 (2)0.35579 (10)0.0275 (3)
H11A0.80971.03480.29140.033*
H11B0.82530.82430.34140.033*
C120.88773 (8)1.0396 (2)0.43814 (11)0.0276 (3)
H12A0.93250.98080.43030.033*
H12B0.89121.18050.43290.033*
C130.87590 (7)0.9813 (2)0.54206 (10)0.0222 (3)
H13A0.89901.07810.59560.027*
C140.95055 (7)0.7544 (2)0.67329 (11)0.0237 (3)
C150.97075 (8)0.5412 (2)0.69919 (11)0.0293 (3)
H15A0.93320.45760.65270.035*
C161.04558 (10)0.5039 (3)0.67983 (16)0.0512 (5)
H16A1.04130.52720.60770.077*
H16B1.06030.37080.69710.077*
H16C1.08210.59030.72250.077*
C170.97552 (9)0.4934 (3)0.81232 (12)0.0356 (4)
H17A0.99710.36440.82900.043*
H17B1.00850.58650.85760.043*
C180.90143 (10)0.4977 (3)0.83531 (12)0.0406 (4)
H18A0.90890.47290.90810.061*
H18B0.86960.39900.79480.061*
H18C0.87900.62380.81760.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0229 (5)0.0260 (6)0.0230 (4)0.0040 (4)0.0051 (3)0.0031 (4)
O20.0301 (5)0.0298 (6)0.0277 (5)0.0005 (4)0.0025 (4)0.0062 (5)
N10.0222 (5)0.0231 (6)0.0193 (5)0.0013 (5)0.0045 (4)0.0013 (5)
N20.0225 (5)0.0209 (7)0.0202 (6)0.0006 (5)0.0039 (4)0.0046 (5)
C10.0277 (7)0.0399 (9)0.0226 (6)0.0012 (7)0.0080 (5)0.0015 (7)
C20.0269 (7)0.0507 (10)0.0245 (7)0.0036 (7)0.0038 (5)0.0006 (8)
C30.0384 (8)0.0390 (10)0.0180 (6)0.0045 (7)0.0050 (5)0.0014 (6)
C40.0379 (8)0.0409 (11)0.0253 (7)0.0019 (7)0.0137 (6)0.0029 (6)
C50.0263 (7)0.0324 (9)0.0264 (7)0.0017 (6)0.0074 (5)0.0016 (6)
C60.0268 (6)0.0209 (8)0.0217 (6)0.0049 (6)0.0063 (5)0.0022 (6)
C70.0234 (6)0.0214 (7)0.0246 (7)0.0038 (6)0.0048 (5)0.0019 (6)
C80.0228 (6)0.0194 (7)0.0215 (6)0.0031 (6)0.0032 (5)0.0014 (6)
C90.0239 (6)0.0153 (7)0.0221 (6)0.0031 (6)0.0053 (5)0.0014 (6)
C100.0275 (6)0.0218 (7)0.0187 (6)0.0032 (6)0.0037 (5)0.0011 (6)
C110.0354 (7)0.0280 (8)0.0201 (6)0.0028 (6)0.0098 (5)0.0017 (6)
C120.0304 (7)0.0277 (8)0.0276 (7)0.0002 (6)0.0132 (5)0.0028 (6)
C130.0219 (6)0.0214 (7)0.0234 (6)0.0015 (5)0.0070 (5)0.0018 (6)
C140.0174 (6)0.0291 (9)0.0244 (7)0.0013 (5)0.0058 (5)0.0013 (6)
C150.0278 (7)0.0293 (9)0.0290 (7)0.0059 (6)0.0058 (6)0.0003 (6)
C160.0451 (9)0.0479 (13)0.0675 (12)0.0202 (9)0.0274 (9)0.0085 (10)
C170.0397 (8)0.0319 (9)0.0304 (7)0.0055 (7)0.0027 (6)0.0066 (7)
C180.0535 (9)0.0358 (10)0.0347 (8)0.0013 (8)0.0163 (7)0.0039 (8)
Geometric parameters (Å, º) top
O1—C91.2437 (16)C10—C111.5243 (18)
O2—C141.2280 (19)C10—H10A0.9700
N1—C91.3480 (17)C10—H10B0.9700
N1—C101.4695 (15)C11—C121.531 (2)
N1—C131.4780 (16)C11—H11A0.9700
N2—C141.3529 (17)C11—H11B0.9700
N2—C131.451 (2)C12—C131.5284 (18)
N2—H1N20.81 (2)C12—H12A0.9700
C1—C21.3787 (19)C12—H12B0.9700
C1—C61.401 (2)C13—H13A0.9800
C1—H1A0.9300C14—C151.522 (2)
C2—C31.389 (2)C15—C171.529 (2)
C2—H2A0.9300C15—C161.532 (2)
C3—C41.382 (2)C15—H15A0.9800
C3—H3A0.9300C16—H16A0.9600
C4—C51.3898 (19)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C5—C61.3907 (19)C17—C181.519 (2)
C5—H5A0.9300C17—H17A0.9700
C6—C71.4667 (17)C17—H17B0.9700
C7—C81.3282 (18)C18—H18A0.9600
C7—H7A0.9300C18—H18B0.9600
C8—C91.4813 (17)C18—H18C0.9600
C8—H8A0.9300
C9—N1—C10120.52 (10)C10—C11—H11B111.0
C9—N1—C13126.73 (10)C12—C11—H11B111.0
C10—N1—C13112.65 (10)H11A—C11—H11B109.0
C14—N2—C13122.40 (12)C13—C12—C11104.37 (11)
C14—N2—H1N2116.5 (13)C13—C12—H12A110.9
C13—N2—H1N2120.9 (13)C11—C12—H12A110.9
C2—C1—C6120.50 (13)C13—C12—H12B110.9
C2—C1—H1A119.7C11—C12—H12B110.9
C6—C1—H1A119.7H12A—C12—H12B108.9
C1—C2—C3120.45 (13)N2—C13—N1110.75 (11)
C1—C2—H2A119.8N2—C13—C12114.38 (12)
C3—C2—H2A119.8N1—C13—C12101.95 (10)
C4—C3—C2119.75 (13)N2—C13—H13A109.8
C4—C3—H3A120.1N1—C13—H13A109.8
C2—C3—H3A120.1C12—C13—H13A109.8
C3—C4—C5119.91 (14)O2—C14—N2122.61 (14)
C3—C4—H4A120.0O2—C14—C15122.00 (12)
C5—C4—H4A120.0N2—C14—C15115.36 (12)
C4—C5—C6120.94 (13)C14—C15—C17111.68 (13)
C4—C5—H5A119.5C14—C15—C16107.63 (14)
C6—C5—H5A119.5C17—C15—C16110.13 (13)
C5—C6—C1118.44 (12)C14—C15—H15A109.1
C5—C6—C7119.43 (12)C17—C15—H15A109.1
C1—C6—C7122.13 (12)C16—C15—H15A109.1
C8—C7—C6126.53 (12)C15—C16—H16A109.5
C8—C7—H7A116.7C15—C16—H16B109.5
C6—C7—H7A116.7H16A—C16—H16B109.5
C7—C8—C9120.87 (11)C15—C16—H16C109.5
C7—C8—H8A119.6H16A—C16—H16C109.5
C9—C8—H8A119.6H16B—C16—H16C109.5
O1—C9—N1120.81 (11)C18—C17—C15114.07 (12)
O1—C9—C8121.80 (11)C18—C17—H17A108.7
N1—C9—C8117.39 (11)C15—C17—H17A108.7
N1—C10—C11104.19 (10)C18—C17—H17B108.7
N1—C10—H10A110.9C15—C17—H17B108.7
C11—C10—H10A110.9H17A—C17—H17B107.6
N1—C10—H10B110.9C17—C18—H18A109.5
C11—C10—H10B110.9C17—C18—H18B109.5
H10A—C10—H10B108.9H18A—C18—H18B109.5
C10—C11—C12103.95 (11)C17—C18—H18C109.5
C10—C11—H11A111.0H18A—C18—H18C109.5
C12—C11—H11A111.0H18B—C18—H18C109.5
C6—C1—C2—C30.4 (3)N1—C10—C11—C1224.24 (15)
C1—C2—C3—C40.2 (3)C10—C11—C12—C1335.81 (15)
C2—C3—C4—C50.2 (3)C14—N2—C13—N1119.95 (13)
C3—C4—C5—C60.3 (3)C14—N2—C13—C12125.55 (13)
C4—C5—C6—C10.0 (2)C9—N1—C13—N272.51 (17)
C4—C5—C6—C7179.40 (15)C10—N1—C13—N2103.96 (13)
C2—C1—C6—C50.4 (3)C9—N1—C13—C12165.39 (14)
C2—C1—C6—C7179.02 (17)C10—N1—C13—C1218.14 (16)
C5—C6—C7—C8177.81 (15)C11—C12—C13—N286.96 (14)
C1—C6—C7—C81.6 (3)C11—C12—C13—N132.61 (14)
C6—C7—C8—C9179.71 (14)C13—N2—C14—O23.6 (2)
C10—N1—C9—O10.7 (2)C13—N2—C14—C15178.31 (11)
C13—N1—C9—O1176.95 (14)O2—C14—C15—C1741.89 (18)
C10—N1—C9—C8178.64 (13)N2—C14—C15—C17139.99 (13)
C13—N1—C9—C82.4 (2)O2—C14—C15—C1679.11 (18)
C7—C8—C9—O15.1 (2)N2—C14—C15—C1699.01 (15)
C7—C8—C9—N1174.23 (14)C14—C15—C17—C1868.78 (18)
C9—N1—C10—C11172.93 (12)C16—C15—C17—C18171.68 (16)
C13—N1—C10—C113.78 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.81 (2)2.09 (2)2.8789 (16)163 (2)
Symmetry code: (i) x+3/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H24N2O2
Mr300.39
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)18.8909 (3), 6.8398 (1), 13.4174 (2)
β (°) 107.054 (1)
V3)1657.43 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.57 × 0.16 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.718, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
10656, 2625, 2606
Rint0.042
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.16
No. of reflections2625
No. of parameters205
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.27
Absolute structureFlack (1983), 1036 Friedel pairs
Absolute structure parameter0.03 (18)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.81 (2)2.09 (2)2.8789 (16)163 (2)
Symmetry code: (i) x+3/2, y1/2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

OY thanks the Office of the Higher Education Commission, Thailand, for support by grant funding under the program Strategic Scholarships for Frontier Research Network for the Joint PhD Program Thai Doctoral degree. The authors thank the Thailand Research Fund (BRG5280013) and Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBabidge, P. J., Massy-Westropp, R. A., Pyne, S. G., Shiengthong, D., Ungphakorn, A. & Veerachat, G. (1980). Aust. J. Chem. 33, 1841–1845.  CrossRef CAS Google Scholar
First citationBrader, G., Vajrodaya, S., Greger, H., Bacher, M., Kalchhauser, H. & Hofer, O. (1998). J. Nat. Prod. 61, 1482–1490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCui, B., Chai, H., Santisuk, T., Reutrakul, V., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M. & Kinghorn, A. D. (1997). Tetrahedron. 53, 17625–17632.  CrossRef CAS Web of Science Google Scholar
First citationDumontet, V., Thoison, O., Omobuwajo, O. R., Martin, M. T., Perromat, G., Chiaroni, A., Riche, C., Païs, M. & Sévenet, T. (1996). Tetrahedron, 52, 6931–6942.  CSD CrossRef CAS Web of Science Google Scholar
First citationEngelmeier, D., Hadacek, F., Pacher, T., Vajrodaya, S. & Harald, G. (2000). J. Agric. Food Chem. 48, 1400–1404.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHayashi, N., Lee, K.-H., Hall, I. H., McPhail, A. T. & Huan-Chang, H. (1982). Phytochemistry, 21, 2371–2373.  CSD CrossRef CAS Web of Science Google Scholar
First citationInada, A., Nishino, H., Kuchide, M., Takayasu, J., Mukainaka, T., Nobukuni, Y., Okuda, M. & Tokuda, H. (2001). Biol. Pharm. Bull. 24, 1282–1285.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNugroho, B. W., Edradaa, R. A., Wrayb, V., Wittec, L., Bringmannd, G., Gehlinge, M. & Prokscha, P. (1999). Phytochemistry, 51, 367–376.  Web of Science CrossRef CAS Google Scholar
First citationPurushothaman, K. K., Sarada, A., Connolly, J. D. & Akinniyi, J. A. (1979). J. Chem. Soc. Perkin Trans 1, pp. 3171–3179.  CrossRef Web of Science Google Scholar
First citationSaifah, E., Puripattanavong, J., Likhitwitayawuid, K., Cordell, G. A., Chai, H. & Pezzuto, J. M. (1993). J. Nat. Prod. 56, 473–477.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiengthong, D., Ungphakorn, A., Lewis, D. E. & Massy-Westropp, R. A. (1979). Tetrahedron Lett. 24, 2247–2250.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds