organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Spiro­[cyclo­pentane-1,2′(1′H)-pyrido[2,3-d]pyrimidin]-4′(3′H)-one

aSchool of Chemical Engineering and environment, Beijing Institue of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: jrli@bit.edu.cn

(Received 31 May 2010; accepted 11 July 2010; online 18 August 2010)

The title compound, C11H13N2O, was obtained by cyclo­condensation of 2-amino­pyridine-3-carbonitrile with cyclo­penta­none. The mol­ecule is built up from two fused six-membered rings and one five-membered ring linked through a spiro C atom. Both the pyrimidine and the cyclo­pentane rings adopt envelope conformations. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds.

Related literature

Many compounds containing the pyrido[2,3-d]pyrimidine scaffold show pharmacological properties such as anti­tumor (Gangjee et al., 1996[Gangjee, A., Vasudevan, A., Queener, S. F. & Kisliuk, R. L. (1996). J. Med. Chem. 39, 1438-1446.]), analgesic (Cordeu et al., 2007[Cordeu, L., Cubedo, E., Bandres, E., Rebollo, A., Saenz, X. & Font, N. (2007). Bioorg. Med. Chem. 15, 1659-1669.]) and anti­bacterial (Robins & Hitchings, 1958[Robins, R. K. & Hitchings, G. (1958). J. Am. Chem. Soc. 80, 3449-3458.]) activities. 2-Substituted 2,3-dihydro­pyrido[2,3-d]pyrimidin-4(1H)-one derivatives can be obtained by a Friedlander quinoline condensation, see: Li et al. (2008[Li, J. R., Zhang, L. J., Shi, D. X., Li, Q., Wang, D., Wang, C. X., Zhang, Q., Zhang, L. & Fan, Y. Q. (2008). Synlett, pp. 233-236.]). For a related structure, see: Zhang et al. (2008[Zhang, L., Li, J., Shi, D. & Chen, J. (2008). Acta Cryst. E64, o449.]). For our previous work, see: Li et al. (2009[Li, J. R., Chen, X., Shi, D. X., Ma, S. L., Li, Q., Zhang, Q. & Tang, J. H. (2009). Org. Lett. 11, 1193-1196.]); Ma et al. (2006[Ma, S. L., Li, J. R., Zhao, J. M., Zhao, X. F., Yang, X. Q., Zhang, L. J., Wang, L. J. & Zhou, Z. M. (2006). Tetrahedron, 62, 7999-8005.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3O

  • Mr = 203.24

  • Orthorhombic, P b c a

  • a = 10.400 (1) Å

  • b = 12.1650 (15) Å

  • c = 15.370 (2) Å

  • V = 1944.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.32 × 0.30 × 0.28 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (Crystal Clear-SM Expert; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.971, Tmax = 0.974

  • 21571 measured reflections

  • 2314 independent reflections

  • 2168 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.05

  • 2314 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.88 (2) 2.05 (2) 2.918 (1) 170 (2)
N3—H2⋯O1ii 0.89 (2) 2.00 (2) 2.876 (1) 172 (1)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z+1.

Data collection: Crystal Clear-SM Expert (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: Crystal Clear-SM Expert; data reduction: Crystal Clear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Many compounds containing pyrido[2,3-d]pyrimidine scaffold show interesting pharmacological properties such as antitumor (Gangjee et al., 1996), analgesic (Cordeu et al., 2007) and antibacterial (Robins et al., 1958) activities. 2-Substituted 2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one derivatives can be obtained from the new conversion (PDF) existing in the normal Friedlander quinoline condensation (Li et al., 2008). Here, we report the crystal structure of the title compound (Fig. 1).

The molecular structure (Fig. 1) is built up with two fused six-membered ring and one five-membered ring linked through a spiro C atom. The pyrimidine ring has an envelope conformation with a mean deviation of 0.1321 Å from the plane and N3 at the flap. The five-membered ring also displays an envelope conformation with a mean deviation of 0.1633 Å from the plane and atom C8 at the flap position. The geometry of the fused rings compares well with the related spiro[cyclopentane-1,2'(1'H)-quinazolin-4'(3'H)-one] (Zhang et al., 2008). The crystal packing (Fig. 2) is stabilized by intermolecular N—H···O hydrogen bonds between the two N—H groups and the ketone O atoms of the neighbouring molecules (Table 1).

Related literature top

Many compounds containing the pyrido[2,3-d]pyrimidine scaffold show pharmacological properties such as antitumor (Gangjee et al., 1996), analgesic (Cordeu et al., 2007) and antibacterial (Robins & Hitchings, 1958) activities. 2-Substituted 2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one derivatives can be obtained by Friedlander quinoline condensation, see: Li et al. (2008). For a related structure, see: Zhang, et al. (2008). For related literature [on what subject?], see: Li et al. (2009); Ma et al. (2006).

Experimental top

A solution of 2-amino-3-cyanopyridine (2 mmol) and sodium methylate (0.6 mmol) was refluxed in cyclopentanone (3 ml) for 1.5 h. The reaction mixture was cooled to room temperature and then filtered to give the title compound. The product was recrystallizated from a mixed solvent (ethanol:THF/1:1)to give colorless crystalline powder. M.p. 527–528 K. Spectral data: IR (KBr): 3271, 3168, 2922, 1644, 1600, 1420 cm-1; 1H NMR (DMSO,p.p.m.): 1.67–1.83 (8H, s, C4H8), 6.65–3.69 (1H, m, J = 12 Hz, ArH), 7.61 (1H, s, NH), 7.85–7.88 (1H, d, J = 7.2 Hz, ArH), 8.127(1H, s, NH), 8.305 (1H, s, ArH); ESI-MS m/z: [M+H]+ 204.1, [M+Na]+ 226.1; C11H13N3O:calcd. C 65.01, H 6.45, N 20.68; found C 65.06, H 6.47, N 20.50.

Refinement top

C—H were included in the riding model approximation with C—H distances 0.95–0.99 Å, and with Uiso(H)=1.2Ueq(C) or 1.5Ueq(C)(methyl). H atoms of NH group were located in difference Fourrier maps with N—H distances 0.891–0.901 Å with Uiso(H)=1.2Ueq(N).

Structure description top

Many compounds containing pyrido[2,3-d]pyrimidine scaffold show interesting pharmacological properties such as antitumor (Gangjee et al., 1996), analgesic (Cordeu et al., 2007) and antibacterial (Robins et al., 1958) activities. 2-Substituted 2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one derivatives can be obtained from the new conversion (PDF) existing in the normal Friedlander quinoline condensation (Li et al., 2008). Here, we report the crystal structure of the title compound (Fig. 1).

The molecular structure (Fig. 1) is built up with two fused six-membered ring and one five-membered ring linked through a spiro C atom. The pyrimidine ring has an envelope conformation with a mean deviation of 0.1321 Å from the plane and N3 at the flap. The five-membered ring also displays an envelope conformation with a mean deviation of 0.1633 Å from the plane and atom C8 at the flap position. The geometry of the fused rings compares well with the related spiro[cyclopentane-1,2'(1'H)-quinazolin-4'(3'H)-one] (Zhang et al., 2008). The crystal packing (Fig. 2) is stabilized by intermolecular N—H···O hydrogen bonds between the two N—H groups and the ketone O atoms of the neighbouring molecules (Table 1).

Many compounds containing the pyrido[2,3-d]pyrimidine scaffold show pharmacological properties such as antitumor (Gangjee et al., 1996), analgesic (Cordeu et al., 2007) and antibacterial (Robins & Hitchings, 1958) activities. 2-Substituted 2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one derivatives can be obtained by Friedlander quinoline condensation, see: Li et al. (2008). For a related structure, see: Zhang, et al. (2008). For related literature [on what subject?], see: Li et al. (2009); Ma et al. (2006).

Computing details top

Data collection: Crystal Clear-SM Expert (Rigaku/MSC, 2009); cell refinement: Crystal Clear-SM Expert (Rigaku/MSC, 2009); data reduction: Crystal Clear-SM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. N—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 3/2, y +1/2, z; (ii) - x + 1, - y + 1, - z + 1; (iii) - x + 3/2, y - 1/2 , z.]
Spiro[cyclopentane-1,2'(1'H)-pyrido[2,3-d]pyrimidin]- 4'(3'H)-one top
Crystal data top
C11H13N3OF(000) = 864
Mr = 203.24Dx = 1.388 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2abCell parameters from 9441 reflections
a = 10.400 (1) Åθ = 1.3–35.6°
b = 12.1650 (15) ŵ = 0.09 mm1
c = 15.370 (2) ÅT = 113 K
V = 1944.6 (4) Å3Block, colorless
Z = 80.32 × 0.30 × 0.28 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
2314 independent reflections
Radiation source: rotating anode2168 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.037
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 2.7°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
k = 1615
Tmin = 0.971, Tmax = 0.974l = 2020
21571 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.6834P]
where P = (Fo2 + 2Fc2)/3
2314 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H13N3OV = 1944.6 (4) Å3
Mr = 203.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.400 (1) ŵ = 0.09 mm1
b = 12.1650 (15) ÅT = 113 K
c = 15.370 (2) Å0.32 × 0.30 × 0.28 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
2314 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
2168 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.974Rint = 0.037
21571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.40 e Å3
2314 reflectionsΔρmin = 0.20 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59391 (7)0.42006 (6)0.57792 (5)0.01563 (19)
N10.94264 (9)0.63850 (8)0.68372 (6)0.0171 (2)
N20.80796 (9)0.69549 (8)0.57226 (6)0.0155 (2)
N30.64694 (9)0.58137 (7)0.51402 (6)0.0146 (2)
C10.84778 (10)0.61467 (9)0.62723 (7)0.0137 (2)
C20.78414 (10)0.51204 (9)0.62574 (7)0.0137 (2)
C30.82323 (11)0.43170 (9)0.68436 (7)0.0164 (2)
H30.78180.36210.68550.020*
C40.92347 (11)0.45420 (9)0.74123 (7)0.0185 (2)
H40.95390.40010.78080.022*
C50.97766 (11)0.55837 (9)0.73836 (7)0.0184 (2)
H51.04490.57400.77830.022*
C60.66943 (10)0.49939 (9)0.57020 (7)0.0130 (2)
C70.74197 (10)0.66576 (8)0.49201 (7)0.0134 (2)
C80.83702 (11)0.62728 (9)0.42121 (7)0.0168 (2)
H8A0.90650.58180.44650.020*
H8B0.79240.58450.37550.020*
C90.88986 (11)0.73498 (9)0.38493 (7)0.0193 (2)
H9A0.92650.72420.32610.023*
H9B0.95710.76560.42350.023*
C100.77185 (12)0.81065 (10)0.38176 (8)0.0231 (3)
H10A0.73160.80830.32340.028*
H10B0.79690.88750.39470.028*
C110.67779 (10)0.76755 (9)0.45118 (7)0.0160 (2)
H11A0.59460.74740.42420.019*
H11B0.66200.82440.49600.019*
H10.8471 (15)0.7598 (14)0.5750 (10)0.030 (4)*
H20.5769 (16)0.5770 (12)0.4815 (10)0.024 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0148 (4)0.0129 (4)0.0193 (4)0.0014 (3)0.0001 (3)0.0009 (3)
N10.0166 (4)0.0201 (5)0.0147 (4)0.0014 (4)0.0011 (3)0.0010 (4)
N20.0177 (5)0.0121 (5)0.0166 (4)0.0029 (4)0.0033 (4)0.0003 (3)
N30.0123 (4)0.0140 (4)0.0175 (4)0.0023 (3)0.0029 (4)0.0020 (3)
C10.0134 (5)0.0147 (5)0.0131 (5)0.0007 (4)0.0024 (4)0.0013 (4)
C20.0135 (5)0.0146 (5)0.0130 (5)0.0008 (4)0.0008 (4)0.0010 (4)
C30.0185 (5)0.0146 (5)0.0161 (5)0.0016 (4)0.0010 (4)0.0001 (4)
C40.0201 (5)0.0205 (5)0.0147 (5)0.0049 (4)0.0008 (4)0.0019 (4)
C50.0162 (5)0.0249 (6)0.0142 (5)0.0009 (4)0.0018 (4)0.0007 (4)
C60.0130 (5)0.0121 (5)0.0139 (5)0.0016 (4)0.0021 (4)0.0016 (4)
C70.0129 (5)0.0122 (5)0.0152 (5)0.0014 (4)0.0008 (4)0.0011 (4)
C80.0179 (5)0.0153 (5)0.0171 (5)0.0017 (4)0.0006 (4)0.0003 (4)
C90.0182 (5)0.0191 (6)0.0206 (5)0.0000 (4)0.0036 (4)0.0028 (4)
C100.0252 (6)0.0196 (6)0.0246 (6)0.0040 (5)0.0057 (5)0.0082 (5)
C110.0147 (5)0.0138 (5)0.0195 (5)0.0010 (4)0.0011 (4)0.0030 (4)
Geometric parameters (Å, º) top
O1—C61.2500 (13)C4—H40.9500
N1—C51.3372 (14)C5—H50.9500
N1—C11.3458 (14)C7—C111.5404 (14)
N2—C11.3609 (14)C7—C81.5428 (15)
N2—C71.4571 (13)C8—C91.5262 (16)
N2—H10.882 (17)C8—H8A0.9900
N3—C61.3397 (14)C8—H8B0.9900
N3—C71.4646 (13)C9—C101.5349 (16)
N3—H20.885 (16)C9—H9A0.9900
C1—C21.4132 (15)C9—H9B0.9900
C2—C31.3900 (15)C10—C111.5397 (15)
C2—C61.4750 (14)C10—H10A0.9900
C3—C41.3878 (16)C10—H10B0.9900
C3—H30.9500C11—H11A0.9900
C4—C51.3876 (16)C11—H11B0.9900
C5—N1—C1116.60 (10)N2—C7—C8111.75 (9)
C1—N2—C7119.32 (9)N3—C7—C8112.50 (9)
C1—N2—H1118.1 (10)C11—C7—C8103.55 (8)
C7—N2—H1118.5 (10)C9—C8—C7103.17 (9)
C6—N3—C7123.56 (9)C9—C8—H8A111.1
C6—N3—H2117.6 (9)C7—C8—H8A111.1
C7—N3—H2117.8 (9)C9—C8—H8B111.1
N1—C1—N2117.90 (10)C7—C8—H8B111.1
N1—C1—C2122.96 (10)H8A—C8—H8B109.1
N2—C1—C2119.05 (10)C8—C9—C10103.80 (9)
C3—C2—C1118.28 (10)C8—C9—H9A111.0
C3—C2—C6122.57 (10)C10—C9—H9A111.0
C1—C2—C6118.70 (9)C8—C9—H9B111.0
C4—C3—C2119.29 (10)C10—C9—H9B111.0
C4—C3—H3120.4H9A—C9—H9B109.0
C2—C3—H3120.4C9—C10—C11106.36 (9)
C5—C4—C3117.72 (10)C9—C10—H10A110.5
C5—C4—H4121.1C11—C10—H10A110.5
C3—C4—H4121.1C9—C10—H10B110.5
N1—C5—C4125.11 (10)C11—C10—H10B110.5
N1—C5—H5117.4H10A—C10—H10B108.6
C4—C5—H5117.4C10—C11—C7106.30 (9)
O1—C6—N3121.75 (10)C10—C11—H11A110.5
O1—C6—C2122.26 (10)C7—C11—H11A110.5
N3—C6—C2115.89 (9)C10—C11—H11B110.5
N2—C7—N3107.23 (8)C7—C11—H11B110.5
N2—C7—C11110.45 (9)H11A—C11—H11B108.7
N3—C7—C11111.42 (9)
C5—N1—C1—N2178.43 (10)C3—C2—C6—N3177.04 (10)
C5—N1—C1—C21.72 (16)C1—C2—C6—N310.81 (14)
C7—N2—C1—N1158.25 (10)C1—N2—C7—N344.94 (13)
C7—N2—C1—C224.91 (15)C1—N2—C7—C11166.52 (9)
N1—C1—C2—C31.20 (16)C1—N2—C7—C878.77 (12)
N2—C1—C2—C3177.86 (10)C6—N3—C7—N240.32 (13)
N1—C1—C2—C6171.29 (10)C6—N3—C7—C11161.29 (10)
N2—C1—C2—C65.38 (15)C6—N3—C7—C882.94 (12)
C1—C2—C3—C40.71 (16)N2—C7—C8—C979.95 (10)
C6—C2—C3—C4172.89 (10)N3—C7—C8—C9159.36 (9)
C2—C3—C4—C51.92 (16)C11—C7—C8—C938.94 (10)
C1—N1—C5—C40.39 (17)C7—C8—C9—C1039.83 (11)
C3—C4—C5—N11.43 (17)C8—C9—C10—C1125.43 (12)
C7—N3—C6—O1169.27 (9)C9—C10—C11—C71.25 (12)
C7—N3—C6—C214.28 (15)N2—C7—C11—C1096.69 (10)
C3—C2—C6—O16.53 (16)N3—C7—C11—C10144.24 (9)
C1—C2—C6—O1165.62 (10)C8—C7—C11—C1023.09 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.88 (2)2.05 (2)2.918 (1)170 (2)
N3—H2···O1ii0.89 (2)2.00 (2)2.876 (1)172 (1)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H13N3O
Mr203.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)10.400 (1), 12.1650 (15), 15.370 (2)
V3)1944.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.30 × 0.28
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
Tmin, Tmax0.971, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
21571, 2314, 2168
Rint0.037
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.05
No. of reflections2314
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.20

Computer programs: Crystal Clear-SM Expert (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.88 (2)2.05 (2)2.918 (1)170 (2)
N3—H2···O1ii0.89 (2)2.00 (2)2.876 (1)172 (1)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank Beijing Institute of Technology for financial support and Naikai University for the X-ray diffraction analysis.

References

First citationCordeu, L., Cubedo, E., Bandres, E., Rebollo, A., Saenz, X. & Font, N. (2007). Bioorg. Med. Chem. 15, 1659–1669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGangjee, A., Vasudevan, A., Queener, S. F. & Kisliuk, R. L. (1996). J. Med. Chem. 39, 1438–1446.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLi, J. R., Chen, X., Shi, D. X., Ma, S. L., Li, Q., Zhang, Q. & Tang, J. H. (2009). Org. Lett. 11, 1193–1196.  Web of Science PubMed CAS Google Scholar
First citationLi, J. R., Zhang, L. J., Shi, D. X., Li, Q., Wang, D., Wang, C. X., Zhang, Q., Zhang, L. & Fan, Y. Q. (2008). Synlett, pp. 233–236.  CSD CrossRef Google Scholar
First citationMa, S. L., Li, J. R., Zhao, J. M., Zhao, X. F., Yang, X. Q., Zhang, L. J., Wang, L. J. & Zhou, Z. M. (2006). Tetrahedron, 62, 7999–8005.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRobins, R. K. & Hitchings, G. (1958). J. Am. Chem. Soc. 80, 3449–3458.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Li, J., Shi, D. & Chen, J. (2008). Acta Cryst. E64, o449.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds