organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of {5-[(7-chloro­quinolinium-4-yl)amino]-2-hy­dr­oxy­benz­yl}di­ethyl­ammonium dichloride dihydrate

aKatholieke Universiteit Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium
*Correspondence e-mail: luc.vanmeervelt@chem.kuleuven.be

(Received 26 July 2010; accepted 8 August 2010; online 18 August 2010)

The structure of the title compound (common name: amodiaquinium dichloride dihydrate), C20H24ClN3O2+·2Cl·2H2O, was previously determined from powder diffraction data [Llinàs et al. (2006[Llinàs, A., Fábián, L., Burley, J. C., van de Streek, J. & Goodman, J. M. (2006). Acta Cryst. E62, o4196-o4199.]). Acta Cryst. E62, o4196-o4199]. It has now been refined from diffractometer data to a significantly higher precision. The dihedral angle between the quinoline and benzene rings is 54.57 (6)°. The central amino N atom inter­acts more strongly with the quinoline ring than with the benzene ring, as indicated by the shorter C—N bond length [1.341 (2) Å compared to 1.431 (2) Å]. In the crystal, mol­ecules are packed into a three-dimensional network/supra­molecular structure through hydrogen bonds between the amodiaquinium cations, chloride anions and water mol­ecules.

Related literature

Amodiaquine, as a dihydro­chloride salt, is often used as a synthetic anti­malarial drug against chloro­quine-sensitive and chloro­quine-resistant strains of Plasmodium falciparum, see: Olliaro & Taylor (2003[Olliaro, P. L. & Taylor, W. R. J. (2003). J. Exp. Biol. 206, 3753-3759.]). For related structures, see: Llinàs et al. (2006[Llinàs, A., Fábián, L., Burley, J. C., van de Streek, J. & Goodman, J. M. (2006). Acta Cryst. E62, o4196-o4199.]); Yennawar & Viswamitra (1991[Yennawar, H. P. & Viswamitra, M. A. (1991). Curr. Sci. 61, 39-43.]); Semeniuk et al. (2008[Semeniuk, A., Niedospial, A., Kalinowska-Tluscik, J., Nitek, W. & Oleksyn, B. J. (2008). J. Mol. Struct. 875, 32-41.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24ClN3O2+·2Cl·2H2O

  • Mr = 464.80

  • Monoclinic, P 21 /c

  • a = 7.7622 (1) Å

  • b = 26.8709 (4) Å

  • c = 10.7085 (2) Å

  • β = 92.784 (1)°

  • V = 2230.91 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.94 mm−1

  • T = 100 K

  • 0.56 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART 6000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.312, Tmax = 0.623

  • 31612 measured reflections

  • 3917 independent reflections

  • 3699 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.10

  • 3917 reflections

  • 287 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl2 0.89 (2) 2.32 (2) 3.1913 (16) 166.8 (19)
N2—H2N⋯O2Wi 0.83 (2) 2.07 (2) 2.880 (2) 167 (2)
N3—H3N⋯Cl3 0.85 (2) 2.26 (2) 3.0771 (14) 161 (2)
O1—H1O⋯Cl2ii 0.84 2.22 3.0640 (12) 177
O1W—H1WA⋯Cl3iii 0.88 (3) 2.30 (3) 3.1778 (16) 175 (3)
O1W—H1WB⋯Cl3i 0.80 (3) 2.42 (3) 3.2100 (16) 171 (3)
O2W—H2WA⋯O1W 0.83 (3) 1.95 (3) 2.775 (2) 174 (2)
O2W—H2WB⋯Cl2ii 0.83 (3) 2.33 (3) 3.1585 (15) 173 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Amodiaquine, 4-[7-chloro-4-quinolinyl)amino]-2-[(diethylamino)methyl]phenol, is as dihydrochloride salt, often used as synthetic antimalarial drug against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum (Olliaro & Taylor, 2003). The single-crystal structure of the monohydrate form has been reported by Yennawar & Viswamitra (1991) and by Semeniuk et al. (2008). The room temperature structure of the dihydrate form based on powder diffraction at 1.79 Å resolution has been reported by Llinàs et al. (2006). Here we report the crystal structure of the title compound (I) at 100 K and a resolution of 0.84 Å (Fig. 1).

Two N atoms (N1 and N3) are protonated indicating that the dihydrochloride salt of amodiaquine is present. The shape of the molecule is mainly dominated by three torsion angles: C8–C9–N2–C19 (τ1 = -7.7 (3)°), C9–N2–C10–C11 (τ2 = -52.8 (2)°) and C11–C12–C16–N3 (τ3 = -85.85 (18)°). It was suggested by Yennawar & Viswamitra (1991) that the C–N bonds linking both aromatic rings have double-bond character. However, we observe a large difference between both bonds C9–N2 (1.341 (2) Å) and N2–C10 (1.431 (2) Å), indicating that N2 interacts more with the quinoline than with the benzene unit. It is also clear from inspection of τ1 and τ2 that the overlap of the lone pair of the sp2-hybridized N2 with the quinoline unit is favoured, and this despite the short H2N···H2 contact distance (2.08 Å). The dihedral angle between the quinoline and benzene units is 54.57 (6)°. An intramolecular close contact between H16A and O1 (2.396 Å) is observed by Llinàs et al. (2006). The r.m.s. deviation when fitting the amodiaquinium units obtained by single-crystal and powder diffraction (Llinàs et al., 2006) is 0.0739 Å. The hydrogen bonds in the crystal packing (Table 1, Fig. 2) are similar to those described by Llinàs et al. (2006).

Related literature top

Amodiaquine, as a dihydrochloride salt, is often used as a synthetic antimalarial drug against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum, see: Olliaro & Taylor (2003). For related structures, see: Llinàs et al. (2006); Yennawar & Viswamitra (1991); Semeniuk et al. (2008).

Experimental top

Amodiaquinium dichloride dihydrate was purchased from Sigma-Aldrich (Belgium). Colourless crystals were obtained at room temperature by slow evaporation from a DMSO solution of (I).

Refinement top

H atoms of the NH groups and of both waters were located in a difference map. The other H atoms were positioned with idealized geometry using a riding model with C–H = 0.95-0.99 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 or 1.5 times the Ueq of the parent atom).

Structure description top

Amodiaquine, 4-[7-chloro-4-quinolinyl)amino]-2-[(diethylamino)methyl]phenol, is as dihydrochloride salt, often used as synthetic antimalarial drug against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum (Olliaro & Taylor, 2003). The single-crystal structure of the monohydrate form has been reported by Yennawar & Viswamitra (1991) and by Semeniuk et al. (2008). The room temperature structure of the dihydrate form based on powder diffraction at 1.79 Å resolution has been reported by Llinàs et al. (2006). Here we report the crystal structure of the title compound (I) at 100 K and a resolution of 0.84 Å (Fig. 1).

Two N atoms (N1 and N3) are protonated indicating that the dihydrochloride salt of amodiaquine is present. The shape of the molecule is mainly dominated by three torsion angles: C8–C9–N2–C19 (τ1 = -7.7 (3)°), C9–N2–C10–C11 (τ2 = -52.8 (2)°) and C11–C12–C16–N3 (τ3 = -85.85 (18)°). It was suggested by Yennawar & Viswamitra (1991) that the C–N bonds linking both aromatic rings have double-bond character. However, we observe a large difference between both bonds C9–N2 (1.341 (2) Å) and N2–C10 (1.431 (2) Å), indicating that N2 interacts more with the quinoline than with the benzene unit. It is also clear from inspection of τ1 and τ2 that the overlap of the lone pair of the sp2-hybridized N2 with the quinoline unit is favoured, and this despite the short H2N···H2 contact distance (2.08 Å). The dihedral angle between the quinoline and benzene units is 54.57 (6)°. An intramolecular close contact between H16A and O1 (2.396 Å) is observed by Llinàs et al. (2006). The r.m.s. deviation when fitting the amodiaquinium units obtained by single-crystal and powder diffraction (Llinàs et al., 2006) is 0.0739 Å. The hydrogen bonds in the crystal packing (Table 1, Fig. 2) are similar to those described by Llinàs et al. (2006).

Amodiaquine, as a dihydrochloride salt, is often used as a synthetic antimalarial drug against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum, see: Olliaro & Taylor (2003). For related structures, see: Llinàs et al. (2006); Yennawar & Viswamitra (1991); Semeniuk et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. N–H···Cl, N–H···O, O–H···Cl, and O–H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes : (i) x , - y + 1/2, z - 1/2; (ii) -x - 1, y - 1/2, - z + 1/2; (iii) - x , y -1/2, - z + 1/2.]
{5-[(7-chloroquinolinium-4-yl)amino]-2-hydroxybenzyl}diethylammonium dichloride dihydrate top
Crystal data top
C20H24ClN3O2+·2Cl·2H2OF(000) = 976
Mr = 464.80Dx = 1.384 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 6662 reflections
a = 7.7622 (1) Åθ = 3.3–70.5°
b = 26.8709 (4) ŵ = 3.94 mm1
c = 10.7085 (2) ÅT = 100 K
β = 92.784 (1)°Prism, colourless
V = 2230.91 (6) Å30.56 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART 6000 CCD
diffractometer
3917 independent reflections
Radiation source: fine-focus sealed tube3699 reflections with I > 2σ(I)
Crossed Göbel mirrors monochromatorRint = 0.088
Detector resolution: 0.92 pixels mm-1θmax = 66.6°, θmin = 3.3°
ω and φ scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 3131
Tmin = 0.312, Tmax = 0.623l = 1212
31612 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0443P)2 + 1.0601P]
where P = (Fo2 + 2Fc2)/3
3917 reflections(Δ/σ)max = 0.001
287 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C20H24ClN3O2+·2Cl·2H2OV = 2230.91 (6) Å3
Mr = 464.80Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.7622 (1) ŵ = 3.94 mm1
b = 26.8709 (4) ÅT = 100 K
c = 10.7085 (2) Å0.56 × 0.14 × 0.12 mm
β = 92.784 (1)°
Data collection top
Bruker SMART 6000 CCD
diffractometer
3917 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3699 reflections with I > 2σ(I)
Tmin = 0.312, Tmax = 0.623Rint = 0.088
31612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.40 e Å3
3917 reflectionsΔρmin = 0.32 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2951 (2)0.51757 (6)0.06525 (16)0.0118 (3)
C20.2063 (2)0.52058 (6)0.04673 (16)0.0131 (4)
H20.15390.49150.07820.016*
C30.1939 (2)0.56445 (7)0.11087 (16)0.0140 (4)
H30.13620.56580.18700.017*
C40.2681 (2)0.60736 (7)0.06187 (17)0.0147 (4)
C50.3573 (2)0.60667 (6)0.04469 (17)0.0141 (4)
H50.40800.63620.07530.017*
C60.3724 (2)0.56123 (6)0.10810 (16)0.0118 (3)
C70.4831 (2)0.51792 (7)0.27924 (16)0.0141 (4)
H70.54980.51830.35130.017*
C80.4081 (2)0.47445 (6)0.24440 (16)0.0138 (4)
H80.42260.44530.29280.017*
C90.3097 (2)0.47234 (6)0.13779 (16)0.0118 (3)
C100.2219 (2)0.38571 (6)0.17370 (16)0.0127 (4)
C110.1590 (2)0.38657 (6)0.29763 (16)0.0125 (4)
H110.12160.41710.33430.015*
C120.1502 (2)0.34316 (6)0.36829 (16)0.0115 (3)
C130.2084 (2)0.29835 (6)0.31382 (17)0.0121 (3)
C140.2641 (2)0.29733 (6)0.18823 (17)0.0139 (4)
H140.29770.26670.15010.017*
C150.2709 (2)0.34090 (7)0.11850 (17)0.0140 (4)
H150.30910.34000.03290.017*
C160.0831 (2)0.34431 (6)0.50266 (16)0.0133 (4)
H16A0.13540.31660.54850.016*
H16B0.11910.37590.54140.016*
C170.1735 (2)0.34491 (6)0.65140 (16)0.0136 (4)
H17A0.11770.37440.68760.016*
H17B0.29950.35090.65530.016*
C180.1364 (3)0.29984 (7)0.73055 (17)0.0206 (4)
H18A0.01460.29060.71790.031*
H18B0.16140.30770.81890.031*
H18C0.20900.27200.70610.031*
C190.1800 (2)0.29476 (7)0.45331 (16)0.0145 (4)
H19A0.13370.29380.36550.017*
H19B0.13900.26460.49600.017*
C200.3754 (3)0.29404 (8)0.45504 (19)0.0242 (4)
H20A0.41720.32540.42100.036*
H20B0.41370.26620.40400.036*
H20C0.42170.29000.54120.036*
N10.4650 (2)0.56009 (6)0.21445 (14)0.0137 (3)
H1N0.514 (3)0.5883 (9)0.237 (2)0.016*
N20.2317 (2)0.43058 (5)0.10177 (14)0.0126 (3)
H2N0.190 (3)0.4290 (8)0.032 (2)0.015*
N30.1117 (2)0.33997 (5)0.51605 (14)0.0114 (3)
H3N0.152 (3)0.3658 (9)0.482 (2)0.015 (5)*
O10.20278 (17)0.25706 (4)0.38692 (12)0.0160 (3)
H1O0.24830.23310.34720.024*
O1W0.0091 (2)0.02817 (6)0.17421 (15)0.0321 (4)
H1WA0.080 (4)0.0063 (12)0.139 (3)0.038*
H1WB0.063 (4)0.0345 (11)0.126 (3)0.038*
O2W0.08987 (19)0.09265 (5)0.36517 (13)0.0201 (3)
H2WA0.073 (3)0.0731 (10)0.307 (3)0.024*
H2WB0.157 (4)0.1146 (10)0.337 (2)0.024*
Cl10.24427 (7)0.663720 (16)0.13878 (5)0.02505 (15)
Cl20.63123 (6)0.667531 (14)0.24913 (4)0.01525 (13)
Cl30.24523 (6)0.444735 (15)0.45660 (4)0.02012 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0116 (8)0.0129 (8)0.0105 (8)0.0019 (7)0.0021 (7)0.0008 (6)
C20.0133 (8)0.0126 (8)0.0134 (8)0.0003 (7)0.0005 (7)0.0025 (6)
C30.0148 (9)0.0163 (8)0.0110 (8)0.0015 (7)0.0004 (7)0.0011 (7)
C40.0153 (9)0.0129 (8)0.0156 (8)0.0009 (7)0.0013 (7)0.0041 (7)
C50.0144 (9)0.0110 (8)0.0168 (8)0.0017 (7)0.0000 (7)0.0009 (7)
C60.0100 (8)0.0141 (8)0.0110 (8)0.0001 (6)0.0012 (7)0.0003 (6)
C70.0133 (8)0.0174 (9)0.0117 (8)0.0014 (7)0.0017 (7)0.0012 (7)
C80.0144 (8)0.0135 (8)0.0135 (8)0.0013 (7)0.0002 (7)0.0023 (6)
C90.0109 (8)0.0127 (8)0.0115 (8)0.0005 (6)0.0038 (7)0.0002 (6)
C100.0128 (8)0.0119 (8)0.0134 (8)0.0025 (7)0.0013 (7)0.0018 (6)
C110.0128 (8)0.0093 (8)0.0153 (8)0.0010 (6)0.0014 (7)0.0012 (6)
C120.0104 (8)0.0134 (8)0.0108 (8)0.0020 (6)0.0024 (7)0.0006 (6)
C130.0098 (8)0.0106 (8)0.0159 (9)0.0018 (6)0.0015 (7)0.0030 (6)
C140.0154 (9)0.0106 (8)0.0154 (9)0.0005 (6)0.0014 (7)0.0011 (6)
C150.0145 (9)0.0152 (9)0.0120 (8)0.0023 (7)0.0018 (7)0.0001 (6)
C160.0127 (9)0.0154 (8)0.0119 (8)0.0008 (7)0.0014 (7)0.0010 (6)
C170.0160 (9)0.0158 (8)0.0087 (8)0.0004 (7)0.0016 (7)0.0013 (6)
C180.0265 (10)0.0228 (10)0.0123 (8)0.0023 (8)0.0021 (8)0.0032 (7)
C190.0168 (9)0.0153 (8)0.0113 (8)0.0019 (7)0.0004 (7)0.0029 (6)
C200.0173 (10)0.0341 (11)0.0210 (10)0.0059 (8)0.0007 (8)0.0101 (8)
N10.0149 (8)0.0124 (7)0.0140 (7)0.0027 (6)0.0025 (6)0.0007 (6)
N20.0169 (8)0.0113 (7)0.0098 (7)0.0003 (6)0.0021 (6)0.0013 (5)
N30.0137 (8)0.0113 (7)0.0093 (7)0.0015 (6)0.0004 (6)0.0019 (6)
O10.0223 (7)0.0093 (6)0.0163 (6)0.0028 (5)0.0011 (5)0.0030 (5)
O1W0.0378 (9)0.0334 (9)0.0259 (8)0.0084 (7)0.0113 (7)0.0119 (7)
O2W0.0264 (8)0.0181 (7)0.0161 (6)0.0032 (6)0.0033 (6)0.0022 (5)
Cl10.0353 (3)0.0141 (2)0.0266 (3)0.00221 (18)0.0109 (2)0.00951 (17)
Cl20.0173 (2)0.0126 (2)0.0157 (2)0.00398 (15)0.00045 (17)0.00229 (14)
Cl30.0266 (3)0.0168 (2)0.0171 (2)0.00626 (17)0.00212 (19)0.00298 (15)
Geometric parameters (Å, º) top
C1—C61.405 (2)C14—H140.9500
C1—C21.414 (3)C15—H150.9500
C1—C91.450 (2)C16—N31.516 (2)
C2—C31.370 (3)C16—H16A0.9900
C2—H20.9500C16—H16B0.9900
C3—C41.402 (3)C17—N31.510 (2)
C3—H30.9500C17—C181.514 (2)
C4—C51.364 (3)C17—H17A0.9900
C4—Cl11.7381 (17)C17—H17B0.9900
C5—C61.405 (2)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—N11.376 (2)C18—H18C0.9800
C7—N11.340 (2)C19—N31.497 (2)
C7—C81.365 (3)C19—C201.516 (3)
C7—H70.9500C19—H19A0.9900
C8—C91.405 (3)C19—H19B0.9900
C8—H80.9500C20—H20A0.9800
C9—N21.340 (2)C20—H20B0.9800
C10—C151.386 (3)C20—H20C0.9800
C10—C111.392 (3)N1—H1N0.89 (2)
C10—N21.431 (2)N2—H2N0.83 (3)
C11—C121.390 (2)N3—H3N0.85 (3)
C11—H110.9500O1—H1O0.8400
C12—C131.403 (2)O1W—H1WA0.88 (3)
C12—C161.507 (2)O1W—H1WB0.80 (3)
C13—O11.357 (2)O2W—H2WA0.83 (3)
C13—C141.393 (3)O2W—H2WB0.84 (3)
C14—C151.388 (3)
C6—C1—C2117.57 (16)C12—C16—N3112.69 (14)
C6—C1—C9118.64 (16)C12—C16—H16A109.1
C2—C1—C9123.79 (16)N3—C16—H16A109.1
C3—C2—C1121.54 (16)C12—C16—H16B109.1
C3—C2—H2119.2N3—C16—H16B109.1
C1—C2—H2119.2H16A—C16—H16B107.8
C2—C3—C4118.68 (16)N3—C17—C18114.01 (14)
C2—C3—H3120.7N3—C17—H17A108.8
C4—C3—H3120.7C18—C17—H17A108.8
C5—C4—C3122.46 (16)N3—C17—H17B108.8
C5—C4—Cl1118.58 (14)C18—C17—H17B108.8
C3—C4—Cl1118.96 (14)H17A—C17—H17B107.6
C4—C5—C6118.29 (16)C17—C18—H18A109.5
C4—C5—H5120.9C17—C18—H18B109.5
C6—C5—H5120.9H18A—C18—H18B109.5
N1—C6—C1120.02 (16)C17—C18—H18C109.5
N1—C6—C5118.59 (16)H18A—C18—H18C109.5
C1—C6—C5121.40 (16)H18B—C18—H18C109.5
N1—C7—C8121.68 (16)N3—C19—C20112.36 (15)
N1—C7—H7119.2N3—C19—H19A109.1
C8—C7—H7119.2C20—C19—H19A109.1
C7—C8—C9120.83 (16)N3—C19—H19B109.1
C7—C8—H8119.6C20—C19—H19B109.1
C9—C8—H8119.6H19A—C19—H19B107.9
N2—C9—C8122.57 (16)C19—C20—H20A109.5
N2—C9—C1119.97 (16)C19—C20—H20B109.5
C8—C9—C1117.46 (16)H20A—C20—H20B109.5
C15—C10—C11119.80 (16)C19—C20—H20C109.5
C15—C10—N2119.74 (15)H20A—C20—H20C109.5
C11—C10—N2120.43 (15)H20B—C20—H20C109.5
C12—C11—C10120.72 (16)C7—N1—C6121.31 (15)
C12—C11—H11119.6C7—N1—H1N121.8 (14)
C10—C11—H11119.6C6—N1—H1N116.8 (14)
C11—C12—C13119.18 (16)C9—N2—C10124.30 (16)
C11—C12—C16120.54 (16)C9—N2—H2N120.2 (15)
C13—C12—C16120.26 (15)C10—N2—H2N115.4 (15)
O1—C13—C14122.72 (15)C19—N3—C17113.52 (13)
O1—C13—C12117.46 (16)C19—N3—C16113.13 (14)
C14—C13—C12119.79 (16)C17—N3—C16110.65 (14)
C15—C14—C13120.30 (16)C19—N3—H3N108.9 (15)
C15—C14—H14119.8C17—N3—H3N103.8 (15)
C13—C14—H14119.8C16—N3—H3N106.1 (15)
C10—C15—C14120.05 (16)C13—O1—H1O109.5
C10—C15—H15120.0H1WA—O1W—H1WB108 (3)
C14—C15—H15120.0H2WA—O2W—H2WB107 (2)
C6—C1—C2—C30.7 (3)C11—C12—C13—O1177.99 (16)
C9—C1—C2—C3178.97 (16)C16—C12—C13—O10.6 (2)
C1—C2—C3—C41.5 (3)C11—C12—C13—C143.8 (3)
C2—C3—C4—C52.5 (3)C16—C12—C13—C14177.60 (16)
C2—C3—C4—Cl1177.02 (14)O1—C13—C14—C15178.55 (16)
C3—C4—C5—C61.1 (3)C12—C13—C14—C153.4 (3)
Cl1—C4—C5—C6178.43 (13)C11—C10—C15—C142.8 (3)
C2—C1—C6—N1178.00 (16)N2—C10—C15—C14179.04 (17)
C9—C1—C6—N12.3 (2)C13—C14—C15—C100.1 (3)
C2—C1—C6—C52.1 (3)C11—C12—C16—N385.8 (2)
C9—C1—C6—C5177.54 (16)C13—C12—C16—N395.62 (19)
C4—C5—C6—N1178.85 (16)C8—C7—N1—C61.3 (3)
C4—C5—C6—C11.3 (3)C1—C6—N1—C70.2 (3)
N1—C7—C8—C90.6 (3)C5—C6—N1—C7179.66 (16)
C7—C8—C9—N2178.87 (17)C8—C9—N2—C107.7 (3)
C7—C8—C9—C11.6 (3)C1—C9—N2—C10172.72 (15)
C6—C1—C9—N2177.47 (16)C15—C10—N2—C9129.05 (19)
C2—C1—C9—N22.2 (3)C11—C10—N2—C952.8 (3)
C6—C1—C9—C82.9 (2)C20—C19—N3—C1759.3 (2)
C2—C1—C9—C8177.40 (17)C20—C19—N3—C16173.55 (15)
C15—C10—C11—C122.3 (3)C18—C17—N3—C1955.1 (2)
N2—C10—C11—C12179.55 (16)C18—C17—N3—C1673.33 (19)
C10—C11—C12—C131.0 (3)C12—C16—N3—C1955.29 (19)
C10—C11—C12—C16179.61 (16)C12—C16—N3—C17176.05 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl20.89 (2)2.32 (2)3.1913 (16)166.8 (19)
N2—H2N···O2Wi0.83 (2)2.07 (2)2.880 (2)167 (2)
N3—H3N···Cl30.85 (2)2.26 (2)3.0771 (14)161 (2)
O1—H1O···Cl2ii0.842.223.0640 (12)177
O1W—H1WA···Cl3iii0.88 (3)2.30 (3)3.1778 (16)175 (3)
O1W—H1WB···Cl3i0.80 (3)2.42 (3)3.2100 (16)171 (3)
O2W—H2WA···O1W0.83 (3)1.95 (3)2.775 (2)174 (2)
O2W—H2WB···Cl2ii0.83 (3)2.33 (3)3.1585 (15)173 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H24ClN3O2+·2Cl·2H2O
Mr464.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7622 (1), 26.8709 (4), 10.7085 (2)
β (°) 92.784 (1)
V3)2230.91 (6)
Z4
Radiation typeCu Kα
µ (mm1)3.94
Crystal size (mm)0.56 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART 6000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.312, 0.623
No. of measured, independent and
observed [I > 2σ(I)] reflections
31612, 3917, 3699
Rint0.088
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.10
No. of reflections3917
No. of parameters287
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2010), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl20.89 (2)2.32 (2)3.1913 (16)166.8 (19)
N2—H2N···O2Wi0.83 (2)2.07 (2)2.880 (2)167 (2)
N3—H3N···Cl30.85 (2)2.26 (2)3.0771 (14)161 (2)
O1—H1O···Cl2ii0.842.223.0640 (12)177
O1W—H1WA···Cl3iii0.88 (3)2.30 (3)3.1778 (16)175 (3)
O1W—H1WB···Cl3i0.80 (3)2.42 (3)3.2100 (16)171 (3)
O2W—H2WA···O1W0.83 (3)1.95 (3)2.775 (2)174 (2)
O2W—H2WB···Cl2ii0.83 (3)2.33 (3)3.1585 (15)173 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.
 

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLlinàs, A., Fábián, L., Burley, J. C., van de Streek, J. & Goodman, J. M. (2006). Acta Cryst. E62, o4196–o4199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOlliaro, P. L. & Taylor, W. R. J. (2003). J. Exp. Biol. 206, 3753–3759.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSemeniuk, A., Niedospial, A., Kalinowska-Tluscik, J., Nitek, W. & Oleksyn, B. J. (2008). J. Mol. Struct. 875, 32–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYennawar, H. P. & Viswamitra, M. A. (1991). Curr. Sci. 61, 39–43.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds