organic compounds
4-Methyl-3-nitrobenzaldehyde
aState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: guozr531408@sohu.com
In the 8H7NO3, molecules are linked through weak intermolecular C—H⋯O hydrogen bonding.
of the title compound, CRelated literature
For the preparation, see: Johnson et al. (1991). For general background to supramolecular electron-transfer materials, see: Yagi et al. (2003); Ezoe et al. (2006); Normand-Bayle et al. (2005); Ward et al. (2005). For a related structure, see: Zhang et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810033635/lx2167sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033635/lx2167Isup2.hkl
The title compound was obtained according to the literature method (Johnson et al., 1991). Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in diethyl ether at room temperature.
The H atoms were placed in calculated positions, with C—H = 0.93–0.96 Å and refined as riding modrl, with Uiso(H) = 1.2–1.5 times Ueq(C).
The title compound is an important intermediate for preparing supramolecular
materials (Yagi et al., 2003; Ezoe et al., 2006) and it has been utilized to synthesize medicinal compounds with biological activities. Herein we report the of the title compound (Fig. 1).The title compound crystallizes in the monoclinic
P21/c, the is consists of four molecules. In the title compound, the bond distances and bond angles are similar to those of the reported compound (Zhang et al., 2009). The crystal packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the benzene H atom and the oxygen of the aldehyde group(Table 1).For the preparation, see: Johnson et al. (1991). For general background to supramolecular electron-transfer materials, see: Yagi et al. (2003); Ezoe et al. (2006); Normand-Bayle et al. (2005); Ward et al. (2005). For a related structure, see: Zhang et al. (2009).
Data collection: SMART (Bruker, 2002); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C8H7NO3 | F(000) = 344 |
Mr = 165.15 | Dx = 1.435 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1083 reflections |
a = 3.9052 (6) Å | θ = 2.2–23.9° |
b = 17.841 (3) Å | µ = 0.11 mm−1 |
c = 11.0663 (15) Å | T = 293 K |
β = 97.647 (2)° | Block, colorless |
V = 764.14 (19) Å3 | 0.32 × 0.20 × 0.12 mm |
Z = 4 |
Bruker APEX CCD area-detector diffractometer | 1353 independent reflections |
Radiation source: fine-focus sealed tube | 1012 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
φ and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −4→4 |
Tmin = 0.745, Tmax = 1.000 | k = −21→18 |
4088 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1376P] where P = (Fo2 + 2Fc2)/3 |
1353 reflections | (Δ/σ)max < 0.001 |
110 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C8H7NO3 | V = 764.14 (19) Å3 |
Mr = 165.15 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.9052 (6) Å | µ = 0.11 mm−1 |
b = 17.841 (3) Å | T = 293 K |
c = 11.0663 (15) Å | 0.32 × 0.20 × 0.12 mm |
β = 97.647 (2)° |
Bruker APEX CCD area-detector diffractometer | 1353 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 1012 reflections with I > 2σ(I) |
Tmin = 0.745, Tmax = 1.000 | Rint = 0.018 |
4088 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.13 e Å−3 |
1353 reflections | Δρmin = −0.16 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.3758 (4) | 0.60008 (9) | 1.06104 (12) | 0.0824 (5) | |
O2 | 1.0886 (5) | 0.70092 (9) | 1.05565 (14) | 0.0976 (6) | |
O3 | 0.8183 (5) | 0.42460 (9) | 0.60139 (14) | 0.0937 (6) | |
N1 | 1.1695 (4) | 0.64374 (9) | 1.00814 (13) | 0.0537 (4) | |
C1 | 0.7588 (6) | 0.75833 (11) | 0.8424 (2) | 0.0680 (6) | |
H1A | 0.6294 | 0.7831 | 0.7740 | 0.102* | |
H1B | 0.9756 | 0.7835 | 0.8638 | 0.102* | |
H1C | 0.6300 | 0.7594 | 0.9105 | 0.102* | |
C2 | 0.8234 (4) | 0.67836 (9) | 0.80931 (16) | 0.0479 (4) | |
C3 | 0.6869 (5) | 0.65315 (10) | 0.69353 (16) | 0.0549 (5) | |
H3 | 0.5619 | 0.6866 | 0.6403 | 0.066* | |
C4 | 0.7290 (5) | 0.58141 (10) | 0.65495 (15) | 0.0546 (5) | |
H4 | 0.6312 | 0.5669 | 0.5772 | 0.065* | |
C5 | 0.9177 (4) | 0.52988 (10) | 0.73139 (14) | 0.0483 (4) | |
C6 | 0.9618 (5) | 0.45197 (11) | 0.69313 (17) | 0.0640 (5) | |
H6 | 1.1124 | 0.4217 | 0.7440 | 0.077* | |
C7 | 1.0625 (4) | 0.55297 (9) | 0.84592 (14) | 0.0458 (4) | |
H7 | 1.1943 | 0.5197 | 0.8975 | 0.055* | |
C8 | 1.0119 (4) | 0.62533 (9) | 0.88392 (14) | 0.0440 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0988 (12) | 0.0828 (11) | 0.0565 (9) | 0.0162 (9) | −0.0233 (8) | −0.0012 (7) |
O2 | 0.1323 (15) | 0.0757 (11) | 0.0757 (11) | 0.0201 (10) | −0.0198 (10) | −0.0281 (9) |
O3 | 0.1213 (14) | 0.0757 (11) | 0.0727 (10) | 0.0141 (9) | −0.0293 (9) | −0.0225 (8) |
N1 | 0.0589 (9) | 0.0527 (9) | 0.0476 (8) | −0.0074 (7) | 0.0000 (7) | −0.0003 (7) |
C1 | 0.0713 (13) | 0.0501 (11) | 0.0811 (14) | 0.0055 (9) | 0.0046 (11) | 0.0069 (10) |
C2 | 0.0438 (9) | 0.0461 (10) | 0.0540 (10) | −0.0021 (7) | 0.0074 (8) | 0.0087 (7) |
C3 | 0.0530 (10) | 0.0593 (12) | 0.0504 (10) | 0.0036 (8) | −0.0001 (8) | 0.0172 (8) |
C4 | 0.0554 (11) | 0.0646 (12) | 0.0412 (9) | −0.0009 (9) | −0.0028 (8) | 0.0046 (8) |
C5 | 0.0472 (10) | 0.0536 (10) | 0.0429 (9) | −0.0010 (7) | 0.0011 (7) | 0.0010 (7) |
C6 | 0.0730 (13) | 0.0625 (13) | 0.0527 (11) | 0.0082 (10) | −0.0063 (9) | −0.0047 (9) |
C7 | 0.0439 (9) | 0.0480 (10) | 0.0438 (9) | 0.0007 (7) | 0.0000 (7) | 0.0072 (7) |
C8 | 0.0427 (9) | 0.0488 (10) | 0.0396 (9) | −0.0064 (7) | 0.0028 (7) | 0.0046 (7) |
O1—N1 | 1.2135 (19) | C3—C4 | 1.366 (3) |
O2—N1 | 1.209 (2) | C3—H3 | 0.9300 |
O3—C6 | 1.197 (2) | C4—C5 | 1.392 (2) |
N1—C8 | 1.467 (2) | C4—H4 | 0.9300 |
C1—C2 | 1.503 (2) | C5—C7 | 1.380 (2) |
C1—H1A | 0.9600 | C5—C6 | 1.470 (3) |
C1—H1B | 0.9600 | C6—H6 | 0.9300 |
C1—H1C | 0.9600 | C7—C8 | 1.380 (2) |
C2—C3 | 1.395 (2) | C7—H7 | 0.9300 |
C2—C8 | 1.399 (2) | ||
O2—N1—O1 | 121.80 (16) | C3—C4—C5 | 120.32 (16) |
O2—N1—C8 | 119.68 (16) | C3—C4—H4 | 119.8 |
O1—N1—C8 | 118.51 (15) | C5—C4—H4 | 119.8 |
C2—C1—H1A | 109.5 | C7—C5—C4 | 118.69 (17) |
C2—C1—H1B | 109.5 | C7—C5—C6 | 119.82 (16) |
H1A—C1—H1B | 109.5 | C4—C5—C6 | 121.49 (16) |
C2—C1—H1C | 109.5 | O3—C6—C5 | 124.79 (18) |
H1A—C1—H1C | 109.5 | O3—C6—H6 | 117.6 |
H1B—C1—H1C | 109.5 | C5—C6—H6 | 117.6 |
C3—C2—C8 | 115.51 (16) | C5—C7—C8 | 120.08 (15) |
C3—C2—C1 | 118.29 (16) | C5—C7—H7 | 120.0 |
C8—C2—C1 | 126.21 (16) | C8—C7—H7 | 120.0 |
C4—C3—C2 | 122.81 (16) | C7—C8—C2 | 122.57 (15) |
C4—C3—H3 | 118.6 | C7—C8—N1 | 115.84 (14) |
C2—C3—H3 | 118.6 | C2—C8—N1 | 121.59 (15) |
C8—C2—C3—C4 | 0.8 (3) | C5—C7—C8—N1 | 178.59 (14) |
C1—C2—C3—C4 | −179.54 (18) | C3—C2—C8—C7 | 0.4 (2) |
C2—C3—C4—C5 | −0.7 (3) | C1—C2—C8—C7 | −179.27 (16) |
C3—C4—C5—C7 | −0.5 (3) | C3—C2—C8—N1 | −179.79 (14) |
C3—C4—C5—C6 | 178.88 (17) | C1—C2—C8—N1 | 0.5 (3) |
C7—C5—C6—O3 | 172.0 (2) | O2—N1—C8—C7 | −167.19 (17) |
C4—C5—C6—O3 | −7.4 (3) | O1—N1—C8—C7 | 11.8 (2) |
C4—C5—C7—C8 | 1.6 (2) | O2—N1—C8—C2 | 13.0 (3) |
C6—C5—C7—C8 | −177.77 (16) | O1—N1—C8—C2 | −167.98 (17) |
C5—C7—C8—C2 | −1.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O3i | 0.93 | 2.47 | 3.319 (2) | 152 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H7NO3 |
Mr | 165.15 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 3.9052 (6), 17.841 (3), 11.0663 (15) |
β (°) | 97.647 (2) |
V (Å3) | 764.14 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.32 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.745, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4088, 1353, 1012 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.114, 1.05 |
No. of reflections | 1353 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.16 |
Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O3i | 0.9300 | 2.4700 | 3.319 (2) | 152.00 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by the State Key Laboratory of Explosion Science and Technology Foundation (YBKT09–10, SKLEST–ZZ–09–10), Beijing Institute of Technology.
References
Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ezoe, M., Yagi, S., Nakazumi, H., Itou, M., Araki, Y. & Ito, O. (2006). Tetrahedron, 62, 2501–2510. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Johnson, M. P., Fresca, S. P., Oberlender, R. & Nichols, D. E. (1991). J. Med. Chem. 34, 1662–1668. CrossRef PubMed CAS Web of Science Google Scholar
Normand-Bayle, M., Benard, C., Zouhiri, F., Mouscadet, J.-F., Leh, H., Thomas, C.-M., Mbemba, G., Desmaële, D. & Angelo, J. (2005). Bioorg. Med. Chem. Lett. 15, 4019–4022. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ward, S. E., Harrington, F. P., Gordon, L. J., Hopley, S. C., Scott, C. M. & Watson, J. M. (2005). J. Med. Chem. 48, 3478–3480. Web of Science CrossRef PubMed CAS Google Scholar
Yagi, S., Ezoe, M., Yonekura, I., Takagishi, T. & Nakazumi, H. (2003). J. Am. Chem. Soc. 125, 4068–4069. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, J., Chen, Y. & Wang, X. (2009). Acta Cryst. E65, o1925. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is an important intermediate for preparing supramolecular electron transfer materials (Yagi et al., 2003; Ezoe et al., 2006) and it has been utilized to synthesize medicinal compounds with biological activities. Herein we report the crystal structure of the title compound (Fig. 1).
The title compound crystallizes in the monoclinic space group P21/c, the unit cell is consists of four molecules. In the title compound, the bond distances and bond angles are similar to those of the reported compound (Zhang et al., 2009). The crystal packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the benzene H atom and the oxygen of the aldehyde group(Table 1).