organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-3-nitro­benzaldehyde

aState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: guozr531408@sohu.com

(Received 11 August 2010; accepted 20 August 2010; online 28 August 2010)

In the crystal structure of the title compound, C8H7NO3, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonding.

Related literature

For the preparation, see: Johnson et al. (1991[Johnson, M. P., Fresca, S. P., Oberlender, R. & Nichols, D. E. (1991). J. Med. Chem. 34, 1662-1668.]). For general background to supra­molecular electron-transfer materials, see: Yagi et al. (2003[Yagi, S., Ezoe, M., Yonekura, I., Takagishi, T. & Nakazumi, H. (2003). J. Am. Chem. Soc. 125, 4068-4069.]); Ezoe et al. (2006[Ezoe, M., Yagi, S., Nakazumi, H., Itou, M., Araki, Y. & Ito, O. (2006). Tetrahedron, 62, 2501-2510.]); Normand-Bayle et al. (2005[Normand-Bayle, M., Benard, C., Zouhiri, F., Mouscadet, J.-F., Leh, H., Thomas, C.-M., Mbemba, G., Desmaële, D. & Angelo, J. (2005). Bioorg. Med. Chem. Lett. 15, 4019-4022.]); Ward et al. (2005[Ward, S. E., Harrington, F. P., Gordon, L. J., Hopley, S. C., Scott, C. M. & Watson, J. M. (2005). J. Med. Chem. 48, 3478-3480.]). For a related structure, see: Zhang et al. (2009[Zhang, J., Chen, Y. & Wang, X. (2009). Acta Cryst. E65, o1925.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7NO3

  • Mr = 165.15

  • Monoclinic, P 21 /c

  • a = 3.9052 (6) Å

  • b = 17.841 (3) Å

  • c = 11.0663 (15) Å

  • β = 97.647 (2)°

  • V = 764.14 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.32 × 0.20 × 0.12 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.745, Tmax = 1.000

  • 4088 measured reflections

  • 1353 independent reflections

  • 1012 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 1.05

  • 1353 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.47 3.319 (2) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is an important intermediate for preparing supramolecular electron transfer materials (Yagi et al., 2003; Ezoe et al., 2006) and it has been utilized to synthesize medicinal compounds with biological activities. Herein we report the crystal structure of the title compound (Fig. 1).

The title compound crystallizes in the monoclinic space group P21/c, the unit cell is consists of four molecules. In the title compound, the bond distances and bond angles are similar to those of the reported compound (Zhang et al., 2009). The crystal packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the benzene H atom and the oxygen of the aldehyde group(Table 1).

Related literature top

For the preparation, see: Johnson et al. (1991). For general background to supramolecular electron-transfer materials, see: Yagi et al. (2003); Ezoe et al. (2006); Normand-Bayle et al. (2005); Ward et al. (2005). For a related structure, see: Zhang et al. (2009).

Experimental top

The title compound was obtained according to the literature method (Johnson et al., 1991). Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in diethyl ether at room temperature.

Refinement top

The H atoms were placed in calculated positions, with C—H = 0.93–0.96 Å and refined as riding modrl, with Uiso(H) = 1.2–1.5 times Ueq(C).

Structure description top

The title compound is an important intermediate for preparing supramolecular electron transfer materials (Yagi et al., 2003; Ezoe et al., 2006) and it has been utilized to synthesize medicinal compounds with biological activities. Herein we report the crystal structure of the title compound (Fig. 1).

The title compound crystallizes in the monoclinic space group P21/c, the unit cell is consists of four molecules. In the title compound, the bond distances and bond angles are similar to those of the reported compound (Zhang et al., 2009). The crystal packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the benzene H atom and the oxygen of the aldehyde group(Table 1).

For the preparation, see: Johnson et al. (1991). For general background to supramolecular electron-transfer materials, see: Yagi et al. (2003); Ezoe et al. (2006); Normand-Bayle et al. (2005); Ward et al. (2005). For a related structure, see: Zhang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O interaction (dotted lines) in the crystal structure of the title compound.
4-Methyl-3-nitrobenzaldehyde top
Crystal data top
C8H7NO3F(000) = 344
Mr = 165.15Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1083 reflections
a = 3.9052 (6) Åθ = 2.2–23.9°
b = 17.841 (3) ŵ = 0.11 mm1
c = 11.0663 (15) ÅT = 293 K
β = 97.647 (2)°Block, colorless
V = 764.14 (19) Å30.32 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
1353 independent reflections
Radiation source: fine-focus sealed tube1012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 44
Tmin = 0.745, Tmax = 1.000k = 2118
4088 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1376P]
where P = (Fo2 + 2Fc2)/3
1353 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C8H7NO3V = 764.14 (19) Å3
Mr = 165.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9052 (6) ŵ = 0.11 mm1
b = 17.841 (3) ÅT = 293 K
c = 11.0663 (15) Å0.32 × 0.20 × 0.12 mm
β = 97.647 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1353 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1012 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 1.000Rint = 0.018
4088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.13 e Å3
1353 reflectionsΔρmin = 0.16 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.3758 (4)0.60008 (9)1.06104 (12)0.0824 (5)
O21.0886 (5)0.70092 (9)1.05565 (14)0.0976 (6)
O30.8183 (5)0.42460 (9)0.60139 (14)0.0937 (6)
N11.1695 (4)0.64374 (9)1.00814 (13)0.0537 (4)
C10.7588 (6)0.75833 (11)0.8424 (2)0.0680 (6)
H1A0.62940.78310.77400.102*
H1B0.97560.78350.86380.102*
H1C0.63000.75940.91050.102*
C20.8234 (4)0.67836 (9)0.80931 (16)0.0479 (4)
C30.6869 (5)0.65315 (10)0.69353 (16)0.0549 (5)
H30.56190.68660.64030.066*
C40.7290 (5)0.58141 (10)0.65495 (15)0.0546 (5)
H40.63120.56690.57720.065*
C50.9177 (4)0.52988 (10)0.73139 (14)0.0483 (4)
C60.9618 (5)0.45197 (11)0.69313 (17)0.0640 (5)
H61.11240.42170.74400.077*
C71.0625 (4)0.55297 (9)0.84592 (14)0.0458 (4)
H71.19430.51970.89750.055*
C81.0119 (4)0.62533 (9)0.88392 (14)0.0440 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0988 (12)0.0828 (11)0.0565 (9)0.0162 (9)0.0233 (8)0.0012 (7)
O20.1323 (15)0.0757 (11)0.0757 (11)0.0201 (10)0.0198 (10)0.0281 (9)
O30.1213 (14)0.0757 (11)0.0727 (10)0.0141 (9)0.0293 (9)0.0225 (8)
N10.0589 (9)0.0527 (9)0.0476 (8)0.0074 (7)0.0000 (7)0.0003 (7)
C10.0713 (13)0.0501 (11)0.0811 (14)0.0055 (9)0.0046 (11)0.0069 (10)
C20.0438 (9)0.0461 (10)0.0540 (10)0.0021 (7)0.0074 (8)0.0087 (7)
C30.0530 (10)0.0593 (12)0.0504 (10)0.0036 (8)0.0001 (8)0.0172 (8)
C40.0554 (11)0.0646 (12)0.0412 (9)0.0009 (9)0.0028 (8)0.0046 (8)
C50.0472 (10)0.0536 (10)0.0429 (9)0.0010 (7)0.0011 (7)0.0010 (7)
C60.0730 (13)0.0625 (13)0.0527 (11)0.0082 (10)0.0063 (9)0.0047 (9)
C70.0439 (9)0.0480 (10)0.0438 (9)0.0007 (7)0.0000 (7)0.0072 (7)
C80.0427 (9)0.0488 (10)0.0396 (9)0.0064 (7)0.0028 (7)0.0046 (7)
Geometric parameters (Å, º) top
O1—N11.2135 (19)C3—C41.366 (3)
O2—N11.209 (2)C3—H30.9300
O3—C61.197 (2)C4—C51.392 (2)
N1—C81.467 (2)C4—H40.9300
C1—C21.503 (2)C5—C71.380 (2)
C1—H1A0.9600C5—C61.470 (3)
C1—H1B0.9600C6—H60.9300
C1—H1C0.9600C7—C81.380 (2)
C2—C31.395 (2)C7—H70.9300
C2—C81.399 (2)
O2—N1—O1121.80 (16)C3—C4—C5120.32 (16)
O2—N1—C8119.68 (16)C3—C4—H4119.8
O1—N1—C8118.51 (15)C5—C4—H4119.8
C2—C1—H1A109.5C7—C5—C4118.69 (17)
C2—C1—H1B109.5C7—C5—C6119.82 (16)
H1A—C1—H1B109.5C4—C5—C6121.49 (16)
C2—C1—H1C109.5O3—C6—C5124.79 (18)
H1A—C1—H1C109.5O3—C6—H6117.6
H1B—C1—H1C109.5C5—C6—H6117.6
C3—C2—C8115.51 (16)C5—C7—C8120.08 (15)
C3—C2—C1118.29 (16)C5—C7—H7120.0
C8—C2—C1126.21 (16)C8—C7—H7120.0
C4—C3—C2122.81 (16)C7—C8—C2122.57 (15)
C4—C3—H3118.6C7—C8—N1115.84 (14)
C2—C3—H3118.6C2—C8—N1121.59 (15)
C8—C2—C3—C40.8 (3)C5—C7—C8—N1178.59 (14)
C1—C2—C3—C4179.54 (18)C3—C2—C8—C70.4 (2)
C2—C3—C4—C50.7 (3)C1—C2—C8—C7179.27 (16)
C3—C4—C5—C70.5 (3)C3—C2—C8—N1179.79 (14)
C3—C4—C5—C6178.88 (17)C1—C2—C8—N10.5 (3)
C7—C5—C6—O3172.0 (2)O2—N1—C8—C7167.19 (17)
C4—C5—C6—O37.4 (3)O1—N1—C8—C711.8 (2)
C4—C5—C7—C81.6 (2)O2—N1—C8—C213.0 (3)
C6—C5—C7—C8177.77 (16)O1—N1—C8—C2167.98 (17)
C5—C7—C8—C21.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.473.319 (2)152
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H7NO3
Mr165.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)3.9052 (6), 17.841 (3), 11.0663 (15)
β (°) 97.647 (2)
V3)764.14 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.20 × 0.12
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.745, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4088, 1353, 1012
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.05
No. of reflections1353
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.93002.47003.319 (2)152.00
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the State Key Laboratory of Explosion Science and Technology Foundation (YBKT09–10, SKLEST–ZZ–09–10), Beijing Institute of Technology.

References

First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEzoe, M., Yagi, S., Nakazumi, H., Itou, M., Araki, Y. & Ito, O. (2006). Tetrahedron, 62, 2501–2510.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, M. P., Fresca, S. P., Oberlender, R. & Nichols, D. E. (1991). J. Med. Chem. 34, 1662–1668.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNormand-Bayle, M., Benard, C., Zouhiri, F., Mouscadet, J.-F., Leh, H., Thomas, C.-M., Mbemba, G., Desmaële, D. & Angelo, J. (2005). Bioorg. Med. Chem. Lett. 15, 4019–4022.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, S. E., Harrington, F. P., Gordon, L. J., Hopley, S. C., Scott, C. M. & Watson, J. M. (2005). J. Med. Chem. 48, 3478–3480.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYagi, S., Ezoe, M., Yonekura, I., Takagishi, T. & Nakazumi, H. (2003). J. Am. Chem. Soc. 125, 4068–4069.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, J., Chen, Y. & Wang, X. (2009). Acta Cryst. E65, o1925.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds