organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-3-ethyl­sulfinyl-2-(4-iodo­phen­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 27 July 2010; accepted 20 August 2010; online 28 August 2010)

In the title compound, C16H12ClIO2S, the 4-iodo­phenyl ring is rotated out of the benzofuran plane by 9.4 (1)°. In the crystal structure, inter­molecular C—H⋯π inter­actions and short inter­molecular I⋯O contacts [3.142 (2) Å] are observed.

Related literature

For the crystal structures of related 3-ethyl­sulfinyl-2-(4-iodo­phen­yl)-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1862.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1985.]). For a review on halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12ClIO2S

  • Mr = 430.67

  • Monoclinic, P 21 /n

  • a = 11.9782 (3) Å

  • b = 10.4604 (3) Å

  • c = 12.9624 (4) Å

  • β = 107.827 (1)°

  • V = 1546.16 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 173 K

  • 0.35 × 0.25 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.514, Tmax = 0.746

  • 14190 measured reflections

  • 3549 independent reflections

  • 3252 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.054

  • S = 1.67

  • 3549 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15ACgi 0.97 3.04 3.750 (3) 131
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing studies of the substituent effect on the solid state structures of 3-ethylsulfinyl-2-(4-iodophenyl)-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.015 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-iodophenyl ring is 9.4 (1)° (Fig. 1). In the crystal structure weak C—H···π interactions between the methylene H atom of the ethyl group and the benzene ring of an adjacent benzofuran ring is observed (Fig. 2 and Tab. 1). In addition, a short I···O contact is observed [I···O2ii = 3.142 (2)Å; C12—I···O2ii = 158.24 (7)°] which indicate a weak interaction (Politzer et al., 2007).

Related literature top

For the crystal structures of related 3-ethylsulfinyl-2-(4-iodophenyl)-1-benzofuran derivatives, see: Choi et al. (2010a,b). For a review on halogen bonding, see: Politzer et al. (2007).

Experimental top

3-chloroperoxybenzoic acid (77%) (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 5-chloro-3-ethylsulfanyl-2-(4-iodophenyl)-1-benzofuran (373 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. The mixture was stirred for 5 h at room temperature, washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 439–440 K; R f = 0.56 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl, 0.97 Å for methylene, and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Structure description top

As a part of our ongoing studies of the substituent effect on the solid state structures of 3-ethylsulfinyl-2-(4-iodophenyl)-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.015 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-iodophenyl ring is 9.4 (1)° (Fig. 1). In the crystal structure weak C—H···π interactions between the methylene H atom of the ethyl group and the benzene ring of an adjacent benzofuran ring is observed (Fig. 2 and Tab. 1). In addition, a short I···O contact is observed [I···O2ii = 3.142 (2)Å; C12—I···O2ii = 158.24 (7)°] which indicate a weak interaction (Politzer et al., 2007).

For the crystal structures of related 3-ethylsulfinyl-2-(4-iodophenyl)-1-benzofuran derivatives, see: Choi et al. (2010a,b). For a review on halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···π and I···O interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) - x + 3/2, y - 1/2, - z + 3/2; (ii) x - 1,y, z; (iii) - x + 3/2, y + 1/2, - z + 3/2; (iv) x + 1, y, z.]
5-Chloro-3-ethylsulfinyl-2-(4-iodophenyl)-1-benzofuran top
Crystal data top
C16H12ClIO2SF(000) = 840
Mr = 430.67Dx = 1.850 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8003 reflections
a = 11.9782 (3) Åθ = 2.6–27.5°
b = 10.4604 (3) ŵ = 2.38 mm1
c = 12.9624 (4) ÅT = 173 K
β = 107.827 (1)°Block, colourless
V = 1546.16 (8) Å30.35 × 0.25 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3549 independent reflections
Radiation source: rotating anode3252 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.6°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.514, Tmax = 0.746l = 1615
14190 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.054H-atom parameters constrained
S = 1.67 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
3549 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
C16H12ClIO2SV = 1546.16 (8) Å3
Mr = 430.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9782 (3) ŵ = 2.38 mm1
b = 10.4604 (3) ÅT = 173 K
c = 12.9624 (4) Å0.35 × 0.25 × 0.14 mm
β = 107.827 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3549 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3252 reflections with I > 2σ(I)
Tmin = 0.514, Tmax = 0.746Rint = 0.032
14190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.67Δρmax = 0.75 e Å3
3549 reflectionsΔρmin = 0.91 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.020729 (12)0.410793 (14)0.735141 (13)0.03083 (6)
Cl0.91427 (5)0.77704 (6)0.50411 (5)0.03458 (14)
S0.66881 (5)0.44141 (5)0.74904 (5)0.02532 (12)
O10.45082 (12)0.67491 (14)0.53906 (12)0.0240 (3)
O20.75087 (15)0.37662 (16)0.69934 (15)0.0382 (4)
C10.59438 (18)0.56061 (19)0.65608 (17)0.0217 (4)
C20.64728 (18)0.6403 (2)0.59295 (17)0.0215 (4)
C30.76078 (18)0.6605 (2)0.58850 (18)0.0243 (5)
H30.82490.61810.63490.029*
C40.77369 (19)0.74651 (19)0.51177 (18)0.0249 (5)
C50.6793 (2)0.8095 (2)0.43905 (19)0.0287 (5)
H50.69210.86470.38750.034*
C60.5667 (2)0.7897 (2)0.44369 (19)0.0293 (5)
H60.50230.83090.39650.035*
C70.55461 (18)0.7064 (2)0.52149 (17)0.0229 (4)
C80.47620 (18)0.58480 (19)0.62118 (17)0.0220 (4)
C90.37422 (17)0.5421 (2)0.65070 (17)0.0222 (4)
C100.2620 (2)0.5747 (2)0.5829 (2)0.0274 (5)
H100.25410.62100.51990.033*
C110.16345 (19)0.5382 (2)0.60939 (19)0.0290 (5)
H110.08950.56250.56540.035*
C120.17458 (18)0.4656 (2)0.70127 (18)0.0242 (5)
C130.2839 (2)0.4300 (2)0.7671 (2)0.0335 (6)
H130.29110.37970.82790.040*
C140.38293 (19)0.4693 (2)0.74239 (19)0.0320 (5)
H140.45660.44670.78800.038*
C150.7574 (2)0.5465 (2)0.8530 (2)0.0342 (6)
H15A0.82210.49840.90040.041*
H15B0.79000.61360.81920.041*
C160.6874 (3)0.6064 (2)0.9197 (2)0.0447 (7)
H16A0.62640.65890.87390.067*
H16B0.73820.65790.97600.067*
H16C0.65310.54020.95160.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.02630 (9)0.03230 (10)0.03857 (11)0.00398 (6)0.01689 (7)0.00332 (6)
Cl0.0289 (3)0.0336 (3)0.0473 (4)0.0040 (2)0.0206 (3)0.0008 (3)
S0.0215 (3)0.0245 (3)0.0300 (3)0.0028 (2)0.0080 (2)0.0053 (2)
O10.0194 (7)0.0275 (8)0.0247 (8)0.0010 (6)0.0061 (6)0.0032 (6)
O20.0343 (9)0.0375 (9)0.0468 (11)0.0128 (8)0.0186 (8)0.0069 (8)
C10.0218 (10)0.0211 (10)0.0218 (12)0.0017 (8)0.0058 (8)0.0008 (8)
C20.0222 (10)0.0205 (10)0.0223 (11)0.0002 (8)0.0073 (8)0.0019 (8)
C30.0210 (10)0.0236 (11)0.0282 (12)0.0021 (9)0.0076 (9)0.0000 (9)
C40.0237 (10)0.0240 (11)0.0295 (13)0.0030 (9)0.0120 (9)0.0048 (9)
C50.0338 (12)0.0277 (12)0.0265 (13)0.0031 (10)0.0121 (10)0.0036 (9)
C60.0278 (11)0.0307 (12)0.0274 (13)0.0023 (10)0.0054 (9)0.0047 (10)
C70.0202 (10)0.0246 (11)0.0235 (12)0.0010 (8)0.0062 (9)0.0017 (9)
C80.0228 (10)0.0217 (10)0.0205 (11)0.0003 (8)0.0052 (8)0.0018 (8)
C90.0191 (10)0.0229 (10)0.0243 (12)0.0004 (8)0.0061 (8)0.0027 (9)
C100.0254 (11)0.0255 (11)0.0305 (13)0.0005 (9)0.0072 (9)0.0069 (9)
C110.0191 (10)0.0288 (11)0.0362 (14)0.0018 (9)0.0042 (9)0.0045 (10)
C120.0200 (10)0.0251 (11)0.0298 (13)0.0021 (9)0.0110 (9)0.0055 (9)
C130.0288 (12)0.0459 (15)0.0280 (14)0.0019 (11)0.0121 (10)0.0084 (11)
C140.0198 (11)0.0482 (15)0.0274 (13)0.0027 (10)0.0063 (9)0.0059 (11)
C150.0295 (12)0.0372 (13)0.0291 (14)0.0065 (11)0.0012 (10)0.0073 (10)
C160.0638 (19)0.0336 (14)0.0331 (15)0.0055 (13)0.0093 (13)0.0016 (11)
Geometric parameters (Å, º) top
I—C122.101 (2)C6—H60.9300
I—O2i3.1422 (17)C8—C91.458 (3)
Cl—C41.746 (2)C9—C141.388 (3)
S—O21.4928 (17)C9—C101.404 (3)
S—C11.773 (2)C10—C111.380 (3)
S—C151.810 (2)C10—H100.9300
O1—C71.371 (2)C11—C121.384 (3)
O1—C81.384 (2)C11—H110.9300
C1—C81.371 (3)C12—C131.378 (3)
C1—C21.444 (3)C13—C141.382 (3)
C2—C71.392 (3)C13—H130.9300
C2—C31.394 (3)C14—H140.9300
C3—C41.385 (3)C15—C161.513 (4)
C3—H30.9300C15—H15A0.9700
C4—C51.396 (3)C15—H15B0.9700
C5—C61.384 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.374 (3)C16—H16C0.9600
C12—I—O2i158.24 (7)C14—C9—C8122.93 (19)
O2—S—C1106.65 (10)C10—C9—C8118.68 (19)
O2—S—C15106.48 (11)C11—C10—C9120.4 (2)
C1—S—C1597.87 (11)C11—C10—H10119.8
C7—O1—C8107.13 (15)C9—C10—H10119.8
C8—C1—C2107.12 (18)C10—C11—C12120.1 (2)
C8—C1—S127.41 (16)C10—C11—H11120.0
C2—C1—S125.09 (16)C12—C11—H11120.0
C7—C2—C3119.10 (19)C13—C12—C11120.3 (2)
C7—C2—C1105.36 (18)C13—C12—I121.68 (17)
C3—C2—C1135.5 (2)C11—C12—I118.04 (15)
C4—C3—C2116.9 (2)C12—C13—C14119.8 (2)
C4—C3—H3121.5C12—C13—H13120.1
C2—C3—H3121.5C14—C13—H13120.1
C3—C4—C5123.1 (2)C13—C14—C9121.1 (2)
C3—C4—Cl118.77 (17)C13—C14—H14119.4
C5—C4—Cl118.11 (17)C9—C14—H14119.4
C6—C5—C4119.9 (2)C16—C15—S112.07 (18)
C6—C5—H5120.0C16—C15—H15A109.2
C4—C5—H5120.0S—C15—H15A109.2
C7—C6—C5116.7 (2)C16—C15—H15B109.2
C7—C6—H6121.6S—C15—H15B109.2
C5—C6—H6121.6H15A—C15—H15B107.9
O1—C7—C6125.38 (19)C15—C16—H16A109.5
O1—C7—C2110.43 (18)C15—C16—H16B109.5
C6—C7—C2124.19 (19)H16A—C16—H16B109.5
C1—C8—O1109.93 (18)C15—C16—H16C109.5
C1—C8—C9136.1 (2)H16A—C16—H16C109.5
O1—C8—C9113.98 (17)H16B—C16—H16C109.5
C14—C9—C10118.39 (19)
O2—S—C1—C8132.8 (2)S—C1—C8—O1172.77 (15)
C15—S—C1—C8117.3 (2)C2—C1—C8—C9177.9 (2)
O2—S—C1—C239.1 (2)S—C1—C8—C99.1 (4)
C15—S—C1—C270.8 (2)C7—O1—C8—C10.7 (2)
C8—C1—C2—C71.2 (2)C7—O1—C8—C9179.31 (17)
S—C1—C2—C7172.11 (16)C1—C8—C9—C149.4 (4)
C8—C1—C2—C3179.9 (2)O1—C8—C9—C14168.7 (2)
S—C1—C2—C36.6 (4)C1—C8—C9—C10170.0 (2)
C7—C2—C3—C40.0 (3)O1—C8—C9—C1011.9 (3)
C1—C2—C3—C4178.6 (2)C14—C9—C10—C112.0 (3)
C2—C3—C4—C51.6 (3)C8—C9—C10—C11178.6 (2)
C2—C3—C4—Cl179.06 (16)C9—C10—C11—C122.1 (3)
C3—C4—C5—C61.8 (3)C10—C11—C12—C130.4 (3)
Cl—C4—C5—C6178.83 (18)C10—C11—C12—I178.92 (17)
C4—C5—C6—C70.4 (3)O2i—I—C12—C13172.72 (15)
C8—O1—C7—C6177.6 (2)O2i—I—C12—C116.6 (3)
C8—O1—C7—C21.5 (2)C11—C12—C13—C141.4 (4)
C5—C6—C7—O1179.7 (2)I—C12—C13—C14179.32 (18)
C5—C6—C7—C21.3 (3)C12—C13—C14—C91.5 (4)
C3—C2—C7—O1179.39 (19)C10—C9—C14—C130.2 (4)
C1—C2—C7—O11.6 (2)C8—C9—C14—C13179.6 (2)
C3—C2—C7—C61.5 (3)O2—S—C15—C16172.90 (17)
C1—C2—C7—C6177.5 (2)C1—S—C15—C1677.08 (19)
C2—C1—C8—O10.3 (2)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cgii0.973.043.750 (3)131
Symmetry code: (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H12ClIO2S
Mr430.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.9782 (3), 10.4604 (3), 12.9624 (4)
β (°) 107.827 (1)
V3)1546.16 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.35 × 0.25 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.514, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14190, 3549, 3252
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.054, 1.67
No. of reflections3549
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.91

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cgi0.973.043.750 (3)131.3
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1862.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds