organic compounds
3-(4-Chlorophenylsulfinyl)-2,5,7-trimethyl-1-benzofuran
aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr
In the title compound, C17H15ClO2S, the O atom and the 4-chlorophenyl group of the 4-chlorophenylsulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment; the 4-chlorophenyl ring is approximately perpendicular to this plane [dihedral angle = 87.12 (3)°]. In the molecules are linked through a weak intermolecular C—H⋯O hydrogen bond, and by weak C—S⋯π [3.394 (2) Å] and C—Cl⋯π [3.800 (2) Å] interactions.
Related literature
For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For related structures, see: Choi et al. (2010a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810032228/ng5016sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810032228/ng5016Isup2.hkl
77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-2,5,7-trimethyl-1-benzofuran (303 mg, 1.0 mmol) in dichloromethane (40 ml) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by
(hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 79%, m.p. 419–420 K; Rf = 0.69 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.
A series of benzofuran ring system show remarkable pharmacological properties such as antimicrobial (Khan et al., 2005), antifungal (Aslam et al., 2006), antitumour and antiviral (Galal et al., 2009) activities. These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report the
of the title compound (Fig. 1).The benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring is nearly perpendicular to the benzofuran plane with a dihedral angle of 87.12 (3)° and is tilted slightly towards it. The molecular packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the 4-chlorophenyl H atom and the oxygen of the S═O unit, with a C13—H13···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by a weak intermolecular C—S···π interaction between the sulfur and 4-chlorophenyl ring of an adjacent molecule, with a C1—S···Cg1ii [3.394 (2) Å] (Cg1 is the centroid of the C12–C17 4-chlorophenyl ring), and by an intermolecular C—Cl···π interaction between the chlorine and the benzene ring of a neighbouring benzofuran system, with a C15—Cl···Cg2iii [3.800 (2) Å] (Cg2 is the centroid of the C2–C7 benzene ring).
For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For related structures, see: Choi et al. (2010a,b).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C17H15ClO2S | Z = 2 |
Mr = 318.80 | F(000) = 332 |
Triclinic, P1 | Dx = 1.390 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0790 (12) Å | Cell parameters from 8051 reflections |
b = 10.2232 (19) Å | θ = 2.5–28.5° |
c = 12.514 (2) Å | µ = 0.39 mm−1 |
α = 84.474 (9)° | T = 173 K |
β = 80.121 (9)° | Block, colourless |
γ = 85.991 (9)° | 0.33 × 0.29 × 0.29 mm |
V = 761.5 (3) Å3 |
Bruker SMART APEXII CCD diffractometer | 3789 independent reflections |
Radiation source: rotating anode | 3381 reflections with I > 2σ(I) |
Graphite multilayer monochromator | Rint = 0.027 |
Detector resolution: 10.0 pixels mm-1 | θmax = 28.5°, θmin = 1.7° |
φ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −13→13 |
Tmin = 0.883, Tmax = 0.897 | l = −16→16 |
13813 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0527P)2 + 0.253P] where P = (Fo2 + 2Fc2)/3 |
3789 reflections | (Δ/σ)max = 0.001 |
193 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
C17H15ClO2S | γ = 85.991 (9)° |
Mr = 318.80 | V = 761.5 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.0790 (12) Å | Mo Kα radiation |
b = 10.2232 (19) Å | µ = 0.39 mm−1 |
c = 12.514 (2) Å | T = 173 K |
α = 84.474 (9)° | 0.33 × 0.29 × 0.29 mm |
β = 80.121 (9)° |
Bruker SMART APEXII CCD diffractometer | 3789 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3381 reflections with I > 2σ(I) |
Tmin = 0.883, Tmax = 0.897 | Rint = 0.027 |
13813 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.29 e Å−3 |
3789 reflections | Δρmin = −0.37 e Å−3 |
193 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.59001 (8) | 0.01403 (4) | 1.15921 (3) | 0.04476 (12) | |
S | 0.39442 (5) | 0.50713 (3) | 0.84174 (2) | 0.02515 (10) | |
O1 | 0.70564 (15) | 0.39917 (9) | 0.55824 (7) | 0.0275 (2) | |
O2 | 0.14556 (16) | 0.52738 (11) | 0.85326 (8) | 0.0345 (2) | |
C1 | 0.4919 (2) | 0.43493 (12) | 0.71941 (10) | 0.0238 (2) | |
C2 | 0.3922 (2) | 0.33367 (12) | 0.67424 (10) | 0.0233 (2) | |
C3 | 0.2051 (2) | 0.25904 (13) | 0.70614 (11) | 0.0268 (3) | |
H3 | 0.1112 | 0.2693 | 0.7721 | 0.032* | |
C4 | 0.1625 (2) | 0.16917 (13) | 0.63714 (12) | 0.0298 (3) | |
C5 | 0.3092 (3) | 0.15433 (13) | 0.53838 (12) | 0.0323 (3) | |
H5 | 0.2783 | 0.0928 | 0.4937 | 0.039* | |
C6 | 0.4978 (2) | 0.22683 (13) | 0.50407 (10) | 0.0299 (3) | |
C7 | 0.5302 (2) | 0.31615 (12) | 0.57516 (10) | 0.0249 (3) | |
C8 | 0.6769 (2) | 0.47050 (13) | 0.64733 (10) | 0.0255 (3) | |
C9 | −0.0407 (3) | 0.08820 (16) | 0.66938 (15) | 0.0409 (4) | |
H9A | −0.0003 | 0.0065 | 0.7076 | 0.061* | |
H9B | −0.0967 | 0.0707 | 0.6052 | 0.061* | |
H9C | −0.1544 | 0.1359 | 0.7157 | 0.061* | |
C10 | 0.6554 (3) | 0.21158 (16) | 0.39876 (12) | 0.0418 (4) | |
H10A | 0.6553 | 0.2929 | 0.3535 | 0.063* | |
H10B | 0.6078 | 0.1432 | 0.3619 | 0.063* | |
H10C | 0.8037 | 0.1888 | 0.4137 | 0.063* | |
C11 | 0.8487 (2) | 0.56565 (14) | 0.64818 (12) | 0.0322 (3) | |
H11A | 0.7992 | 0.6222 | 0.7056 | 0.048* | |
H11B | 0.8723 | 0.6177 | 0.5795 | 0.048* | |
H11C | 0.9862 | 0.5189 | 0.6600 | 0.048* | |
C12 | 0.4487 (2) | 0.36497 (13) | 0.93215 (10) | 0.0238 (2) | |
C13 | 0.2739 (2) | 0.31452 (14) | 1.00741 (11) | 0.0284 (3) | |
H13 | 0.1297 | 0.3526 | 1.0104 | 0.034* | |
C14 | 0.3172 (2) | 0.20634 (15) | 1.07826 (12) | 0.0332 (3) | |
H14 | 0.2020 | 0.1708 | 1.1290 | 0.040* | |
C15 | 0.5339 (3) | 0.15185 (14) | 1.07258 (11) | 0.0307 (3) | |
C16 | 0.7104 (2) | 0.20486 (15) | 0.99957 (12) | 0.0328 (3) | |
H16 | 0.8551 | 0.1680 | 0.9976 | 0.039* | |
C17 | 0.6671 (2) | 0.31354 (14) | 0.92966 (11) | 0.0302 (3) | |
H17 | 0.7835 | 0.3518 | 0.8814 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0623 (3) | 0.0352 (2) | 0.0401 (2) | −0.00630 (17) | −0.02155 (19) | 0.00593 (15) |
S | 0.02602 (17) | 0.02658 (17) | 0.02290 (16) | 0.00133 (12) | −0.00348 (12) | −0.00547 (11) |
O1 | 0.0279 (5) | 0.0294 (5) | 0.0231 (4) | −0.0013 (4) | 0.0010 (3) | −0.0016 (3) |
O2 | 0.0269 (5) | 0.0442 (6) | 0.0312 (5) | 0.0108 (4) | −0.0041 (4) | −0.0072 (4) |
C1 | 0.0238 (6) | 0.0255 (6) | 0.0217 (6) | 0.0002 (5) | −0.0033 (4) | −0.0025 (4) |
C2 | 0.0238 (6) | 0.0231 (6) | 0.0226 (6) | 0.0028 (4) | −0.0047 (4) | −0.0018 (4) |
C3 | 0.0236 (6) | 0.0266 (6) | 0.0292 (6) | 0.0008 (5) | −0.0024 (5) | −0.0016 (5) |
C4 | 0.0287 (6) | 0.0242 (6) | 0.0382 (7) | 0.0010 (5) | −0.0121 (5) | −0.0008 (5) |
C5 | 0.0425 (8) | 0.0256 (6) | 0.0319 (7) | 0.0012 (5) | −0.0144 (6) | −0.0049 (5) |
C6 | 0.0398 (7) | 0.0266 (6) | 0.0229 (6) | 0.0054 (5) | −0.0071 (5) | −0.0028 (5) |
C7 | 0.0270 (6) | 0.0240 (6) | 0.0231 (6) | 0.0011 (5) | −0.0038 (5) | −0.0005 (4) |
C8 | 0.0256 (6) | 0.0272 (6) | 0.0230 (6) | 0.0010 (5) | −0.0040 (5) | −0.0011 (5) |
C9 | 0.0332 (7) | 0.0346 (8) | 0.0575 (10) | −0.0058 (6) | −0.0121 (7) | −0.0059 (7) |
C10 | 0.0617 (10) | 0.0356 (8) | 0.0258 (7) | 0.0021 (7) | 0.0004 (7) | −0.0076 (6) |
C11 | 0.0278 (6) | 0.0340 (7) | 0.0341 (7) | −0.0053 (5) | −0.0042 (5) | 0.0010 (5) |
C12 | 0.0229 (6) | 0.0281 (6) | 0.0210 (6) | −0.0017 (5) | −0.0039 (4) | −0.0044 (5) |
C13 | 0.0215 (6) | 0.0352 (7) | 0.0285 (6) | −0.0037 (5) | −0.0023 (5) | −0.0051 (5) |
C14 | 0.0323 (7) | 0.0382 (8) | 0.0287 (7) | −0.0107 (6) | −0.0018 (5) | −0.0009 (6) |
C15 | 0.0396 (7) | 0.0290 (6) | 0.0261 (6) | −0.0051 (5) | −0.0120 (5) | −0.0017 (5) |
C16 | 0.0263 (6) | 0.0370 (7) | 0.0359 (7) | 0.0023 (5) | −0.0091 (5) | −0.0028 (6) |
C17 | 0.0229 (6) | 0.0374 (7) | 0.0286 (7) | −0.0006 (5) | −0.0006 (5) | −0.0009 (5) |
Cl—C15 | 1.7443 (15) | C9—H9A | 0.9600 |
S—O2 | 1.4964 (10) | C9—H9B | 0.9600 |
S—C1 | 1.7563 (13) | C9—H9C | 0.9600 |
S—C12 | 1.8015 (13) | C10—H10A | 0.9600 |
O1—C8 | 1.3700 (16) | C10—H10B | 0.9600 |
O1—C7 | 1.3846 (16) | C10—H10C | 0.9600 |
C1—C8 | 1.3627 (17) | C11—H11A | 0.9600 |
C1—C2 | 1.4408 (17) | C11—H11B | 0.9600 |
C2—C7 | 1.3920 (17) | C11—H11C | 0.9600 |
C2—C3 | 1.3937 (18) | C12—C13 | 1.3863 (18) |
C3—C4 | 1.3854 (19) | C12—C17 | 1.3900 (18) |
C3—H3 | 0.9300 | C13—C14 | 1.389 (2) |
C4—C5 | 1.409 (2) | C13—H13 | 0.9300 |
C4—C9 | 1.511 (2) | C14—C15 | 1.387 (2) |
C5—C6 | 1.392 (2) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | C15—C16 | 1.389 (2) |
C6—C7 | 1.3805 (18) | C16—C17 | 1.386 (2) |
C6—C10 | 1.5048 (19) | C16—H16 | 0.9300 |
C8—C11 | 1.4780 (19) | C17—H17 | 0.9300 |
O2—S—C1 | 108.00 (6) | H9A—C9—H9C | 109.5 |
O2—S—C12 | 106.40 (6) | H9B—C9—H9C | 109.5 |
C1—S—C12 | 96.87 (6) | C6—C10—H10A | 109.5 |
C8—O1—C7 | 106.14 (10) | C6—C10—H10B | 109.5 |
C8—C1—C2 | 107.49 (11) | H10A—C10—H10B | 109.5 |
C8—C1—S | 124.61 (10) | C6—C10—H10C | 109.5 |
C2—C1—S | 127.86 (10) | H10A—C10—H10C | 109.5 |
C7—C2—C3 | 119.63 (12) | H10B—C10—H10C | 109.5 |
C7—C2—C1 | 104.61 (11) | C8—C11—H11A | 109.5 |
C3—C2—C1 | 135.75 (12) | C8—C11—H11B | 109.5 |
C4—C3—C2 | 118.34 (12) | H11A—C11—H11B | 109.5 |
C4—C3—H3 | 120.8 | C8—C11—H11C | 109.5 |
C2—C3—H3 | 120.8 | H11A—C11—H11C | 109.5 |
C3—C4—C5 | 119.66 (13) | H11B—C11—H11C | 109.5 |
C3—C4—C9 | 119.32 (13) | C13—C12—C17 | 121.40 (12) |
C5—C4—C9 | 121.02 (13) | C13—C12—S | 119.24 (10) |
C6—C5—C4 | 123.56 (13) | C17—C12—S | 119.23 (10) |
C6—C5—H5 | 118.2 | C12—C13—C14 | 119.03 (12) |
C4—C5—H5 | 118.2 | C12—C13—H13 | 120.5 |
C7—C6—C5 | 114.29 (12) | C14—C13—H13 | 120.5 |
C7—C6—C10 | 121.78 (14) | C15—C14—C13 | 119.40 (13) |
C5—C6—C10 | 123.92 (13) | C15—C14—H14 | 120.3 |
C6—C7—O1 | 124.64 (12) | C13—C14—H14 | 120.3 |
C6—C7—C2 | 124.50 (12) | C14—C15—C16 | 121.63 (13) |
O1—C7—C2 | 110.86 (11) | C14—C15—Cl | 119.93 (11) |
C1—C8—O1 | 110.89 (11) | C16—C15—Cl | 118.45 (11) |
C1—C8—C11 | 133.18 (12) | C17—C16—C15 | 118.88 (13) |
O1—C8—C11 | 115.91 (11) | C17—C16—H16 | 120.6 |
C4—C9—H9A | 109.5 | C15—C16—H16 | 120.6 |
C4—C9—H9B | 109.5 | C16—C17—C12 | 119.56 (13) |
H9A—C9—H9B | 109.5 | C16—C17—H17 | 120.2 |
C4—C9—H9C | 109.5 | C12—C17—H17 | 120.2 |
O2—S—C1—C8 | 137.22 (11) | C1—C2—C7—C6 | 179.56 (12) |
C12—S—C1—C8 | −113.01 (12) | C3—C2—C7—O1 | 179.84 (11) |
O2—S—C1—C2 | −40.20 (13) | C1—C2—C7—O1 | 0.32 (14) |
C12—S—C1—C2 | 69.57 (12) | C2—C1—C8—O1 | −0.20 (14) |
C8—C1—C2—C7 | −0.07 (14) | S—C1—C8—O1 | −178.07 (9) |
S—C1—C2—C7 | 177.71 (10) | C2—C1—C8—C11 | −178.62 (14) |
C8—C1—C2—C3 | −179.47 (14) | S—C1—C8—C11 | 3.5 (2) |
S—C1—C2—C3 | −1.7 (2) | C7—O1—C8—C1 | 0.40 (14) |
C7—C2—C3—C4 | −0.10 (18) | C7—O1—C8—C11 | 179.11 (11) |
C1—C2—C3—C4 | 179.23 (13) | O2—S—C12—C13 | −11.33 (12) |
C2—C3—C4—C5 | 0.85 (19) | C1—S—C12—C13 | −122.43 (11) |
C2—C3—C4—C9 | −179.33 (12) | O2—S—C12—C17 | 172.79 (11) |
C3—C4—C5—C6 | −0.7 (2) | C1—S—C12—C17 | 61.69 (12) |
C9—C4—C5—C6 | 179.49 (13) | C17—C12—C13—C14 | −3.1 (2) |
C4—C5—C6—C7 | −0.2 (2) | S—C12—C13—C14 | −178.86 (10) |
C4—C5—C6—C10 | 179.96 (13) | C12—C13—C14—C15 | 0.4 (2) |
C5—C6—C7—O1 | −179.80 (12) | C13—C14—C15—C16 | 1.7 (2) |
C10—C6—C7—O1 | 0.0 (2) | C13—C14—C15—Cl | −178.75 (11) |
C5—C6—C7—C2 | 1.05 (19) | C14—C15—C16—C17 | −1.1 (2) |
C10—C6—C7—C2 | −179.14 (13) | Cl—C15—C16—C17 | 179.36 (11) |
C8—O1—C7—C6 | −179.69 (12) | C15—C16—C17—C12 | −1.6 (2) |
C8—O1—C7—C2 | −0.44 (14) | C13—C12—C17—C16 | 3.7 (2) |
C3—C2—C7—C6 | −0.92 (19) | S—C12—C17—C16 | 179.48 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O2i | 0.93 | 2.52 | 3.2548 (17) | 136 |
Symmetry code: (i) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C17H15ClO2S |
Mr | 318.80 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 6.0790 (12), 10.2232 (19), 12.514 (2) |
α, β, γ (°) | 84.474 (9), 80.121 (9), 85.991 (9) |
V (Å3) | 761.5 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.39 |
Crystal size (mm) | 0.33 × 0.29 × 0.29 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.883, 0.897 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13813, 3789, 3381 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.100, 1.06 |
No. of reflections | 3789 |
No. of parameters | 193 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.37 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O2i | 0.93 | 2.52 | 3.2548 (17) | 136.1 |
Symmetry code: (i) −x, −y+1, −z+2. |
Acknowledgements
This work was supported by Blue-Bio Industry RIC at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan city.
References
Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. Web of Science CrossRef PubMed CAS Google Scholar
Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472. Web of Science CSD CrossRef IUCr Journals Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428. Web of Science CrossRef PubMed CAS Google Scholar
Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A series of benzofuran ring system show remarkable pharmacological properties such as antimicrobial (Khan et al., 2005), antifungal (Aslam et al., 2006), antitumour and antiviral (Galal et al., 2009) activities. These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).
The benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring is nearly perpendicular to the benzofuran plane with a dihedral angle of 87.12 (3)° and is tilted slightly towards it. The molecular packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the 4-chlorophenyl H atom and the oxygen of the S═O unit, with a C13—H13···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by a weak intermolecular C—S···π interaction between the sulfur and 4-chlorophenyl ring of an adjacent molecule, with a C1—S···Cg1ii [3.394 (2) Å] (Cg1 is the centroid of the C12–C17 4-chlorophenyl ring), and by an intermolecular C—Cl···π interaction between the chlorine and the benzene ring of a neighbouring benzofuran system, with a C15—Cl···Cg2iii [3.800 (2) Å] (Cg2 is the centroid of the C2–C7 benzene ring).