organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2,3,4-Tetra­hydro­phenazine 5,10-dioxide

aSchool of Chemistry and Chemical Engineering and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China, and bShandong Shengquan Chemical Co. Ltd, Zhangqiu Jinan, 250204, People's Republic of China
*Correspondence e-mail: haoay@sdu.edu.cn

(Received 10 June 2010; accepted 29 July 2010; online 28 August 2010)

The complete mol­ecule of the title compound, C12H12N2O2, lies on two crystallographic symmetry elements: a twofold axis and a mirror plane. In the mol­ecular structure, the quinoxaline ring and two methyl­ene substituents lie on the mirror plane while the other two methyl­ene groups are disordered about the plane. The crystal packing is stabilized by weak inter­molecular ππ stacking inter­actions with centroid–centroid distances of 3.6803 (7) Å.

Related literature

For the synthetic preparation, see: Haddadin & Issidorides (1965[Haddadin, M. J. & Issidorides, C. H. (1965). Tetrahedron Lett. 6, 3253-3256.]); Issidorides & Haddadin (1966[Issidorides, C. H. & Haddadin, M. J. (1966). J. Org. Chem. 31, 4067-4068.]). For background to quinoxaline di-N-oxide compounds, see: Edwards et al. (1975[Edwards, M. L., Bambury, R. E. & Ritter, H. W. (1975). J. Med. Chem. 18, 637-639.]) and for their biological activity, see: Urquiola et al. (2008[Urquiola, C., Cabrera, M., Lavaggi, M. L., Cerecetto, H., Gonzalez, M., Cerain, A. L., Monge, A., Costa-Filho, A. J. & Torre, M. H. (2008). J. Inorg. Biochem. 102, 119-126.]). For a related structure, see: Wang et al. (2010[Wang, Z., Jia, W., Yao, H., Qiu, H. & Wang, W. (2010). Acta Cryst. E66, o1380.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O2

  • Mr = 216.24

  • Orthorhombic, C m c m

  • a = 11.7780 (2) Å

  • b = 13.1938 (3) Å

  • c = 6.5561 (1) Å

  • V = 1018.80 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.31 × 0.29 × 0.26 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.67, Tmax = 0.74

  • 3311 measured reflections

  • 620 independent reflections

  • 534 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.127

  • S = 1.10

  • 620 reflections

  • 61 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Quinoxaline di-N-oxide compounds are widely used in sterilization and growth-promoting of animals, pharmacological properties usable as intermediates for producing plant protection agents (Edwards et al.,1975). There has been a growing interest in the syntheses of quinoxaline di-N-oxide compounds that have both biological and commercial importance (Urquiola et al., 2008). Now, we report herein the crystal structure of the title benzotriazole derivative.

The complete molecule of the title compound, C12H12N2O2, is generated by a crystallographic symmetry operation along a twofold axis. In the moleclcular structure of the crystal, the quinoxaline ring and two methylene substituents of the quinoxaline ring locate at a mirror plane of the Cmcm group. The other two methylenes of the cyclohexane ring are disordered over two positions with half occupancy. The crystal packing is stabilized by weak intermolecular π-π aromatic stacking interactions with centroid-centroid distances of 3.6803 (7) Å.

Related literature top

For the synthetic preparation, see: Haddadin & Issidorides (1965); Issidorides & Haddadin (1966). For background to quinoxaline di-N-oxide compounds, see: Edwards et al. (1975) and for their biological activity, see: Urquiola et al. (2008). For a related structure, see: Wang et al. (2010).

Experimental top

The compound was synthesized as described previously by Haddadin & Issidorides (1965) and Issidorides & Haddadin (1966). Yellow crystals were obtained by slow evaporation of a methanolic solution.

Refinement top

H atoms in the benzene were placed in geometrically calculated positions and refined using a riding model. H atoms in CH2 groups were located in geometrically calculated positions also but their positions were refined independently and their isotropic displacement parameters were fixed to 0.08 in the refinement. Two CH2 groups were disordered over symmetry elements and refined with half occupancy.

Structure description top

Quinoxaline di-N-oxide compounds are widely used in sterilization and growth-promoting of animals, pharmacological properties usable as intermediates for producing plant protection agents (Edwards et al.,1975). There has been a growing interest in the syntheses of quinoxaline di-N-oxide compounds that have both biological and commercial importance (Urquiola et al., 2008). Now, we report herein the crystal structure of the title benzotriazole derivative.

The complete molecule of the title compound, C12H12N2O2, is generated by a crystallographic symmetry operation along a twofold axis. In the moleclcular structure of the crystal, the quinoxaline ring and two methylene substituents of the quinoxaline ring locate at a mirror plane of the Cmcm group. The other two methylenes of the cyclohexane ring are disordered over two positions with half occupancy. The crystal packing is stabilized by weak intermolecular π-π aromatic stacking interactions with centroid-centroid distances of 3.6803 (7) Å.

For the synthetic preparation, see: Haddadin & Issidorides (1965); Issidorides & Haddadin (1966). For background to quinoxaline di-N-oxide compounds, see: Edwards et al. (1975) and for their biological activity, see: Urquiola et al. (2008). For a related structure, see: Wang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Figure 1. A view of the title compound with displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by a twofold rotation. The second disorder component is omitted.
1,2,3,4-Tetrahydrophenazine 5,10-dioxide top
Crystal data top
C12H12N2O2F(000) = 456
Mr = 216.24Dx = 1.410 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 1577 reflections
a = 11.7780 (2) Åθ = 2.3–26.8°
b = 13.1938 (3) ŵ = 0.10 mm1
c = 6.5561 (1) ÅT = 296 K
V = 1018.80 (3) Å3Prism, yellow
Z = 40.31 × 0.29 × 0.26 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
620 independent reflections
Radiation source: fine-focus sealed tube534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 26.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.67, Tmax = 0.74k = 1612
3311 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0854P)2 + 0.1004P]
where P = (Fo2 + 2Fc2)/3
620 reflections(Δ/σ)max < 0.001
61 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C12H12N2O2V = 1018.80 (3) Å3
Mr = 216.24Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 11.7780 (2) ŵ = 0.10 mm1
b = 13.1938 (3) ÅT = 296 K
c = 6.5561 (1) Å0.31 × 0.29 × 0.26 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
620 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
534 reflections with I > 2σ(I)
Tmin = 0.67, Tmax = 0.74Rint = 0.016
3311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.23 e Å3
620 reflectionsΔρmin = 0.29 e Å3
61 parameters
Special details top

Experimental. 1H NMR (400?MHz, DMSO-d6): δ 8.67 (2H, d, J = 3.5?Hz, Ar—H), 7.89 (2H, d, J = 3.2?Hz, Ar—H), 3.77 (1H, s, CH), 2.66 (3H, s, CH3), 2.51 (2H, m, CH2), 1.45 (6H, s, CH3); Calcd for C13H16N2O2: C, 67.22; H, 6.94; N, 12.06. Found: C, 67.18; H, 6.99; N, 11.95; ESIMS calcd for C13H16N2O2H+ m/z 232.38, found m/z 232.19.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.44078 (13)0.14330 (10)0.25000.0434 (4)
H10.40170.20450.25000.052*
C20.38142 (12)0.05388 (9)0.25000.0399 (4)
H20.30250.05440.25000.048*
C30.44062 (11)0.03818 (9)0.25000.0311 (4)
C40.44068 (10)0.21722 (9)0.25000.0326 (4)
C50.37292 (12)0.31337 (10)0.25000.0470 (4)
H50.3247 (10)0.3113 (9)0.131 (2)0.070*
C60.44666 (19)0.40485 (17)0.1867 (4)0.0618 (9)0.50
H60.407 (2)0.4669 (19)0.199 (5)0.090*0.50
H70.468 (3)0.3993 (19)0.040 (4)0.090*0.50
N10.38161 (10)0.12976 (7)0.25000.0336 (4)
O10.27161 (9)0.12938 (6)0.25000.0508 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0608 (9)0.0288 (7)0.0407 (7)0.0082 (5)0.0000.000
C20.0426 (8)0.0339 (7)0.0432 (7)0.0078 (5)0.0000.000
C30.0339 (8)0.0281 (7)0.0314 (6)0.0008 (4)0.0000.000
C40.0318 (7)0.0277 (7)0.0384 (7)0.0008 (4)0.0000.000
C50.0372 (8)0.0320 (8)0.0719 (10)0.0056 (5)0.0000.000
C60.0516 (11)0.0289 (10)0.105 (3)0.0038 (7)0.0002 (10)0.0110 (10)
N10.0282 (6)0.0313 (6)0.0412 (6)0.0005 (3)0.0000.000
O10.0269 (6)0.0447 (7)0.0807 (8)0.0011 (3)0.0000.000
Geometric parameters (Å, º) top
C1—C21.3714 (19)C5—C6ii1.544 (3)
C1—C1i1.395 (3)C5—C61.544 (3)
C1—H10.9300C5—H50.965 (13)
C2—C31.4005 (17)C6—C6ii0.831 (5)
C2—H20.9300C6—C6iii1.256 (5)
C3—N11.3939 (15)C6—C6i1.506 (4)
C3—C3i1.399 (2)C6—H60.95 (2)
C4—N11.3474 (15)C6—H71.00 (3)
C4—C4i1.397 (2)N1—O11.2956 (16)
C4—C51.4987 (16)
C2—C1—C1i120.65 (9)C6ii—C6—C6iii90.000 (2)
C2—C1—H1119.7C6ii—C6—C6i56.5 (2)
C1i—C1—H1119.7C6iii—C6—C6i33.5 (2)
C1—C2—C3119.49 (15)C6ii—C6—C574.39 (10)
C1—C2—H2120.3C6iii—C6—C5124.23 (10)
C3—C2—H2120.3C6i—C6—C5108.72 (16)
N1—C3—C3i119.90 (7)C6ii—C6—H685.1 (18)
N1—C3—C2120.24 (14)C6iii—C6—H6119.6 (16)
C3i—C3—C2119.86 (8)C6i—C6—H6111.4 (17)
N1—C4—C4i121.08 (7)C5—C6—H6112.1 (16)
N1—C4—C5116.74 (12)C6ii—C6—H7164.4 (18)
C4i—C4—C5122.17 (7)C6iii—C6—H775.0 (18)
C4—C5—C6ii111.23 (14)C6i—C6—H7108.4 (18)
C4—C5—C6111.23 (14)C5—C6—H7110.3 (16)
C6ii—C5—C631.2 (2)H6—C6—H7106 (2)
C4—C5—H5106.8 (7)O1—N1—C4121.31 (9)
C6ii—C5—H5124.8 (8)O1—N1—C3119.68 (9)
C6—C5—H597.8 (7)C4—N1—C3119.01 (13)
C1i—C1—C2—C30.0C4—C5—C6—C6i50.6 (2)
C1—C2—C3—N1180.0C6ii—C5—C6—C6i45.6 (2)
C1—C2—C3—C3i0.0C4i—C4—N1—O1180.0
N1—C4—C5—C6ii163.23 (11)C5—C4—N1—O10.0
C4i—C4—C5—C6ii16.77 (11)C4i—C4—N1—C30.0
N1—C4—C5—C6163.23 (11)C5—C4—N1—C3180.0
C4i—C4—C5—C616.77 (11)C3i—C3—N1—O1180.0
C4—C5—C6—C6ii96.23 (6)C2—C3—N1—O10.0
C4—C5—C6—C6iii17.19 (11)C3i—C3—N1—C40.0
C6ii—C5—C6—C6iii79.04 (8)C2—C3—N1—C4180.0
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12N2O2
Mr216.24
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)296
a, b, c (Å)11.7780 (2), 13.1938 (3), 6.5561 (1)
V3)1018.80 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.31 × 0.29 × 0.26
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.67, 0.74
No. of measured, independent and
observed [I > 2σ(I)] reflections
3311, 620, 534
Rint0.016
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.127, 1.10
No. of reflections620
No. of parameters61
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by the NSFC (grant No. 20625307), the National Basic Research Program of China (973 Program, 2009CB930103) and the Graduate Independent Innovation Foundation of Shandong University (GIIFSDU).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards, M. L., Bambury, R. E. & Ritter, H. W. (1975). J. Med. Chem. 18, 637–639.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaddadin, M. J. & Issidorides, C. H. (1965). Tetrahedron Lett. 6, 3253–3256.  CrossRef Google Scholar
First citationIssidorides, C. H. & Haddadin, M. J. (1966). J. Org. Chem. 31, 4067–4068.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrquiola, C., Cabrera, M., Lavaggi, M. L., Cerecetto, H., Gonzalez, M., Cerain, A. L., Monge, A., Costa-Filho, A. J. & Torre, M. H. (2008). J. Inorg. Biochem. 102, 119–126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Z., Jia, W., Yao, H., Qiu, H. & Wang, W. (2010). Acta Cryst. E66, o1380.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds