organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-chloro-[2-(4-chloro­phen­yl)hydrazin-1-yl­­idene]acetate

aChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 August 2010; accepted 13 August 2010; online 21 August 2010)

The title compound, C10H10Cl2N2O2, features a planar Car—N(H)—N=C(Cl) unit [torsion angle = 5.5 (4)°] whose benzene substituent is coplanar with it [dihedral angle = 4.7 (4)°]; this unit is slightly twisted with respect to the carboxyl –CO2 fragment [dihedral angle = 2.2 (52)°]. The amino group acts as a hydrogen-bond donor to the carbonyl O atom of an adjacent mol­ecule; the hydrogen bond generates a helical polymer that runs along the b axis of the monoclinic unit cell.

Related literature

For a review of the reactions of hydrazonyl halides with heterocyclic thio­nes for heteroannulation, the synthesis of spiro­heterocycles and heterocyclic ring formation, see: Shawali & Farghaly (2008[Shawali, A. S. & Farghaly, T. A. (2008). ARKIVOC, i, 18-64.]). For related structures, see: Xu (2006[Xu, J. (2006). Acta Cryst. E62, o5317-o5318.]); Yin et al. (2006[Yin, Z.-G., Du, Y.-J., Zhang, J.-S., Qian, H.-Y. & Wang, Q.-L. (2006). Acta Cryst. E62, o4807-o4808.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10Cl2N2O2

  • Mr = 261.10

  • Monoclinic, P 21

  • a = 4.4611 (7) Å

  • b = 9.4546 (14) Å

  • c = 13.464 (2) Å

  • β = 91.642 (2)°

  • V = 567.65 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 100 K

  • 0.35 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.829, Tmax = 0.973

  • 5298 measured reflections

  • 2518 independent reflections

  • 2191 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.188

  • S = 1.03

  • 2518 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1123 Friedel pairs

  • Flack parameter: 0.03 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.20 3.009 (5) 156
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Ethyl 2-chloro(phenylhydrazono)acetate belongs to the class of of hydrazonyl halides that undergo heteroannulation, and are used for the synthesis of spiroheterocycles and other heterocyclic compounds. The utility in some aspects of heterocyclic chemistry has recently been reviewed (Shawali & Farghaly (2008). The central structural feature is an planar Caryl–NH–NC unit, as noted in the crystal structures of other substituted derivatives (Xu, 2006; Yin et al., 2006). The chlorine-substituted compound (Scheme I) shows this characteristic linkage, whose torsion angle is 5.5?(41) °. The carbon-nitrogen double bond is of a Z-configuration (Fig. 1). Such a configuration allows the amino site to form a hydrogen bond to the double-bond carbonyl oxygen atom of an adjacent molecule, this hydrogen bond giving rise to a helical chain that runs along the b axis of the unit cell (Fig. 2).

Related literature top

For a review of the reactions of hydrazonyl halides with heterocyclic thiones for heteroannulation, the synthesis of spiroheterocycles and heterocyclic ring formation, see: Shawali & Farghaly (2008). For related crystal structures, see: Xu (2006); Yin et al. (2006).

Experimental top

The synthesis works with either 3-chloropentane-2,4-dione or ethyl 2-chloro-3-oxobutanoate. To a solution of either 3-chloropentane-2,4-dione (1.34 g, 10 mmol) or ethyl 2-chloro-3-oxobutanoate (1.64 g, 10 mmol) in ethanol (100 ml) was added sodium acetate trihydrate (1.3 g, 10 mmol). The mixture was chilled to 273 K. To the mixture was added a cold solution of p-chlorobenzenediazonium chloride, prepared by diazotizing p-chloroaniline (1.20 g, 10 mmol) dissolved in 6M hydrochloricacid (6 ml) with a solution of sodium nitrite (0.7 g, 10 mmol) dissolved in water (10 ml). The diazonium salt was added over a period of 20 min. The reaction mixture was stirred for another 15 min. and then left for 3 h in a refrigerator. The resulting solid was collected and washed with water. The crude product was recrystallized from ethanol to give the hydrazone in 85% yield; m.p. 428–431 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, U(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was similarly positioned [N–H 0.86 Å, U(H) 1.2Ueq(N)]. The absolute structure parameter (Flack, 1983) was determined from 1123 Friedel pairs.

Structure description top

Ethyl 2-chloro(phenylhydrazono)acetate belongs to the class of of hydrazonyl halides that undergo heteroannulation, and are used for the synthesis of spiroheterocycles and other heterocyclic compounds. The utility in some aspects of heterocyclic chemistry has recently been reviewed (Shawali & Farghaly (2008). The central structural feature is an planar Caryl–NH–NC unit, as noted in the crystal structures of other substituted derivatives (Xu, 2006; Yin et al., 2006). The chlorine-substituted compound (Scheme I) shows this characteristic linkage, whose torsion angle is 5.5?(41) °. The carbon-nitrogen double bond is of a Z-configuration (Fig. 1). Such a configuration allows the amino site to form a hydrogen bond to the double-bond carbonyl oxygen atom of an adjacent molecule, this hydrogen bond giving rise to a helical chain that runs along the b axis of the unit cell (Fig. 2).

For a review of the reactions of hydrazonyl halides with heterocyclic thiones for heteroannulation, the synthesis of spiroheterocycles and heterocyclic ring formation, see: Shawali & Farghaly (2008). For related crystal structures, see: Xu (2006); Yin et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of C10H10Cl2N2O2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen bonded chain structure (red dashed lines) forming a helical chain that runs along the b axis.
Ethyl 2-chloro-[2-(4-chlorophenyl)hydrazin-1-ylidene]acetate top
Crystal data top
C10H10Cl2N2O2F(000) = 268
Mr = 261.10Dx = 1.528 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1574 reflections
a = 4.4611 (7) Åθ = 2.6–27.2°
b = 9.4546 (14) ŵ = 0.56 mm1
c = 13.464 (2) ÅT = 100 K
β = 91.642 (2)°Prism, colourless
V = 567.65 (15) Å30.35 × 0.10 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2518 independent reflections
Radiation source: fine-focus sealed tube2191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.829, Tmax = 0.973k = 1211
5298 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.1216P)2 + 0.1253P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2518 reflectionsΔρmax = 0.59 e Å3
145 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack (1983), 1123 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (14)
Crystal data top
C10H10Cl2N2O2V = 567.65 (15) Å3
Mr = 261.10Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.4611 (7) ŵ = 0.56 mm1
b = 9.4546 (14) ÅT = 100 K
c = 13.464 (2) Å0.35 × 0.10 × 0.05 mm
β = 91.642 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2518 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2191 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.973Rint = 0.073
5298 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.188Δρmax = 0.59 e Å3
S = 1.03Δρmin = 0.34 e Å3
2518 reflectionsAbsolute structure: Flack (1983), 1123 Friedel pairs
145 parametersAbsolute structure parameter: 0.03 (14)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.4745 (3)0.50000 (14)0.97204 (9)0.0301 (4)
Cl20.4463 (3)0.85685 (12)0.46296 (8)0.0226 (3)
N10.8095 (9)0.7704 (5)0.6374 (3)0.0203 (8)
H10.83760.74070.57800.024*
N20.6137 (9)0.8722 (4)0.6540 (3)0.0194 (8)
O10.0631 (7)1.0838 (4)0.5375 (2)0.0222 (7)
O20.2281 (8)1.0713 (4)0.6974 (2)0.0223 (7)
C10.9702 (11)0.7120 (5)0.7183 (4)0.0193 (10)
C20.9430 (11)0.7619 (5)0.8146 (4)0.0212 (10)
H2A0.81630.84030.82700.025*
C31.0993 (12)0.6981 (5)0.8922 (4)0.0240 (10)
H31.08040.73240.95810.029*
C41.2829 (11)0.5844 (6)0.8740 (4)0.0229 (10)
C51.3191 (11)0.5353 (5)0.7776 (4)0.0225 (10)
H51.45090.45870.76540.027*
C61.1616 (10)0.5990 (5)0.7000 (4)0.0207 (10)
H61.18360.56570.63400.025*
C70.4460 (10)0.9208 (5)0.5837 (3)0.0176 (9)
C80.2257 (10)1.0339 (5)0.6023 (3)0.0183 (9)
C90.0103 (11)1.1798 (5)0.7225 (4)0.0223 (10)
H9A0.19451.15010.70120.027*
H9B0.05751.27000.68910.027*
C100.0316 (13)1.1969 (6)0.8335 (4)0.0282 (11)
H10A0.11101.26940.85410.042*
H10B0.23561.22580.85340.042*
H10C0.01591.10680.86540.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0349 (7)0.0288 (7)0.0262 (6)0.0030 (5)0.0055 (5)0.0046 (5)
Cl20.0251 (6)0.0219 (6)0.0209 (5)0.0002 (5)0.0003 (4)0.0019 (5)
N10.0213 (19)0.021 (2)0.0193 (19)0.0011 (17)0.0023 (15)0.0014 (15)
N20.0244 (19)0.0112 (18)0.0225 (19)0.0033 (16)0.0012 (14)0.0034 (16)
O10.0253 (18)0.0156 (17)0.0253 (17)0.0035 (14)0.0032 (13)0.0017 (13)
O20.0252 (18)0.0187 (17)0.0230 (17)0.0050 (14)0.0007 (13)0.0012 (13)
C10.019 (2)0.018 (3)0.022 (2)0.0082 (19)0.0025 (16)0.0008 (19)
C20.022 (2)0.015 (2)0.027 (3)0.0014 (19)0.0028 (19)0.0011 (18)
C30.029 (3)0.019 (3)0.023 (2)0.004 (2)0.0002 (19)0.0018 (19)
C40.020 (2)0.023 (2)0.025 (2)0.0036 (19)0.0055 (18)0.0060 (19)
C50.025 (2)0.015 (2)0.027 (2)0.0026 (19)0.0011 (18)0.0014 (18)
C60.017 (2)0.022 (3)0.023 (2)0.0001 (19)0.0012 (17)0.0020 (19)
C70.018 (2)0.018 (2)0.017 (2)0.0054 (18)0.0012 (16)0.0019 (17)
C80.019 (2)0.016 (2)0.020 (2)0.0081 (18)0.0016 (16)0.0038 (17)
C90.025 (3)0.014 (2)0.028 (2)0.003 (2)0.000 (2)0.0028 (18)
C100.038 (3)0.021 (3)0.026 (2)0.001 (2)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C41.745 (5)C3—C41.378 (7)
Cl2—C71.735 (5)C3—H30.9500
N1—N21.323 (6)C4—C51.392 (7)
N1—C11.400 (6)C5—C61.381 (7)
N1—H10.8600C5—H50.9500
N2—C71.275 (6)C6—H60.9500
O1—C81.214 (6)C7—C81.478 (7)
O2—C81.328 (6)C9—C101.504 (7)
O2—C91.459 (6)C9—H9A0.9900
C1—C21.388 (7)C9—H9B0.9900
C1—C61.394 (7)C10—H10A0.9800
C2—C31.379 (7)C10—H10B0.9800
C2—H2A0.9500C10—H10C0.9800
N2—N1—C1118.7 (4)C5—C6—H6120.0
N2—N1—H1120.6C1—C6—H6120.0
C1—N1—H1120.6N2—C7—C8120.9 (4)
C7—N2—N1120.8 (4)N2—C7—Cl2123.6 (4)
C8—O2—C9115.0 (4)C8—C7—Cl2115.4 (3)
C2—C1—C6119.7 (4)O1—C8—O2125.3 (4)
C2—C1—N1122.4 (5)O1—C8—C7123.1 (4)
C6—C1—N1117.9 (4)O2—C8—C7111.6 (4)
C3—C2—C1120.2 (5)O2—C9—C10106.4 (4)
C3—C2—H2A119.9O2—C9—H9A110.4
C1—C2—H2A119.9C10—C9—H9A110.4
C2—C3—C4119.8 (5)O2—C9—H9B110.4
C2—C3—H3120.1C10—C9—H9B110.4
C4—C3—H3120.1H9A—C9—H9B108.6
C3—C4—C5120.8 (4)C9—C10—H10A109.5
C3—C4—Cl1120.2 (4)C9—C10—H10B109.5
C5—C4—Cl1119.0 (4)H10A—C10—H10B109.5
C6—C5—C4119.3 (5)C9—C10—H10C109.5
C6—C5—H5120.3H10A—C10—H10C109.5
C4—C5—H5120.3H10B—C10—H10C109.5
C5—C6—C1120.1 (4)
C1—N1—N2—C7174.5 (4)C2—C1—C6—C51.2 (7)
N2—N1—C1—C23.4 (7)N1—C1—C6—C5178.3 (4)
N2—N1—C1—C6176.1 (4)N1—N2—C7—C8179.6 (4)
C6—C1—C2—C31.5 (7)N1—N2—C7—Cl22.3 (6)
N1—C1—C2—C3178.1 (4)C9—O2—C8—O11.1 (6)
C1—C2—C3—C40.0 (7)C9—O2—C8—C7178.3 (4)
C2—C3—C4—C51.7 (7)N2—C7—C8—O1179.5 (4)
C2—C3—C4—Cl1178.4 (4)Cl2—C7—C8—O13.0 (6)
C3—C4—C5—C61.9 (7)N2—C7—C8—O21.1 (6)
Cl1—C4—C5—C6178.2 (4)Cl2—C7—C8—O2176.4 (3)
C4—C5—C6—C10.5 (7)C8—O2—C9—C10175.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.203.009 (5)156
Symmetry code: (i) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H10Cl2N2O2
Mr261.10
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)4.4611 (7), 9.4546 (14), 13.464 (2)
β (°) 91.642 (2)
V3)567.65 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.35 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.829, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
5298, 2518, 2191
Rint0.073
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.188, 1.03
No. of reflections2518
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.34
Absolute structureFlack (1983), 1123 Friedel pairs
Absolute structure parameter0.03 (14)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.203.009 (5)156
Symmetry code: (i) x+1, y1/2, z+1.
 

Acknowledgements

The authors thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShawali, A. S. & Farghaly, T. A. (2008). ARKIVOC, i, 18–64.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J. (2006). Acta Cryst. E62, o5317–o5318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, Z.-G., Du, Y.-J., Zhang, J.-S., Qian, H.-Y. & Wang, Q.-L. (2006). Acta Cryst. E62, o4807–o4808.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds