metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetyl­acetonato)(dicyanamido)(1,10-phenanthroline)copper(II) dihydrate

aDepartment of Chemistry, University of Sistan and Baluchestan, PO Box 98135-674, Zahedan, Iran, bFaculty of Science, Gonbad Higher Education Center, PO Box 163, Gonbad, Iran, and cChemistry, School of Biomedical, Biomolecular & Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
*Correspondence e-mail: brian.skelton@uwa.edu.au

(Received 14 July 2010; accepted 29 July 2010; online 4 August 2010)

In the title compound, [Cu(C5H7O2)(C2N3)(C12H8N2)]·2H2O, the CuII atom is five-coordinated in a square-pyramidal geometry with two acetyl­acetonate O and two phenanthroline N atoms forming the base. The apical position is occupied by the central N atom of the dicyanamide ligand. The dicyanamide N atoms are each involved in hydrogen bonds to water mol­ecules. There are also hydrogen bonds between both the water mol­ecules and their centrosymmetric pairs, creating a hydrogen-bonded chain along the b-axis direction.

Related literature

Dicyanamide (dca) has been shown to be a versatile ligand and may coordinate to metal ions as a terminal ligand through a nitrile or amide nitro­gen. It also acts as a bridging ligand. Until now, as many as eight structurally characterized coordination modes of dicyanamide had been reported in the literature, see: Chattopadhyay et al. (2008[Chattopadhyay, T., Banerjee, A., Banu, K. S., Podder, N., Mukherjee, M., Ghosh, M., Suresh, E. & Das, D. (2008). J. Mol. Struct. 888, 62-69.]); Liu et al. (2005[Liu, C.-B., Yu, M.-X., Zheng, X.-J., Jin, L.-P., Gao, S. & Lu, S.-Z. (2005). Inorg. Chim. Acta, 358, 2687-2696.]); Miller & Manson (2001[Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563-570.]); Xu et al. (2003[Xu, Y.-Q., Luo, J.-H., Yuan, D.-Q., Xu, Y., Cao, R. & Hong, M.-C. (2003). J. Mol. Struct. 658, 223-228.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H7O2)(C2N3)(C12H8N2)]·2H2O

  • Mr = 444.93

  • Triclinic, [P \overline 1]

  • a = 8.2825 (8) Å

  • b = 9.9853 (7) Å

  • c = 12.1109 (7) Å

  • α = 76.388 (5)°

  • β = 79.236 (7)°

  • γ = 83.554 (7)°

  • V = 953.90 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 100 K

  • 0.44 × 0.38 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.667, Tmax = 0.847

  • 10664 measured reflections

  • 6254 independent reflections

  • 4672 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 0.97

  • 6254 reflections

  • 280 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.9061 (11)
Cu1—O2 1.9072 (11)
Cu1—N1 2.0100 (14)
Cu1—N2 2.0136 (13)
Cu1—N3 2.3920 (15)
O1—Cu1—O2 95.58 (5)
O1—Cu1—N1 171.80 (5)
O2—Cu1—N1 90.01 (5)
O1—Cu1—N2 91.52 (5)
O2—Cu1—N2 168.73 (5)
N1—Cu1—N2 82.08 (5)
O1—Cu1—N3 89.74 (5)
O2—Cu1—N3 94.16 (5)
N1—Cu1—N3 95.85 (5)
N2—Cu1—N3 94.62 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2B⋯N5 0.81 (2) 2.08 (2) 2.879 (2) 173 (2)
O2W—H2A⋯O1Wi 0.80 (2) 1.98 (2) 2.761 (2) 167 (2)
O1W—H1A⋯N4 0.81 (2) 2.10 (2) 2.910 (2) 172 (3)
O1W—H1B⋯O2Wii 0.78 (2) 2.00 (2) 2.742 (2) 160 (2)
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal dicyanamide (dca) compounds are of great interest due to the variety of observed topologies, this being related to the versatility of dca as a ligand, and its potential application in functional materials. In the present work, we describe the synthesis and crystal structure of a new CuII complex using the diimine ligand (phen), a bidentate ligand with two oxygen donor atoms (acac) and the anionic co-ligand dicyanamide (dca) (Fig. 1). To date, a number of higher - dimensional coordination networks of different transition metals have been reported with dca as a bridging ligand, but there are few compounds with dca acting as a monodentate ligand through the amide nitrogen. To the best of our knowledge, this complex is one of the few cases where dca is acting as a terminal ligand through the amide nitrogen. The molecule of the title compound is shown in Fig. 1 with selected bond lengths and angles listed in Table 1. In this molecule the coordination is square pyramidal with the two acac O and two phen N atoms forming the base. The apical position is occupied by the N of the dicyanamido ligand with the Cu—N3 distance (Cu1—N3 2.3920 (15) Å) being much greater than those in the basal plane Cu1—O1, 1.906 (1), 1.907 (1) Å and Cu1—N1, 2.010 (1), 2.014 (1) Å. The dicyanamide N atoms, N4, N5 are each involved in hydrogen bonds to water molecules. There are also hydrogen bonds between both the water molecules and their centrosymmetric pairs creating a one dimensional hydrogen bonded polymer in the b direction (see Fig. 2). Geometrical details are listed in Table 2.

Related literature top

Dicyanamide (dca) has been shown to be a versatile ligand and may coordinate to metal ions as a terminal ligand through a nitrile or amide nitrogen. It also acts as a bridging ligand. Until now, as many as eight structurally characterized coordination modes of dicyanamide had been reported in the literature, see: Chattopadhyay et al. (2008); Liu et al. (2005); Miller & Manson (2001); Xu et al. (2003).

Experimental top

Acetylacetone (0.103 ml, 1 mmol) was added to a 20 ml methanolic solution of CuCl2.2H2O (170 mg, 1 mmol). After 30 min of stirring, a solution of phen (198 mg, 1 mmol) in 10 ml methanol was added dropwise to this solution. A solution of 1 mmol of sodium dicyanamide (89 mg) dissolved in 5 ml water was then added slowly with stirring. After 10 h of stirring at room temperature, the resulting solution was filtered to remove any undissolved materials. A dark blue crystalline product separated after 2 weeks.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.98 Å and with Uiso(H) = 1.2 times Ueq(C) for CH and Uiso(H) = 1.5 times Ueq(C) for those on terminal C atoms. Anisotropic displacement parameters were employed throughout for the non-hydrogen atoms. Hydrogen atoms on water molecules were located in the difference Fourier map and refined with O-H bond lengths restrained to ideal values.

Structure description top

Metal dicyanamide (dca) compounds are of great interest due to the variety of observed topologies, this being related to the versatility of dca as a ligand, and its potential application in functional materials. In the present work, we describe the synthesis and crystal structure of a new CuII complex using the diimine ligand (phen), a bidentate ligand with two oxygen donor atoms (acac) and the anionic co-ligand dicyanamide (dca) (Fig. 1). To date, a number of higher - dimensional coordination networks of different transition metals have been reported with dca as a bridging ligand, but there are few compounds with dca acting as a monodentate ligand through the amide nitrogen. To the best of our knowledge, this complex is one of the few cases where dca is acting as a terminal ligand through the amide nitrogen. The molecule of the title compound is shown in Fig. 1 with selected bond lengths and angles listed in Table 1. In this molecule the coordination is square pyramidal with the two acac O and two phen N atoms forming the base. The apical position is occupied by the N of the dicyanamido ligand with the Cu—N3 distance (Cu1—N3 2.3920 (15) Å) being much greater than those in the basal plane Cu1—O1, 1.906 (1), 1.907 (1) Å and Cu1—N1, 2.010 (1), 2.014 (1) Å. The dicyanamide N atoms, N4, N5 are each involved in hydrogen bonds to water molecules. There are also hydrogen bonds between both the water molecules and their centrosymmetric pairs creating a one dimensional hydrogen bonded polymer in the b direction (see Fig. 2). Geometrical details are listed in Table 2.

Dicyanamide (dca) has been shown to be a versatile ligand and may coordinate to metal ions as a terminal ligand through a nitrile or amide nitrogen. It also acts as a bridging ligand. Until now, as many as eight structurally characterized coordination modes of dicyanamide had been reported in the literature, see: Chattopadhyay et al. (2008); Liu et al. (2005); Miller & Manson (2001); Xu et al. (2003).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The Molecular structure projected oblique the basal coordination plane. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. H atoms are drawn as spheres with arbitrary radii.
[Figure 2] Fig. 2. The hydrogen-bonded polymer.
(Acetylacetonato)(dicyanamido)(1,10-phenanthroline)copper(II) dihydrate top
Crystal data top
[Cu(C5H7O2)(C2N3)(C12H8N2)]·2H2OZ = 2
Mr = 444.93F(000) = 458
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2825 (8) ÅCell parameters from 5220 reflections
b = 9.9853 (7) Åθ = 3.5–32.5°
c = 12.1109 (7) ŵ = 1.18 mm1
α = 76.388 (5)°T = 100 K
β = 79.236 (7)°Slab, blue
γ = 83.554 (7)°0.44 × 0.38 × 0.15 mm
V = 953.90 (13) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
6254 independent reflections
Graphite monochromator4672 reflections with I > 2σ(I)
Detector resolution: 10.4738 pixels mm-1Rint = 0.028
ω scansθmax = 32.6°, θmin = 3.5°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1210
Tmin = 0.667, Tmax = 0.847k = 1514
10664 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0386P)2]
where P = (Fo2 + 2Fc2)/3
6254 reflections(Δ/σ)max = 0.002
280 parametersΔρmax = 0.52 e Å3
6 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu(C5H7O2)(C2N3)(C12H8N2)]·2H2Oγ = 83.554 (7)°
Mr = 444.93V = 953.90 (13) Å3
Triclinic, P1Z = 2
a = 8.2825 (8) ÅMo Kα radiation
b = 9.9853 (7) ŵ = 1.18 mm1
c = 12.1109 (7) ÅT = 100 K
α = 76.388 (5)°0.44 × 0.38 × 0.15 mm
β = 79.236 (7)°
Data collection top
Oxford Diffraction Gemini
diffractometer
6254 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
4672 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.847Rint = 0.028
10664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.52 e Å3
6254 reflectionsΔρmin = 0.42 e Å3
280 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

The water molecule hydrogen geometries were restrained to ideal values.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.44471 (3)0.77615 (2)0.641559 (16)0.01300 (6)
O10.30198 (14)0.93968 (11)0.64219 (9)0.0147 (2)
O20.46649 (15)0.78689 (11)0.48019 (9)0.0151 (2)
N10.61346 (17)0.61447 (13)0.65445 (11)0.0131 (3)
N20.47043 (17)0.76076 (13)0.80625 (11)0.0136 (3)
N30.20994 (18)0.64152 (14)0.69007 (12)0.0195 (3)
N40.24313 (19)0.38636 (15)0.73851 (12)0.0207 (3)
N50.04970 (19)0.77968 (15)0.73930 (13)0.0232 (3)
C10.6620 (2)0.57862 (16)0.75956 (13)0.0128 (3)
C20.7799 (2)0.47088 (16)0.78859 (13)0.0146 (3)
C30.8485 (2)0.39566 (17)0.70360 (14)0.0166 (3)
H30.9280.32050.71950.02*
C40.7992 (2)0.43239 (17)0.59769 (14)0.0182 (3)
H40.8450.3830.53970.022*
C50.6813 (2)0.54268 (16)0.57561 (14)0.0158 (3)
H50.64860.56720.50190.019*
C60.8253 (2)0.44452 (17)0.90081 (14)0.0171 (3)
H60.9050.37120.92190.021*
C70.5862 (2)0.65973 (16)0.84136 (13)0.0128 (3)
C80.6326 (2)0.63354 (16)0.94977 (13)0.0151 (3)
C90.5529 (2)0.71780 (17)1.02540 (14)0.0174 (3)
H90.58120.7051.09990.021*
C100.4343 (2)0.81839 (17)0.99064 (14)0.0180 (3)
H100.37910.8751.04120.022*
C110.3953 (2)0.83697 (16)0.87987 (13)0.0157 (3)
H110.31250.90630.85670.019*
C120.7560 (2)0.52296 (17)0.97732 (14)0.0180 (3)
H120.78950.50451.05060.022*
C130.1266 (2)1.13270 (17)0.57670 (14)0.0190 (3)
H13A0.02971.09880.6320.028*
H13B0.09221.18390.50430.028*
H13C0.18121.19380.60830.028*
C140.2445 (2)1.01218 (16)0.55433 (13)0.0140 (3)
C150.2838 (2)0.98785 (16)0.44328 (13)0.0152 (3)
H150.23321.04920.38470.018*
C160.3917 (2)0.88016 (16)0.41157 (13)0.0134 (3)
C170.4305 (2)0.86863 (17)0.28774 (13)0.0171 (3)
H17A0.54490.890.25640.026*
H17B0.35640.9340.24330.026*
H17C0.41540.77440.28280.026*
C180.2200 (2)0.50592 (17)0.71782 (13)0.0152 (3)
C190.0677 (2)0.70993 (16)0.71876 (14)0.0163 (3)
O1W0.1223 (2)0.12775 (15)0.88013 (13)0.0353 (4)
O2W0.13527 (19)0.96983 (16)0.89006 (12)0.0292 (3)
H1A0.165 (3)0.195 (2)0.8385 (17)0.054 (8)*
H1B0.137 (3)0.117 (2)0.9432 (13)0.034 (7)*
H2A0.059 (3)1.016 (2)0.877 (2)0.044 (8)*
H2B0.116 (3)0.9122 (19)0.8518 (18)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01465 (11)0.01279 (10)0.01157 (10)0.00093 (7)0.00271 (7)0.00316 (7)
O10.0164 (6)0.0138 (5)0.0137 (5)0.0002 (5)0.0029 (4)0.0026 (4)
O20.0184 (6)0.0135 (5)0.0135 (5)0.0005 (5)0.0035 (4)0.0033 (4)
N10.0146 (7)0.0136 (6)0.0112 (6)0.0029 (5)0.0013 (5)0.0026 (5)
N20.0155 (7)0.0118 (6)0.0129 (6)0.0011 (5)0.0010 (5)0.0026 (5)
N30.0163 (7)0.0138 (7)0.0267 (8)0.0019 (6)0.0011 (6)0.0042 (6)
N40.0201 (8)0.0182 (7)0.0235 (7)0.0007 (6)0.0052 (6)0.0037 (6)
N50.0179 (8)0.0182 (7)0.0317 (8)0.0021 (6)0.0017 (6)0.0033 (6)
C10.0118 (7)0.0128 (7)0.0141 (7)0.0028 (6)0.0015 (6)0.0031 (6)
C20.0130 (8)0.0139 (7)0.0167 (7)0.0023 (6)0.0028 (6)0.0021 (6)
C30.0142 (8)0.0145 (8)0.0216 (8)0.0001 (6)0.0033 (6)0.0049 (6)
C40.0189 (9)0.0173 (8)0.0196 (8)0.0002 (7)0.0013 (6)0.0085 (6)
C50.0174 (8)0.0167 (8)0.0147 (7)0.0014 (6)0.0028 (6)0.0061 (6)
C60.0150 (8)0.0179 (8)0.0181 (8)0.0004 (6)0.0053 (6)0.0016 (6)
C70.0133 (8)0.0130 (7)0.0120 (7)0.0018 (6)0.0020 (6)0.0022 (6)
C80.0155 (8)0.0165 (8)0.0141 (7)0.0037 (6)0.0025 (6)0.0035 (6)
C90.0196 (9)0.0214 (8)0.0128 (7)0.0048 (7)0.0020 (6)0.0056 (6)
C100.0216 (9)0.0189 (8)0.0145 (7)0.0020 (7)0.0006 (6)0.0072 (6)
C110.0177 (8)0.0137 (7)0.0154 (7)0.0016 (6)0.0011 (6)0.0040 (6)
C120.0176 (9)0.0212 (8)0.0158 (8)0.0014 (7)0.0061 (6)0.0025 (6)
C130.0186 (9)0.0177 (8)0.0201 (8)0.0034 (7)0.0031 (6)0.0054 (6)
C140.0119 (8)0.0126 (7)0.0175 (8)0.0029 (6)0.0017 (6)0.0026 (6)
C150.0159 (8)0.0153 (7)0.0143 (7)0.0001 (6)0.0053 (6)0.0014 (6)
C160.0121 (8)0.0151 (7)0.0139 (7)0.0048 (6)0.0030 (6)0.0024 (6)
C170.0211 (9)0.0178 (8)0.0133 (7)0.0005 (7)0.0041 (6)0.0044 (6)
C180.0127 (8)0.0223 (8)0.0118 (7)0.0021 (6)0.0020 (6)0.0057 (6)
C190.0181 (8)0.0142 (7)0.0168 (8)0.0072 (6)0.0035 (6)0.0008 (6)
O1W0.0484 (10)0.0288 (8)0.0272 (8)0.0153 (7)0.0032 (7)0.0003 (7)
O2W0.0272 (8)0.0325 (8)0.0322 (8)0.0022 (7)0.0080 (6)0.0150 (6)
Geometric parameters (Å, º) top
Cu1—O11.9061 (11)C6—H60.95
Cu1—O21.9072 (11)C7—C81.394 (2)
Cu1—N12.0100 (14)C8—C91.412 (2)
Cu1—N22.0136 (13)C8—C121.440 (2)
Cu1—N32.3920 (15)C9—C101.373 (2)
O1—C141.2775 (19)C9—H90.95
O2—C161.2805 (19)C10—C111.404 (2)
N1—C51.332 (2)C10—H100.95
N1—C11.362 (2)C11—H110.95
N2—C111.329 (2)C12—H120.95
N2—C71.361 (2)C13—C141.505 (2)
N3—C181.313 (2)C13—H13A0.98
N3—C191.324 (2)C13—H13B0.98
N4—C181.162 (2)C13—H13C0.98
N5—C191.154 (2)C14—C151.395 (2)
C1—C21.396 (2)C15—C161.398 (2)
C1—C71.436 (2)C15—H150.95
C2—C31.413 (2)C16—C171.503 (2)
C2—C61.435 (2)C17—H17A0.98
C3—C41.374 (2)C17—H17B0.98
C3—H30.95C17—H17C0.98
C4—C51.398 (2)O1W—H1A0.812 (15)
C4—H40.95O1W—H1B0.778 (15)
C5—H50.95O2W—H2A0.795 (15)
C6—C121.358 (2)O2W—H2B0.806 (15)
O1—Cu1—O295.58 (5)C8—C7—C1120.19 (14)
O1—Cu1—N1171.80 (5)C7—C8—C9116.93 (15)
O2—Cu1—N190.01 (5)C7—C8—C12118.38 (15)
O1—Cu1—N291.52 (5)C9—C8—C12124.68 (15)
O2—Cu1—N2168.73 (5)C10—C9—C8119.60 (15)
N1—Cu1—N282.08 (5)C10—C9—H9120.2
O1—Cu1—N389.74 (5)C8—C9—H9120.2
O2—Cu1—N394.16 (5)C9—C10—C11119.45 (15)
N1—Cu1—N395.85 (5)C9—C10—H10120.3
N2—Cu1—N394.62 (5)C11—C10—H10120.3
C14—O1—Cu1124.52 (11)N2—C11—C10122.19 (15)
C16—O2—Cu1124.19 (11)N2—C11—H11118.9
C5—N1—C1118.31 (14)C10—C11—H11118.9
C5—N1—Cu1128.97 (11)C6—C12—C8121.43 (15)
C1—N1—Cu1112.72 (10)C6—C12—H12119.3
C11—N2—C7118.32 (13)C8—C12—H12119.3
C11—N2—Cu1129.06 (11)C14—C13—H13A109.5
C7—N2—Cu1112.58 (10)C14—C13—H13B109.5
C18—N3—C19119.10 (15)H13A—C13—H13B109.5
C18—N3—Cu1123.48 (12)C14—C13—H13C109.5
C19—N3—Cu1114.92 (11)H13A—C13—H13C109.5
N1—C1—C2123.32 (15)H13B—C13—H13C109.5
N1—C1—C7116.23 (14)O1—C14—C15125.18 (15)
C2—C1—C7120.45 (14)O1—C14—C13115.20 (14)
C1—C2—C3117.10 (15)C15—C14—C13119.63 (14)
C1—C2—C6118.67 (15)C14—C15—C16125.02 (14)
C3—C2—C6124.22 (15)C14—C15—H15117.5
C4—C3—C2119.32 (15)C16—C15—H15117.5
C4—C3—H3120.3O2—C16—C15125.37 (14)
C2—C3—H3120.3O2—C16—C17114.54 (14)
C3—C4—C5119.77 (15)C15—C16—C17120.08 (14)
C3—C4—H4120.1C16—C17—H17A109.5
C5—C4—H4120.1C16—C17—H17B109.5
N1—C5—C4122.17 (15)H17A—C17—H17B109.5
N1—C5—H5118.9C16—C17—H17C109.5
C4—C5—H5118.9H17A—C17—H17C109.5
C12—C6—C2120.86 (15)H17B—C17—H17C109.5
C12—C6—H6119.6N4—C18—N3174.12 (19)
C2—C6—H6119.6N5—C19—N3174.19 (18)
N2—C7—C8123.49 (14)H1A—O1W—H1B112 (2)
N2—C7—C1116.31 (13)H2A—O2W—H2B109.1 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2B···N50.81 (2)2.08 (2)2.879 (2)173 (2)
O2W—H2A···O1Wi0.80 (2)1.98 (2)2.761 (2)167 (2)
O1W—H1A···N40.81 (2)2.10 (2)2.910 (2)172 (3)
O1W—H1B···O2Wii0.78 (2)2.00 (2)2.742 (2)160 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C5H7O2)(C2N3)(C12H8N2)]·2H2O
Mr444.93
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.2825 (8), 9.9853 (7), 12.1109 (7)
α, β, γ (°)76.388 (5), 79.236 (7), 83.554 (7)
V3)953.90 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.44 × 0.38 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.667, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
10664, 6254, 4672
Rint0.028
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 0.97
No. of reflections6254
No. of parameters280
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.42

Computer programs: CrysAlis CCD (Oxford Diffraction 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cu1—O11.9061 (11)Cu1—N22.0136 (13)
Cu1—O21.9072 (11)Cu1—N32.3920 (15)
Cu1—N12.0100 (14)
O1—Cu1—O295.58 (5)N1—Cu1—N282.08 (5)
O1—Cu1—N1171.80 (5)O1—Cu1—N389.74 (5)
O2—Cu1—N190.01 (5)O2—Cu1—N394.16 (5)
O1—Cu1—N291.52 (5)N1—Cu1—N395.85 (5)
O2—Cu1—N2168.73 (5)N2—Cu1—N394.62 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2B···N50.806 (15)2.077 (16)2.879 (2)173 (2)
O2W—H2A···O1Wi0.795 (15)1.979 (16)2.761 (2)167 (2)
O1W—H1A···N40.812 (15)2.104 (16)2.910 (2)172 (3)
O1W—H1B···O2Wii0.778 (15)1.998 (15)2.742 (2)160 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+2.
 

Acknowledgements

The authors are grateful to the USB for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChattopadhyay, T., Banerjee, A., Banu, K. S., Podder, N., Mukherjee, M., Ghosh, M., Suresh, E. & Das, D. (2008). J. Mol. Struct. 888, 62–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLiu, C.-B., Yu, M.-X., Zheng, X.-J., Jin, L.-P., Gao, S. & Lu, S.-Z. (2005). Inorg. Chim. Acta, 358, 2687–2696.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563–570.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-Q., Luo, J.-H., Yuan, D.-Q., Xu, Y., Cao, R. & Hong, M.-C. (2003). J. Mol. Struct. 658, 223–228.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds