organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acridinium 3-carb­­oxy­pyrazine-2-carboxyl­ate

aYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, Faculty of Science, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, and cInstitut de Physique, Universite de Neuchâtel, Rue Emile-Argand 11, CP 158, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: attar_jafar@yahoo.com

(Received 20 July 2010; accepted 30 July 2010; online 11 August 2010)

The title ion pair, C13H10N+·C6H3N2O4, contains a protonated acridine cation and a 3-carb­oxy­pyrazine-2-carboxyl­ate monoanion, which are linked together through O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds. These hydrogen bonds generate a C(10) chain graph-set motif. The crystal structure is further stabilized by extensive ππ stacking inter­actions between nearly parallel [dihedral angle = 1.21(2)°] acridine systems. The shortest distance between the centroids of the six-membered rings within the cations is 3.6315 (8) Å. In addition, C—H⋯π edge-to-face inter­actions are present.

Related literature

For the biological activity of acridines, see: Talacki et al. (1974[Talacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044-1047.]); Achenson (1956[Achenson, R. M. (1956). Acridines: The Chemistry of Heterocyclic Compounds, Vol. 9, edited by A. Weissberger, pp. 339-361. New York: Interscience.]); Fan et al. (1997[Fan, J.-Y., Tercel, M. & Denny, W. A. (1997). Anti-Cancer Drug Des. 12, 277-293.]); Bandoli et al. (1994[Bandoli, G., Dolmella, A., Gatto, S. & Nicolini, M. (1994). J. Chem. Crystallogr. 24, 301-310.]). For ion pairs reported from pyrazine-2,3-dicarb­oxy­lic acid, pz-2,3-dcH2, with various organic bases such as 8-hy­droxy­quinoline and guanidine, see: Smith et al. (2006a[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006a). Acta Cryst. E62, o5089-o5091.],b[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006b). Acta Cryst. E62, o3912-o3914.]). For a recently reported proton-transfer compound of acridine and benzene-1,3,5-tricarb­oxy­lic acid, see: Derikvand et al. (2009[Derikvand, Z., Aghabozorg, H. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o1173.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N+·C6H3N2O4

  • Mr = 347.32

  • Orthorhombic, P b c a

  • a = 10.0597 (9) Å

  • b = 15.0623 (12) Å

  • c = 20.306 (2) Å

  • V = 3076.8 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.45 × 0.36 × 0.25 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • 11459 measured reflections

  • 4070 independent reflections

  • 2639 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.080

  • S = 0.88

  • 4070 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,N2,C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.948 (17) 1.628 (17) 2.5736 (13) 174.7 (16)
N3—H3N⋯O3ii 0.944 (16) 1.709 (16) 2.6374 (13) 167.0 (13)
C10—H10⋯O2 0.94 2.50 3.1896 (17) 131
C18—H18⋯Cg1iii 0.94 2.95 3.7213 (16) 140
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2006[Stoe & Cie. (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2006[Stoe & Cie. (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Acridine is structurally related to anthracene wherein one of the central CH groups is replaced by nitrogen. Acridines are found to have a wide range of biological activity, such as mutagenic, antitumor (Talacki et al., 1974) and antibacterial (Achenson, 1956) properties.The ability of acridine to interact with DNA is also established (Fan et al., 1997). In addition, acridine compounds are considered to be efficient drugs for the treatment of Alzheimer's disease (Bandoli et al., 1994). Pyrazine-2,3-dicarboxylic acid, pz-2,3-dcH2, has proved to be well suited for the construction of the multi-dimensional frameworks due to the presence of two adjacent carboxylic acid groups.

There have been several attempts to prepare proton transfer compounds involving carboxylic acids and amines. For example, ion pairs have been reported between pz-2,3-dcH2 and various organic bases such as 8-hydroxy quinoline (Smith et al., 2006a) and guanidine (Smith et al., 2006b). The crystal structure of a proton-transfer compound of acridine and benzene-1,3,5-tricarboxylic acid has been reported (Derikvand et al., 2009). In this work, we report a new proton transfer compound obtained from pyrazine-2,3-dicarboxylic acid as a proton donor and acridine as an acceptor.

The molecular structure of the title compound (Fig. 1), confirmed the full proton transfer, i.e. protonation of the acridine N atom and deprotonation of one of the carboxylic acid groups in the pyrazine-2,3-dicarboxylic acid. The carboxylate groups of the anion are twisted by 46.09 (7) and 37.34 (7)° with respect to the aromatic ring of pyrazine.

Non-covalent interactions cause the structure to form a self-assembled system. A hydrogen bonded motif is found involving the anion and cation fragments. The (pz-2,3-dcH)- units are linked to each other by O–H···O hydrogen bonds to form one-dimensional chains with a C(10) graph-set motif (Bernstein et al., 1995). In contrast, the N–H···O and C–H···O hydrogen bonds link the (acrH)+ cations to these chains (Fig. 2, Table 1). In addition, interactions consisting of ππ stacking with centroid-to-centroid distances of 3.6315 (8) to 3.7202 (9) Å between two acridine parallel rings are also present. Furthermore, C–H···π edge-to-face interactions are present involving the CH group of acridine with an aromatic ring of (pz-2,3-dcH)-, with a H···π distance of 2.95 Å for C18–H18···Cg1i [symmetry code: (i) 1 - x, 1/2 + y, 1/2 - z; Cg1= centroid of ring N1,N2,C1–C3; Fig. 3)]. The sum of these weak non-covalent interactions seems to play an important role in the crystal packing. The unit cell packing diagram of the title compound, showing the N—H···O and O—H···O hydrogen bonding, is shown in Fig. 4 and details are given in Table 1.

Related literature top

For the biological activity of acridines, see: Talacki et al. (1974); Achenson (1956); Fan et al. (1997); Bandoli et al. (1994). For ion pairs reported from pyrazine-2,3-dicarboxylic acid, pz-2,3-dcH2, with various organic bases such as 8-hydroxyquinoline and guanidine, see: Smith et al. (2006a,b). For a recently reported proton-transfer compound of acridine and benzene-1,3,5-tricarboxylic acid, see: Derikvand et al. (2009). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

The reaction between a solution of pyrazine-2,3-dicarboxylic acid (160 mg, 1 mmol) in 20 ml water and acridine (180 mg, 1 mmol) in 10 ml methanol, in a 1:1 molar ratio, gave brown rod-like crystals after slow evaporation of the solvent at room temperature.

Refinement top

The OH and NH H-atoms were located in a difference electron-density map and were freely refined: O—H = 0.948 (7) Å, N—H = 0.944 (16) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 Å with Uiso(H) = 1.2Ueq(parent C-atom).

Structure description top

Acridine is structurally related to anthracene wherein one of the central CH groups is replaced by nitrogen. Acridines are found to have a wide range of biological activity, such as mutagenic, antitumor (Talacki et al., 1974) and antibacterial (Achenson, 1956) properties.The ability of acridine to interact with DNA is also established (Fan et al., 1997). In addition, acridine compounds are considered to be efficient drugs for the treatment of Alzheimer's disease (Bandoli et al., 1994). Pyrazine-2,3-dicarboxylic acid, pz-2,3-dcH2, has proved to be well suited for the construction of the multi-dimensional frameworks due to the presence of two adjacent carboxylic acid groups.

There have been several attempts to prepare proton transfer compounds involving carboxylic acids and amines. For example, ion pairs have been reported between pz-2,3-dcH2 and various organic bases such as 8-hydroxy quinoline (Smith et al., 2006a) and guanidine (Smith et al., 2006b). The crystal structure of a proton-transfer compound of acridine and benzene-1,3,5-tricarboxylic acid has been reported (Derikvand et al., 2009). In this work, we report a new proton transfer compound obtained from pyrazine-2,3-dicarboxylic acid as a proton donor and acridine as an acceptor.

The molecular structure of the title compound (Fig. 1), confirmed the full proton transfer, i.e. protonation of the acridine N atom and deprotonation of one of the carboxylic acid groups in the pyrazine-2,3-dicarboxylic acid. The carboxylate groups of the anion are twisted by 46.09 (7) and 37.34 (7)° with respect to the aromatic ring of pyrazine.

Non-covalent interactions cause the structure to form a self-assembled system. A hydrogen bonded motif is found involving the anion and cation fragments. The (pz-2,3-dcH)- units are linked to each other by O–H···O hydrogen bonds to form one-dimensional chains with a C(10) graph-set motif (Bernstein et al., 1995). In contrast, the N–H···O and C–H···O hydrogen bonds link the (acrH)+ cations to these chains (Fig. 2, Table 1). In addition, interactions consisting of ππ stacking with centroid-to-centroid distances of 3.6315 (8) to 3.7202 (9) Å between two acridine parallel rings are also present. Furthermore, C–H···π edge-to-face interactions are present involving the CH group of acridine with an aromatic ring of (pz-2,3-dcH)-, with a H···π distance of 2.95 Å for C18–H18···Cg1i [symmetry code: (i) 1 - x, 1/2 + y, 1/2 - z; Cg1= centroid of ring N1,N2,C1–C3; Fig. 3)]. The sum of these weak non-covalent interactions seems to play an important role in the crystal packing. The unit cell packing diagram of the title compound, showing the N—H···O and O—H···O hydrogen bonding, is shown in Fig. 4 and details are given in Table 1.

For the biological activity of acridines, see: Talacki et al. (1974); Achenson (1956); Fan et al. (1997); Bandoli et al. (1994). For ion pairs reported from pyrazine-2,3-dicarboxylic acid, pz-2,3-dcH2, with various organic bases such as 8-hydroxyquinoline and guanidine, see: Smith et al. (2006a,b). For a recently reported proton-transfer compound of acridine and benzene-1,3,5-tricarboxylic acid, see: Derikvand et al. (2009). For graph-set analysis, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title ion pair, with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The O–H···O hydrogen bonds link (pz-2,3-dcH)- units into chains with C(10) chain graph-set motifs and N–H···O and C–H···O hydrogen bonds link (acrH)+ cations to these chains
[Figure 3] Fig. 3. C—H···π and ππ stacking interactions between C13H10N+.C6H3N2O4- fragments.
[Figure 4] Fig. 4. A view along the b-axis of the crystal packing of the title compound. Hydrogen atoms not involved in the N—H···N and O—H···O hydrogen bonds (dashed lines) have been omitted for clarity (see Table 1 for details).
Acridinium 3-carboxypyrazine-2-carboxylate top
Crystal data top
C13H10N+·C6H3N2O4F(000) = 1440
Mr = 347.32Dx = 1.500 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6855 reflections
a = 10.0597 (9) Åθ = 1.7–29.6°
b = 15.0623 (12) ŵ = 0.11 mm1
c = 20.306 (2) ÅT = 223 K
V = 3076.8 (5) Å3Rod, brown
Z = 80.45 × 0.36 × 0.25 mm
Data collection top
Stoe IPDS 2
diffractometer
2639 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 29.2°, θmin = 2.6°
Detector resolution: 6.67 pixels mm-1h = 138
φ and ω scansk = 2019
11459 measured reflectionsl = 2719
4070 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0423P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.001
4070 reflectionsΔρmax = 0.26 e Å3
244 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (5)
Crystal data top
C13H10N+·C6H3N2O4V = 3076.8 (5) Å3
Mr = 347.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.0597 (9) ŵ = 0.11 mm1
b = 15.0623 (12) ÅT = 223 K
c = 20.306 (2) Å0.45 × 0.36 × 0.25 mm
Data collection top
Stoe IPDS 2
diffractometer
2639 reflections with I > 2σ(I)
11459 measured reflectionsRint = 0.037
4070 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.26 e Å3
4070 reflectionsΔρmin = 0.15 e Å3
244 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.39070 (12)0.36166 (6)0.33546 (5)0.0262 (3)
C70.30038 (14)0.30865 (7)0.30586 (6)0.0258 (3)
C80.20976 (15)0.25926 (7)0.34397 (6)0.0307 (4)
C90.11849 (16)0.20748 (8)0.31306 (7)0.0337 (4)
C100.11455 (15)0.20109 (7)0.24330 (7)0.0330 (4)
C110.20060 (14)0.24823 (8)0.20582 (7)0.0315 (4)
C120.29589 (14)0.30485 (7)0.23570 (6)0.0268 (3)
C130.38426 (15)0.35715 (7)0.20033 (6)0.0291 (4)
C140.47339 (14)0.41345 (7)0.23175 (6)0.0273 (3)
C150.56395 (15)0.46933 (8)0.19741 (7)0.0334 (4)
C160.64831 (16)0.52222 (8)0.23146 (7)0.0375 (4)
C170.64816 (16)0.52281 (8)0.30109 (7)0.0377 (4)
C180.56445 (15)0.47022 (8)0.33632 (7)0.0326 (4)
C190.47527 (14)0.41474 (7)0.30188 (6)0.0266 (3)
O10.09781 (10)0.19372 (5)0.01540 (5)0.0310 (3)
O20.02145 (11)0.12332 (6)0.10467 (5)0.0394 (3)
O30.43276 (10)0.18006 (5)0.04013 (4)0.0292 (3)
O40.37854 (10)0.18308 (5)0.06640 (4)0.0321 (3)
N10.12751 (12)0.03103 (6)0.04271 (5)0.0297 (3)
N20.35933 (12)0.00112 (6)0.02910 (5)0.0294 (3)
C10.17714 (13)0.05048 (7)0.03435 (6)0.0233 (3)
C20.19595 (15)0.09731 (7)0.01534 (7)0.0320 (4)
C30.30534 (15)0.08191 (7)0.02325 (7)0.0323 (4)
C40.29838 (13)0.06421 (7)0.00344 (5)0.0224 (3)
C50.09064 (13)0.12624 (7)0.05662 (6)0.0248 (3)
C60.37460 (13)0.15038 (7)0.01113 (6)0.0229 (3)
H3N0.4009 (17)0.3551 (9)0.3814 (8)0.040 (4)*
H80.212400.262100.390200.0370*
H90.056800.175300.338300.0400*
H100.051700.163900.223000.0400*
H110.197200.243400.159700.0380*
H130.383800.354400.154100.0350*
H150.565200.469500.151100.0400*
H160.707800.559100.208500.0450*
H170.707300.560500.323500.0450*
H180.565900.470800.382600.0390*
H10.0346 (19)0.2380 (10)0.0263 (8)0.051 (5)*
H20.168400.156100.022700.0380*
H30.343600.129600.046300.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0286 (6)0.0282 (5)0.0218 (5)0.0012 (4)0.0019 (5)0.0008 (4)
C70.0276 (7)0.0236 (5)0.0262 (6)0.0030 (5)0.0019 (6)0.0002 (4)
C80.0344 (8)0.0307 (6)0.0270 (6)0.0001 (5)0.0011 (6)0.0019 (5)
C90.0338 (8)0.0288 (6)0.0385 (7)0.0013 (6)0.0026 (6)0.0029 (5)
C100.0312 (8)0.0274 (5)0.0403 (7)0.0006 (5)0.0052 (7)0.0038 (5)
C110.0347 (8)0.0306 (6)0.0293 (6)0.0043 (6)0.0046 (6)0.0047 (5)
C120.0290 (7)0.0264 (5)0.0249 (6)0.0051 (5)0.0016 (6)0.0004 (4)
C130.0327 (8)0.0316 (6)0.0230 (6)0.0053 (5)0.0010 (6)0.0023 (5)
C140.0286 (7)0.0263 (5)0.0271 (6)0.0055 (5)0.0014 (6)0.0035 (5)
C150.0383 (9)0.0304 (6)0.0316 (7)0.0037 (6)0.0023 (6)0.0087 (5)
C160.0364 (9)0.0298 (6)0.0464 (8)0.0021 (6)0.0033 (7)0.0089 (6)
C170.0366 (9)0.0289 (6)0.0475 (8)0.0035 (6)0.0036 (7)0.0011 (5)
C180.0356 (8)0.0302 (6)0.0320 (7)0.0001 (6)0.0038 (6)0.0021 (5)
C190.0273 (7)0.0237 (5)0.0288 (6)0.0036 (5)0.0008 (6)0.0016 (5)
O10.0317 (6)0.0247 (4)0.0365 (5)0.0077 (4)0.0062 (4)0.0064 (3)
O20.0492 (7)0.0356 (4)0.0333 (5)0.0027 (5)0.0135 (5)0.0015 (4)
O30.0357 (6)0.0276 (4)0.0244 (4)0.0102 (4)0.0000 (4)0.0008 (3)
O40.0382 (6)0.0310 (4)0.0271 (4)0.0074 (4)0.0005 (4)0.0061 (3)
N10.0293 (6)0.0233 (5)0.0364 (6)0.0043 (4)0.0031 (5)0.0027 (4)
N20.0288 (6)0.0261 (5)0.0334 (6)0.0002 (4)0.0018 (5)0.0049 (4)
C10.0251 (7)0.0219 (5)0.0229 (6)0.0011 (5)0.0039 (5)0.0016 (4)
C20.0325 (8)0.0192 (5)0.0442 (7)0.0035 (5)0.0090 (7)0.0000 (5)
C30.0328 (8)0.0233 (5)0.0407 (8)0.0024 (5)0.0059 (6)0.0080 (5)
C40.0253 (7)0.0210 (5)0.0209 (5)0.0002 (4)0.0042 (5)0.0009 (4)
C50.0248 (7)0.0237 (5)0.0259 (6)0.0029 (5)0.0020 (5)0.0003 (4)
C60.0207 (7)0.0216 (5)0.0263 (6)0.0006 (4)0.0026 (5)0.0005 (4)
Geometric parameters (Å, º) top
O1—C51.3187 (14)C14—C151.4229 (19)
O2—C51.1993 (16)C15—C161.354 (2)
O3—C61.2750 (15)C16—C171.414 (2)
O4—C61.2263 (14)C17—C181.360 (2)
O1—H10.948 (17)C18—C191.4115 (19)
N3—C71.3507 (17)C8—H80.9400
N3—C191.3520 (16)C9—H90.9400
N3—H3N0.944 (16)C10—H100.9400
N1—C21.3340 (16)C11—H110.9400
N1—C11.3362 (15)C13—H130.9400
N2—C41.3345 (15)C15—H150.9400
N2—C31.3379 (15)C16—H160.9400
C7—C81.4083 (18)C17—H170.9400
C7—C121.4265 (17)C18—H180.9400
C8—C91.358 (2)C1—C41.3872 (18)
C9—C101.420 (2)C1—C51.5046 (16)
C10—C111.3538 (19)C2—C31.371 (2)
C11—C121.4193 (18)C4—C61.5156 (16)
C12—C131.3881 (18)C2—H20.9400
C13—C141.3893 (18)C3—H30.9400
C14—C191.4243 (17)
C5—O1—H1111.0 (10)C11—C10—H10120.00
C7—N3—C19123.26 (11)C12—C11—H11120.00
C19—N3—H3N119.5 (10)C10—C11—H11120.00
C7—N3—H3N116.8 (9)C12—C13—H13119.00
C1—N1—C2116.22 (11)C14—C13—H13119.00
C3—N2—C4116.12 (11)C14—C15—H15120.00
N3—C7—C12119.30 (11)C16—C15—H15120.00
C8—C7—C12120.47 (11)C17—C16—H16120.00
N3—C7—C8120.21 (11)C15—C16—H16120.00
C7—C8—C9119.14 (12)C16—C17—H17119.00
C8—C9—C10121.24 (13)C18—C17—H17119.00
C9—C10—C11120.48 (13)C17—C18—H18121.00
C10—C11—C12120.44 (13)C19—C18—H18121.00
C11—C12—C13123.53 (12)N1—C1—C5116.27 (11)
C7—C12—C13118.28 (11)C4—C1—C5122.10 (10)
C7—C12—C11118.19 (12)N1—C1—C4121.53 (11)
C12—C13—C14121.48 (11)N1—C2—C3121.73 (10)
C13—C14—C19118.43 (11)N2—C3—C2122.05 (11)
C15—C14—C19118.26 (11)N2—C4—C1121.20 (10)
C13—C14—C15123.31 (12)N2—C4—C6116.75 (11)
C14—C15—C16119.94 (13)C1—C4—C6121.73 (10)
C15—C16—C17120.91 (13)O1—C5—C1111.23 (10)
C16—C17—C18121.55 (13)O2—C5—C1123.53 (10)
C17—C18—C19118.55 (13)O1—C5—O2125.20 (11)
N3—C19—C18120.01 (11)O3—C6—C4116.64 (10)
N3—C19—C14119.20 (11)O4—C6—C4117.04 (10)
C14—C19—C18120.79 (12)O3—C6—O4126.26 (11)
C7—C8—H8120.00N1—C2—H2119.00
C9—C8—H8120.00C3—C2—H2119.00
C8—C9—H9119.00N2—C3—H3119.00
C10—C9—H9119.00C2—C3—H3119.00
C9—C10—H10120.00
C19—N3—C7—C8176.00 (12)C13—C14—C19—N30.13 (18)
C19—N3—C7—C122.58 (18)C13—C14—C19—C18179.56 (12)
C7—N3—C19—C142.11 (18)C13—C14—C15—C16179.74 (13)
C7—N3—C19—C18178.21 (12)C19—C14—C15—C160.39 (19)
C1—N1—C2—C34.7 (2)C15—C14—C19—N3179.52 (11)
C2—N1—C1—C44.93 (18)C15—C14—C19—C180.17 (18)
C2—N1—C1—C5171.56 (11)C14—C15—C16—C170.1 (2)
C3—N2—C4—C6165.73 (11)C15—C16—C17—C180.4 (2)
C3—N2—C4—C17.87 (17)C16—C17—C18—C190.6 (2)
C4—N2—C3—C21.7 (2)C17—C18—C19—C140.33 (19)
N3—C7—C12—C11179.63 (11)C17—C18—C19—N3179.97 (13)
N3—C7—C12—C130.81 (18)N1—C1—C4—N211.70 (18)
C12—C7—C8—C90.41 (19)N1—C1—C4—C6161.58 (11)
N3—C7—C8—C9178.98 (12)C5—C1—C4—N2164.58 (11)
C8—C7—C12—C111.79 (18)C5—C1—C4—C622.15 (17)
C8—C7—C12—C13177.77 (12)N1—C1—C5—O1140.94 (11)
C7—C8—C9—C101.2 (2)N1—C1—C5—O236.83 (18)
C8—C9—C10—C111.4 (2)C4—C1—C5—O135.52 (16)
C9—C10—C11—C120.1 (2)C4—C1—C5—O2146.71 (13)
C10—C11—C12—C13177.91 (12)N1—C2—C3—N28.4 (2)
C10—C11—C12—C71.62 (19)N2—C4—C6—O345.62 (15)
C11—C12—C13—C14178.19 (12)N2—C4—C6—O4131.77 (12)
C7—C12—C13—C141.35 (19)C1—C4—C6—O3140.82 (12)
C12—C13—C14—C15178.83 (12)C1—C4—C6—O441.78 (17)
C12—C13—C14—C191.81 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,N2,C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.948 (17)1.628 (17)2.5736 (13)174.7 (16)
N3—H3N···O3ii0.944 (16)1.709 (16)2.6374 (13)167.0 (13)
C10—H10···O20.942.503.1896 (17)131
C18—H18···Cg1iii0.942.953.7213 (16)140
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10N+·C6H3N2O4
Mr347.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)223
a, b, c (Å)10.0597 (9), 15.0623 (12), 20.306 (2)
V3)3076.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.45 × 0.36 × 0.25
Data collection
DiffractometerStoe IPDS 2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11459, 4070, 2639
Rint0.037
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.080, 0.88
No. of reflections4070
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.15

Computer programs: X-AREA (Stoe & Cie, 2006), X-RED32 (Stoe & Cie, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,N2,C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.948 (17)1.628 (17)2.5736 (13)174.7 (16)
N3—H3N···O3ii0.944 (16)1.709 (16)2.6374 (13)167.0 (13)
C10—H10···O20.942.503.1896 (17)131
C18—H18···Cg1iii0.942.953.7213 (16)140
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

HSE thanks the staff of the X-ray Application LAB, CSEM, Neuch\^atel for access to the X-ray diffraction equipment.

References

First citationAchenson, R. M. (1956). Acridines: The Chemistry of Heterocyclic Compounds, Vol. 9, edited by A. Weissberger, pp. 339–361. New York: Interscience.  Google Scholar
First citationBandoli, G., Dolmella, A., Gatto, S. & Nicolini, M. (1994). J. Chem. Crystallogr. 24, 301–310.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDerikvand, Z., Aghabozorg, H. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o1173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, J.-Y., Tercel, M. & Denny, W. A. (1997). Anti-Cancer Drug Des. 12, 277–293.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006a). Acta Cryst. E62, o5089–o5091.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006b). Acta Cryst. E62, o3912–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTalacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044–1047.  CSD CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds