organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

17-Acet­­oxy­mulinic acid

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and cUnidad de Biotecnología, Centro de Investigacion Científica de Yucatán, Calle 43, N° 130, Colonia Chuburná, Mérida, Yucatán 97200, Mexico
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 2 August 2010; accepted 16 August 2010; online 28 August 2010)

The title compound, [systematic name: 5a-acet­oxy­methyl-3-isopropyl-8-methyl-1,2,3,3a,4,5,5a,6,7,10,10a,10b-dodeca­hydro-7,10-endo-epidi­oxy­cyclo­hepta­[e]indene-3a-carb­oxy­lic acid], C22H32O6 (I), is closely related to methyl 5a-acet­oxy­methyl-3-isopropyl-8-methyl-1,2,3,3a,4,5,5a,6,7,10,10a,10b-dodeca­hydro-7,10-endo-epidi­oxy­cyclo­hepta­[e]indene-3a-carboxyl­ate, (II) [Brito et al., (2008[Brito, I., Bórquez, J., Loyola, L. A., Cárdenas, A. & López-Rodríguez, M. (2008). Acta Cryst. E64, o1209.]). Acta Cryst. E64, o1209]. There are two mol­ecules in the asymmetric unit, which are linked by two strong intra­molecular O—H⋯O hydrogen bonds with graph-set motif R22(8). In both (I) and (II), the conformation of the three fused rings are almost identical. The five-membered ring has an envelope conformation, the six-membered ring has a chair conformation and the seven-membered ring has a boat conformation. The most obvious differences between the two compounds is the observed disorder of the acet­oxy­methyl fragments in both mol­ecules of the asymmetric unit of (I). This disorder is not observed in (II). The crystal structure and the molecular conformation is stabilized by intermolecular C—H⋯O hydrogen bonds. The ability to form hydrogen bonds is different in the two compounds. The crystal studied was a non-merohedral twin, the ratio of the twin components being 0.28 (1):0.72 (1)

Related literature

For related literature on Mulinane diterpenes, see: Munizaga & Gunkel (1958[Munizaga, C. & Gunkel, H. (1958). Notas etnobotánicas del pueblo de Socaire. Publicación No. 5. Universidad de Chile.]); Araya et al. (2003[Araya, J. E., Neira, I., da Silva, S., Mortara, R. A., Manque, P., Cordero, E., Sagua, H., Loyola, A., Bórquez, J., Morales, G. & González, J. (2003). Mem. Inst. Oswaldo Cruz Rio de Janeiro, 98, 413-418.]); Loyola et al. (1990[Loyola, L. A., Morales, G., Perales, A. & Rodríguez, B. (1990). Tetrahedron, 46, 5413-5420.], 2004[Loyola, L. A., Bórquez, J., Morales, G., San-Martín, A., Darias, J., Flores, N. & Giménez, A. (2004). Phytochemistry, 65, 1931-1935.]). For a related structure, see: Brito et al. (2008[Brito, I., Bórquez, J., Loyola, L. A., Cárdenas, A. & López-Rodríguez, M. (2008). Acta Cryst. E64, o1209.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H32O6

  • Mr = 392.48

  • Monoclinic, P 21

  • a = 11.9171 (12) Å

  • b = 7.3523 (4) Å

  • c = 23.679 (2) Å

  • β = 92.775 (8)°

  • V = 2072.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.24 × 0.22 × 0.22 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • 12732 measured reflections

  • 3948 independent reflections

  • 2516 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.137

  • S = 0.90

  • 3948 reflections

  • 507 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O5A 0.84 1.90 2.714 (5) 162
O6A—H6A⋯O5 0.84 1.88 2.690 (5) 161
C5B—H5B1⋯O4Ai 0.99 2.37 3.257 (14) 149
C10—H10⋯O2ii 1.00 2.34 3.259 (9) 152
C10A—H10A⋯O5 1.00 2.50 3.134 (9) 121
C10C—H10C⋯O2Aiii 1.00 2.46 3.350 (8) 147
C10D—H10D⋯O5A 1.00 2.51 3.151 (8) 122
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) is know as 17-acetoxymulinic acid and was isolated from Mulinum crassifolium (Apiaceae). Mulinum crassifolium is a 15 cm small shrub, which grows in the north of Chile at altitudes above 4000 m. This plant, commonly known as chuquican, susurco or espinilla is used in the folk medicine, principally against diabetes, and bronchial (caugh) and intestinal disorders (Munizaga et al., 1958). Mulinane diterpenes exhibit antiplasmodial (Loyola et al., 2004) and anti-Tripanosomacruzi (Araya et al., 2003) activities. We have undertaken the X-ray crystal-structure determination of (I) in order to establish its molecular conformation and relative stereochemistry. We are not able to determine the absolute stereochemistry by X-ray methods and the configuration shown here was chosen to be in accord with that reported in previous chemical studies (Loyola et al., 1990). The structure consists of a mulinane skeleton, and the isopropyl, acetyloxymethyl and carboxylic groups at C3, C5A and C3A are β-oriented, respectively, whereas the endo-peroxide group is α-oriented. The molecular dimensions of the title compound are within normal ranges (Allen et al., 1987). The cyclopentane (A), cyclohexane (B) and cycloheptene (C) rings are in an envelope, chair and boat conformation, respectively [Q2 = 0.4233 (8) Å, φ2 = 176.0 (10)° for ring A (mean); QT = 0.553 (8) Å, θ = 161.3 (8)°, φ = 238 (2)° for ring B (mean); QT = 1.230 (4) Å, φ2 = 169.9 (2)°, for ring C(mean)] (Cremer & Pople, 1975), Fig.1. The A and B and B and C rings are trans and cis-fused respectively. The crystal structure and the molecular conformation is stabilized by three and eleven C—H···O hydrogen bonds respectively. The two molecules in the asymmetric unit are linked by two strong O—H···O intramolecular hydrogen bond with set graph-motif R22(8), Fig. 2. (Bernstein et al., 1995).

Related literature top

For related literature on Mulinane diterpenes, see: Munizaga & Gunkel (1958); Araya et al. (2003); Loyola et al. (1990, 2004). For a related structure, see: Brito et al. (2008). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond patterns, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

Dried and finely powdered aerial parts of Mulinum crassifolium (630 g) were extracted with petroleum ether at room temperature. The concentrated petroleum extract was fractionated on silica gel column with hexane-ethyl acetate mixtures of increasing polarity as elution solvents. The fraction (355 mg) eluted was further separated and purified by silica gel chromatography to give 52.2 mg of 17-acetoxymulinic acid. Recrystallization from hexane-ethyl acetate (3:1) at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement top

There is disorder in the acetyloxymethyl fragment of both molecules of the asymmetric unit. O4 and C14 are disordered over two orientations with occupancy factors of 0.53 (2)/0.47 (2) for O4/O4' and C14/C14'. O3A, O4A, C13A, C14A are disordered over two orientations with occupancy factors of 0.612 (9)/0.388 (9) for O3A/O3", O4A/O4", C13A/C13" and C14A/C14". respectively. These six disordered atoms are refined isotropically, while all other non-hydrogen atoms are refined anisotropically. All H atoms were placed in idealized positions with d(C—H,O) = 0.99 (CH2), 0.98 (CH3), 1.00 (CH) and 0.84 Å (OH), refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C,O) for CH3 and OH and 1.2 Ueq(C) for CH2 and CH. The crystal studied was a non-merohedral twin, the ratio of the twin components being 0.28 (1): 0.72 (1)

Structure description top

The title compound (I) is know as 17-acetoxymulinic acid and was isolated from Mulinum crassifolium (Apiaceae). Mulinum crassifolium is a 15 cm small shrub, which grows in the north of Chile at altitudes above 4000 m. This plant, commonly known as chuquican, susurco or espinilla is used in the folk medicine, principally against diabetes, and bronchial (caugh) and intestinal disorders (Munizaga et al., 1958). Mulinane diterpenes exhibit antiplasmodial (Loyola et al., 2004) and anti-Tripanosomacruzi (Araya et al., 2003) activities. We have undertaken the X-ray crystal-structure determination of (I) in order to establish its molecular conformation and relative stereochemistry. We are not able to determine the absolute stereochemistry by X-ray methods and the configuration shown here was chosen to be in accord with that reported in previous chemical studies (Loyola et al., 1990). The structure consists of a mulinane skeleton, and the isopropyl, acetyloxymethyl and carboxylic groups at C3, C5A and C3A are β-oriented, respectively, whereas the endo-peroxide group is α-oriented. The molecular dimensions of the title compound are within normal ranges (Allen et al., 1987). The cyclopentane (A), cyclohexane (B) and cycloheptene (C) rings are in an envelope, chair and boat conformation, respectively [Q2 = 0.4233 (8) Å, φ2 = 176.0 (10)° for ring A (mean); QT = 0.553 (8) Å, θ = 161.3 (8)°, φ = 238 (2)° for ring B (mean); QT = 1.230 (4) Å, φ2 = 169.9 (2)°, for ring C(mean)] (Cremer & Pople, 1975), Fig.1. The A and B and B and C rings are trans and cis-fused respectively. The crystal structure and the molecular conformation is stabilized by three and eleven C—H···O hydrogen bonds respectively. The two molecules in the asymmetric unit are linked by two strong O—H···O intramolecular hydrogen bond with set graph-motif R22(8), Fig. 2. (Bernstein et al., 1995).

For related literature on Mulinane diterpenes, see: Munizaga & Gunkel (1958); Araya et al. (2003); Loyola et al. (1990, 2004). For a related structure, see: Brito et al. (2008). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond patterns, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the two molecules of (I) in the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Perspective view of the two molecules in the asymmetric unit, showing the intramolecular O—H···O hydrogen bond. H atoms bonded to C atoms have been omitted for clarity.
5a-acetoxymethyl-3-isopropyl-8-methyl-1,2,3,3a,4,5,5a,6,7,10,10a,10b- dodecahydro-7,10-endo-epidioxycyclohepta[e]indene- 3a-carboxylic acid top
Crystal data top
C22H32O6F(000) = 848
Mr = 392.48Dx = 1.258 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7317 reflections
a = 11.9171 (12) Åθ = 2.4–24.8°
b = 7.3523 (4) ŵ = 0.09 mm1
c = 23.679 (2) ÅT = 173 K
β = 92.775 (8)°Block, colourless
V = 2072.3 (3) Å30.24 × 0.22 × 0.22 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
2516 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.085
Graphite monochromatorθmax = 25.1°, θmin = 2.4°
ω scansh = 1414
12732 measured reflectionsk = 88
3948 independent reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0735P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.002
3948 reflectionsΔρmax = 0.27 e Å3
507 parametersΔρmin = 0.25 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (3)
Crystal data top
C22H32O6V = 2072.3 (3) Å3
Mr = 392.48Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.9171 (12) ŵ = 0.09 mm1
b = 7.3523 (4) ÅT = 173 K
c = 23.679 (2) Å0.24 × 0.22 × 0.22 mm
β = 92.775 (8)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2516 reflections with I > 2σ(I)
12732 measured reflectionsRint = 0.085
3948 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.137H-atom parameters constrained
S = 0.90Δρmax = 0.27 e Å3
3948 reflectionsΔρmin = 0.25 e Å3
507 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0330 (3)0.5360 (6)0.50763 (16)0.0412 (10)
O20.0844 (3)0.6426 (5)0.55530 (16)0.0410 (10)
O30.3854 (3)0.5138 (6)0.39357 (16)0.0481 (11)
O40.4564 (11)0.2699 (17)0.4403 (4)0.064 (4)*0.53 (2)
O4'0.5134 (15)0.331 (2)0.4317 (6)0.081 (6)*0.47 (2)
O50.1365 (3)0.5201 (5)0.29474 (17)0.0449 (11)
O60.1908 (3)0.7900 (6)0.26552 (17)0.0437 (11)
H60.22320.72510.24210.052*
C10.0445 (5)0.5462 (8)0.3769 (2)0.0380 (14)
H1A0.09670.52560.40750.046*
H1B0.01950.42680.36290.046*
C20.1020 (5)0.6568 (9)0.3288 (3)0.0426 (15)
H2A0.18190.67800.33650.051*
H2B0.09870.59000.29260.051*
C30.0393 (4)0.8399 (8)0.3252 (2)0.0343 (13)
H30.07110.92220.35400.041*
C3A0.0828 (4)0.7869 (8)0.3480 (2)0.0320 (13)
C40.1570 (5)0.9381 (8)0.3734 (2)0.0380 (14)
H4A0.11601.00520.40220.046*
H4B0.17651.02500.34350.046*
C50.2653 (4)0.8535 (8)0.4009 (2)0.0365 (13)
H5A0.30910.95250.41980.044*
H5B0.31070.80650.37010.044*
C5A0.2531 (5)0.6980 (8)0.4445 (2)0.0354 (14)
C60.2356 (5)0.7812 (8)0.5026 (2)0.0335 (13)
H6C0.17560.87390.49780.040*
H6D0.30550.84640.51460.040*
C70.2048 (5)0.6554 (9)0.5519 (2)0.0385 (14)
H70.23400.71530.58760.046*
C80.2514 (5)0.4650 (9)0.5526 (3)0.0417 (15)
C90.2025 (5)0.3582 (8)0.5131 (2)0.0384 (14)
H90.22370.23440.50950.058*
C10A0.1563 (4)0.5629 (8)0.4263 (2)0.0346 (14)
H10A0.18670.47930.39750.042*
C10B0.0552 (4)0.6587 (8)0.3982 (2)0.0324 (13)
H10B0.02590.74030.42780.039*
C100.1127 (5)0.4408 (8)0.4747 (2)0.0376 (14)
H100.07120.33740.45590.045*
C110.3453 (5)0.4133 (10)0.5925 (3)0.0508 (17)
H11A0.36170.28360.58830.076*
H11B0.32420.43740.63130.076*
H11C0.41200.48480.58450.076*
C120.3707 (4)0.6057 (9)0.4477 (2)0.0379 (14)
H12A0.43020.69820.45450.045*
H12B0.37560.51650.47900.045*
C130.4386 (7)0.3625 (11)0.3940 (3)0.065 (2)
C140.4594 (15)0.290 (2)0.3359 (6)0.049 (4)*0.53 (2)
H14A0.49970.17390.33940.073*0.53 (2)
H14B0.50470.37740.31570.073*0.53 (2)
H14C0.38740.27110.31500.073*0.53 (2)
C14'0.4201 (16)0.260 (2)0.3396 (6)0.043 (4)*0.47 (2)
H14D0.46200.14500.34190.064*0.47 (2)
H14E0.44650.33290.30830.064*0.47 (2)
H14F0.33990.23400.33310.064*0.47 (2)
C150.1416 (5)0.6869 (8)0.3009 (2)0.0345 (13)
C170.0562 (5)0.9350 (9)0.2681 (2)0.0400 (14)
H170.02420.85490.23880.048*
C180.0010 (6)1.1199 (9)0.2651 (3)0.0520 (17)
H18A0.01271.17170.22730.078*
H18B0.08211.10540.27290.078*
H18C0.02941.20160.29330.078*
C190.1820 (5)0.9598 (12)0.2528 (3)0.065 (2)
H19A0.19141.02060.21600.098*
H19B0.21621.03400.28170.098*
H19C0.21870.84050.25070.098*
O1A0.5412 (3)0.5914 (5)0.01076 (16)0.0380 (10)
O2A0.6361 (3)0.4646 (5)0.00595 (17)0.0423 (10)
O3A0.5649 (5)0.5736 (11)0.2327 (3)0.0378 (19)*0.612 (9)
O3"0.5776 (9)0.6638 (19)0.2175 (5)0.041 (3)*0.388 (9)
O4A0.5833 (6)0.8545 (12)0.2002 (3)0.064 (3)*0.612 (9)
O4"0.6087 (9)0.5455 (18)0.3025 (5)0.058 (4)*0.388 (9)
O5A0.2604 (3)0.6085 (5)0.17374 (17)0.0436 (11)
O6A0.2480 (3)0.3393 (6)0.21618 (16)0.0408 (10)
H6A0.20090.39450.23510.049*
C1A0.2944 (4)0.5789 (7)0.0507 (2)0.0322 (13)
H1A10.31590.59980.01130.039*
H1A20.28680.69810.06960.039*
C2A0.1831 (4)0.4711 (8)0.0514 (2)0.0348 (13)
H2A10.15350.44650.01240.042*
H2A20.12610.54050.07150.042*
C3B0.2116 (4)0.2898 (7)0.0829 (2)0.0292 (12)
H3B0.23870.20360.05390.035*
C3C0.3159 (4)0.3388 (7)0.1226 (2)0.0283 (12)
C4A0.3948 (4)0.1871 (8)0.1412 (2)0.0328 (13)
H4A10.41750.11770.10780.039*
H4A20.35620.10280.16640.039*
C5B0.4995 (4)0.2683 (8)0.1726 (2)0.0357 (14)
H5B10.55220.16720.18180.043*
H5B20.47570.31850.20900.043*
C5C0.5658 (4)0.4192 (8)0.1425 (2)0.0306 (13)
C6A0.6466 (4)0.3295 (8)0.1010 (2)0.0350 (14)
H6A10.70640.26670.12400.042*
H6A20.60360.23450.07960.042*
C7A0.7043 (5)0.4492 (8)0.0577 (2)0.0384 (14)
H7A0.77470.38460.04810.046*
C8A0.7384 (4)0.6337 (8)0.0780 (2)0.0378 (14)
C9A0.6526 (5)0.7514 (9)0.0810 (2)0.0395 (15)
H9A0.66420.87390.09260.059*
C10C0.5386 (4)0.6802 (8)0.0652 (2)0.0329 (13)
H10C0.48840.78850.05990.039*
C10D0.4843 (4)0.5564 (8)0.1100 (2)0.0296 (12)
H10D0.45540.64010.13930.035*
C10E0.3815 (4)0.4619 (8)0.0825 (2)0.0302 (12)
H10E0.41150.37810.05360.036*
C11A0.8593 (5)0.6750 (10)0.0944 (3)0.0508 (16)
H11D0.86570.80080.10790.076*
H11E0.90510.65920.06150.076*
H11F0.88580.59200.12460.076*
C12A0.6384 (4)0.5102 (9)0.1902 (2)0.0384 (14)
H12C0.69300.42160.20700.046*
H12D0.68060.61360.17490.046*
C13A0.5438 (10)0.7518 (19)0.2333 (5)0.056 (3)*0.612 (9)
C13"0.5646 (12)0.659 (2)0.2753 (7)0.040 (4)*0.388 (9)
C14A0.4736 (11)0.819 (2)0.2780 (6)0.051 (4)*0.612 (9)
H14G0.44530.71510.29920.076*0.612 (9)
H14H0.41020.88760.26110.076*0.612 (9)
H14I0.51850.89750.30370.076*0.612 (9)
C14"0.4819 (19)0.771 (3)0.2932 (10)0.059 (7)*0.388 (9)
H14J0.45920.85550.26280.089*0.388 (9)
H14K0.51030.83940.32640.089*0.388 (9)
H14L0.41700.69770.30320.089*0.388 (9)
C15A0.2741 (4)0.4393 (8)0.1734 (2)0.0292 (12)
C17A0.1088 (5)0.1993 (8)0.1083 (2)0.0371 (14)
H17A0.08220.28070.13870.044*
C18A0.1343 (5)0.0147 (8)0.1342 (3)0.0476 (16)
H18D0.06620.03450.15020.071*
H18E0.19330.02710.16430.071*
H18F0.15980.06810.10510.071*
C19A0.0123 (5)0.1781 (10)0.0630 (3)0.0506 (17)
H19D0.00470.29660.04570.076*
H19E0.05460.13150.08070.076*
H19F0.03490.09280.03390.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.043 (2)0.048 (2)0.033 (2)0.000 (2)0.0080 (18)0.003 (2)
O20.046 (2)0.039 (2)0.040 (2)0.0040 (19)0.0085 (18)0.002 (2)
O30.062 (3)0.050 (3)0.034 (2)0.017 (2)0.0125 (19)0.001 (2)
O50.066 (3)0.030 (3)0.040 (2)0.008 (2)0.016 (2)0.008 (2)
O60.054 (2)0.039 (2)0.040 (2)0.005 (2)0.022 (2)0.005 (2)
C10.045 (3)0.035 (3)0.035 (3)0.008 (3)0.008 (3)0.004 (3)
C20.039 (3)0.046 (4)0.043 (3)0.002 (3)0.003 (3)0.001 (3)
C30.041 (3)0.033 (3)0.030 (3)0.000 (3)0.008 (2)0.002 (3)
C3A0.038 (3)0.028 (3)0.030 (3)0.004 (2)0.008 (2)0.002 (3)
C40.050 (3)0.028 (3)0.037 (3)0.010 (3)0.009 (3)0.000 (3)
C50.039 (3)0.035 (3)0.036 (3)0.007 (3)0.005 (3)0.002 (3)
C5A0.045 (3)0.027 (3)0.035 (3)0.003 (3)0.012 (3)0.009 (3)
C60.038 (3)0.028 (3)0.035 (3)0.001 (2)0.009 (2)0.001 (3)
C70.042 (3)0.038 (3)0.035 (3)0.002 (3)0.002 (3)0.002 (3)
C80.044 (3)0.040 (4)0.042 (3)0.000 (3)0.012 (3)0.002 (3)
C90.050 (3)0.027 (3)0.040 (3)0.000 (3)0.013 (3)0.007 (3)
C10A0.045 (3)0.027 (3)0.033 (3)0.010 (3)0.014 (3)0.004 (3)
C10B0.041 (3)0.031 (3)0.026 (3)0.006 (3)0.010 (2)0.007 (3)
C100.048 (3)0.027 (3)0.039 (3)0.003 (3)0.006 (3)0.004 (3)
C110.055 (4)0.050 (4)0.048 (4)0.008 (3)0.005 (3)0.010 (3)
C120.040 (3)0.042 (4)0.033 (3)0.003 (3)0.013 (2)0.003 (3)
C130.097 (6)0.049 (5)0.047 (4)0.027 (4)0.012 (4)0.013 (4)
C150.041 (3)0.034 (4)0.028 (3)0.007 (3)0.008 (2)0.006 (3)
C170.050 (3)0.039 (3)0.031 (3)0.006 (3)0.006 (3)0.003 (3)
C180.073 (4)0.037 (4)0.047 (4)0.006 (3)0.012 (3)0.010 (3)
C190.055 (4)0.079 (6)0.061 (4)0.004 (4)0.002 (3)0.016 (4)
O1A0.039 (2)0.039 (2)0.037 (2)0.0012 (18)0.0062 (17)0.001 (2)
O2A0.052 (2)0.034 (2)0.041 (2)0.0058 (19)0.0062 (19)0.009 (2)
O5A0.058 (3)0.032 (2)0.042 (2)0.005 (2)0.017 (2)0.002 (2)
O6A0.059 (2)0.039 (2)0.026 (2)0.002 (2)0.0114 (18)0.0011 (19)
C1A0.035 (3)0.030 (3)0.032 (3)0.003 (2)0.002 (2)0.005 (3)
C2A0.035 (3)0.037 (3)0.033 (3)0.003 (2)0.003 (2)0.008 (3)
C3B0.037 (3)0.026 (3)0.025 (3)0.003 (2)0.007 (2)0.002 (2)
C3C0.036 (3)0.024 (3)0.025 (3)0.006 (2)0.004 (2)0.001 (2)
C4A0.032 (3)0.036 (3)0.030 (3)0.002 (2)0.001 (2)0.008 (3)
C5B0.040 (3)0.035 (3)0.032 (3)0.003 (3)0.002 (2)0.011 (3)
C5C0.032 (3)0.033 (3)0.027 (3)0.004 (2)0.005 (2)0.003 (3)
C6A0.039 (3)0.031 (3)0.035 (3)0.003 (3)0.006 (3)0.004 (3)
C7A0.040 (3)0.035 (3)0.041 (3)0.000 (3)0.012 (3)0.003 (3)
C8A0.036 (3)0.039 (4)0.039 (3)0.004 (3)0.008 (3)0.000 (3)
C9A0.042 (3)0.037 (3)0.040 (3)0.005 (3)0.009 (3)0.004 (3)
C10C0.039 (3)0.031 (3)0.030 (3)0.001 (2)0.009 (2)0.000 (3)
C10D0.028 (3)0.029 (3)0.032 (3)0.002 (2)0.003 (2)0.002 (3)
C10E0.036 (3)0.028 (3)0.026 (3)0.001 (2)0.001 (2)0.003 (3)
C11A0.043 (3)0.049 (4)0.060 (4)0.005 (3)0.001 (3)0.009 (4)
C12A0.040 (3)0.042 (4)0.033 (3)0.007 (3)0.001 (3)0.006 (3)
C15A0.030 (3)0.029 (3)0.029 (3)0.001 (2)0.001 (2)0.000 (3)
C17A0.045 (3)0.032 (3)0.035 (3)0.005 (3)0.012 (3)0.003 (3)
C18A0.055 (4)0.030 (3)0.059 (4)0.007 (3)0.009 (3)0.010 (3)
C19A0.040 (3)0.058 (4)0.053 (4)0.016 (3)0.006 (3)0.010 (4)
Geometric parameters (Å, º) top
O1—C101.440 (6)O1A—O2A1.474 (5)
O1—O21.482 (6)O2A—C7A1.443 (7)
O2—C71.444 (6)O3A—C13A1.334 (16)
O3—C131.280 (8)O3A—C12A1.443 (8)
O3—C121.466 (7)O3"—C13"1.385 (19)
O4—C131.300 (13)O3"—C12A1.504 (14)
O4'—C131.252 (15)O4A—C13A1.200 (13)
O5—C151.236 (7)O4"—C13"1.162 (19)
O6—C151.291 (6)O5A—C15A1.255 (7)
O6—H60.8400O6A—C15A1.301 (6)
C1—C10B1.514 (8)O6A—H6A0.8400
C1—C21.535 (8)C1A—C10E1.520 (7)
C1—H1A0.9900C1A—C2A1.546 (7)
C1—H1B0.9900C1A—H1A10.9900
C2—C31.544 (8)C1A—H1A20.9900
C2—H2A0.9900C2A—C3B1.556 (8)
C2—H2B0.9900C2A—H2A10.9900
C3—C171.525 (8)C2A—H2A20.9900
C3—C3A1.577 (8)C3B—C17A1.542 (7)
C3—H31.0000C3B—C3C1.564 (8)
C3A—C41.526 (8)C3B—H3B1.0000
C3A—C151.533 (7)C3C—C4A1.510 (7)
C3A—C10B1.564 (8)C3C—C15A1.517 (7)
C4—C51.548 (9)C3C—C10E1.550 (7)
C4—H4A0.9900C4A—C5B1.543 (8)
C4—H4B0.9900C4A—H4A10.9900
C5—C5A1.553 (8)C4A—H4A20.9900
C5—H5A0.9900C5B—C5C1.555 (7)
C5—H5B0.9900C5B—H5B10.9900
C5A—C61.529 (7)C5B—H5B20.9900
C5A—C121.555 (8)C5C—C12A1.542 (8)
C5A—C10A1.567 (8)C5C—C6A1.556 (7)
C6—C71.548 (8)C5C—C10D1.575 (8)
C6—H6C0.9900C6A—C7A1.538 (8)
C6—H6D0.9900C6A—H6A10.9900
C7—C81.505 (9)C6A—H6A20.9900
C7—H71.0000C7A—C8A1.489 (8)
C8—C91.332 (9)C7A—H7A1.0000
C8—C111.480 (9)C8A—C9A1.344 (8)
C9—C101.499 (8)C8A—C11A1.506 (8)
C9—H90.9500C9A—C10C1.486 (8)
C10A—C10B1.521 (8)C9A—H9A0.9500
C10A—C101.563 (7)C10C—C10D1.562 (7)
C10A—H10A1.0000C10C—H10C1.0000
C10B—H10B1.0000C10D—C10E1.526 (8)
C10—H101.0000C10D—H10D1.0000
C11—H11A0.9800C10E—H10E1.0000
C11—H11B0.9800C11A—H11D0.9800
C11—H11C0.9800C11A—H11E0.9800
C12—H12A0.9900C11A—H11F0.9800
C12—H12B0.9900C12A—H12C0.9900
C13—C141.507 (15)C12A—H12D0.9900
C13—C14'1.501 (16)C13A—C14A1.466 (18)
C14—H14A0.9800C13"—C14"1.37 (3)
C14—H14B0.9800C14A—H14G0.9800
C14—H14C0.9800C14A—H14H0.9800
C14'—H14D0.9800C14A—H14I0.9800
C14'—H14E0.9800C14"—H14J0.9800
C14'—H14F0.9800C14"—H14K0.9800
C17—C181.524 (9)C14"—H14L0.9800
C17—C191.536 (9)C17A—C18A1.514 (8)
C17—H171.0000C17A—C19A1.542 (9)
C18—H18A0.9800C17A—H17A1.0000
C18—H18B0.9800C18A—H18D0.9800
C18—H18C0.9800C18A—H18E0.9800
C19—H19A0.9800C18A—H18F0.9800
C19—H19B0.9800C19A—H19D0.9800
C19—H19C0.9800C19A—H19E0.9800
O1A—C10C1.447 (6)C19A—H19F0.9800
C10—O1—O2114.3 (4)C7A—O2A—O1A112.8 (4)
C7—O2—O1111.6 (3)C13A—O3A—C12A116.5 (8)
C13—O3—C12118.3 (5)C13"—O3"—C12A118.9 (12)
C15—O6—H6109.5C15A—O6A—H6A109.5
C10B—C1—C2105.8 (5)C10E—C1A—C2A105.6 (4)
C10B—C1—H1A110.6C10E—C1A—H1A1110.6
C2—C1—H1A110.6C2A—C1A—H1A1110.6
C10B—C1—H1B110.6C10E—C1A—H1A2110.6
C2—C1—H1B110.6C2A—C1A—H1A2110.6
H1A—C1—H1B108.7H1A1—C1A—H1A2108.7
C1—C2—C3107.7 (5)C1A—C2A—C3B106.1 (4)
C1—C2—H2A110.2C1A—C2A—H2A1110.5
C3—C2—H2A110.2C3B—C2A—H2A1110.5
C1—C2—H2B110.2C1A—C2A—H2A2110.5
C3—C2—H2B110.2C3B—C2A—H2A2110.5
H2A—C2—H2B108.5H2A1—C2A—H2A2108.7
C17—C3—C2113.9 (5)C17A—C3B—C2A113.5 (4)
C17—C3—C3A119.8 (4)C17A—C3B—C3C119.2 (4)
C2—C3—C3A101.9 (4)C2A—C3B—C3C103.8 (4)
C17—C3—H3106.8C17A—C3B—H3B106.5
C2—C3—H3106.8C2A—C3B—H3B106.5
C3A—C3—H3106.8C3C—C3B—H3B106.5
C4—C3A—C15111.1 (4)C4A—C3C—C15A110.6 (4)
C4—C3A—C10B106.1 (5)C4A—C3C—C10E106.5 (4)
C15—C3A—C10B112.6 (5)C15A—C3C—C10E113.4 (5)
C4—C3A—C3117.5 (5)C4A—C3C—C3B118.1 (5)
C15—C3A—C3108.5 (5)C15A—C3C—C3B107.9 (4)
C10B—C3A—C3100.7 (4)C10E—C3C—C3B100.1 (4)
C3A—C4—C5109.2 (5)C3C—C4A—C5B109.4 (5)
C3A—C4—H4A109.8C3C—C4A—H4A1109.8
C5—C4—H4A109.8C5B—C4A—H4A1109.8
C3A—C4—H4B109.8C3C—C4A—H4A2109.8
C5—C4—H4B109.8C5B—C4A—H4A2109.8
H4A—C4—H4B108.3H4A1—C4A—H4A2108.2
C4—C5—C5A118.2 (4)C4A—C5B—C5C118.2 (5)
C4—C5—H5A107.8C4A—C5B—H5B1107.8
C5A—C5—H5A107.8C5C—C5B—H5B1107.8
C4—C5—H5B107.8C4A—C5B—H5B2107.8
C5A—C5—H5B107.8C5C—C5B—H5B2107.8
H5A—C5—H5B107.1H5B1—C5B—H5B2107.1
C6—C5A—C12107.1 (5)C12A—C5C—C5B104.7 (4)
C6—C5A—C5109.0 (4)C12A—C5C—C6A107.7 (4)
C12—C5A—C5103.9 (4)C5B—C5C—C6A109.4 (4)
C6—C5A—C10A111.7 (4)C12A—C5C—C10D113.0 (5)
C12—C5A—C10A112.7 (4)C5B—C5C—C10D111.5 (4)
C5—C5A—C10A112.0 (5)C6A—C5C—C10D110.4 (4)
C5A—C6—C7119.2 (5)C7A—C6A—C5C119.3 (5)
C5A—C6—H6C107.5C7A—C6A—H6A1107.5
C7—C6—H6C107.5C5C—C6A—H6A1107.5
C5A—C6—H6D107.5C7A—C6A—H6A2107.5
C7—C6—H6D107.5C5C—C6A—H6A2107.5
H6C—C6—H6D107.0H6A1—C6A—H6A2107.0
O2—C7—C8107.8 (5)O2A—C7A—C8A109.6 (5)
O2—C7—C6110.7 (5)O2A—C7A—C6A111.0 (5)
C8—C7—C6117.5 (4)C8A—C7A—C6A115.5 (5)
O2—C7—H7106.7O2A—C7A—H7A106.7
C8—C7—H7106.7C8A—C7A—H7A106.7
C6—C7—H7106.7C6A—C7A—H7A106.7
C9—C8—C11126.0 (6)C9A—C8A—C7A114.0 (5)
C9—C8—C7113.1 (6)C9A—C8A—C11A125.3 (6)
C11—C8—C7120.8 (6)C7A—C8A—C11A120.7 (5)
C8—C9—C10117.5 (6)C8A—C9A—C10C116.6 (6)
C8—C9—H9121.2C8A—C9A—H9A121.7
C10—C9—H9121.2C10C—C9A—H9A121.7
C10B—C10A—C10107.6 (4)O1A—C10C—C9A108.9 (4)
C10B—C10A—C5A112.6 (5)O1A—C10C—C10D111.7 (4)
C10—C10A—C5A115.4 (5)C9A—C10C—C10D116.0 (5)
C10B—C10A—H10A106.9O1A—C10C—H10C106.5
C10—C10A—H10A106.9C9A—C10C—H10C106.5
C5A—C10A—H10A106.9C10D—C10C—H10C106.5
C1—C10B—C10A119.0 (5)C10E—C10D—C10C109.0 (4)
C1—C10B—C3A105.5 (5)C10E—C10D—C5C112.3 (5)
C10A—C10B—C3A114.9 (4)C10C—C10D—C5C116.0 (4)
C1—C10B—H10B105.4C10E—C10D—H10D106.3
C10A—C10B—H10B105.4C10C—C10D—H10D106.3
C3A—C10B—H10B105.4C5C—C10D—H10D106.3
O1—C10—C9109.7 (4)C10D—C10E—C1A117.9 (5)
O1—C10—C10A111.7 (5)C10D—C10E—C3C115.0 (4)
C9—C10—C10A115.1 (4)C1A—C10E—C3C106.3 (4)
O1—C10—H10106.6C10D—C10E—H10E105.5
C9—C10—H10106.6C1A—C10E—H10E105.5
C10A—C10—H10106.6C3C—C10E—H10E105.5
C8—C11—H11A109.5C8A—C11A—H11D109.5
C8—C11—H11B109.5C8A—C11A—H11E109.5
H11A—C11—H11B109.5H11D—C11A—H11E109.5
C8—C11—H11C109.5C8A—C11A—H11F109.5
H11A—C11—H11C109.5H11D—C11A—H11F109.5
H11B—C11—H11C109.5H11E—C11A—H11F109.5
O3—C12—C5A107.8 (5)O3A—C12A—O3"30.3 (4)
O3—C12—H12A110.2O3A—C12A—C5C108.2 (4)
C5A—C12—H12A110.2O3"—C12A—C5C112.1 (6)
O3—C12—H12B110.2O3A—C12A—H12C110.1
C5A—C12—H12B110.2O3"—C12A—H12C130.0
H12A—C12—H12B108.5C5C—C12A—H12C110.1
O4'—C13—O3120.2 (9)O3A—C12A—H12D110.1
O4'—C13—O438.7 (7)O3"—C12A—H12D81.0
O3—C13—O4121.5 (7)C5C—C12A—H12D110.1
O4'—C13—C14116.2 (9)H12C—C12A—H12D108.4
O3—C13—C14113.8 (8)O4A—C13A—O3A122.1 (11)
O4—C13—C14123.9 (9)O4A—C13A—C14A121.1 (13)
O4'—C13—C14'126.0 (10)O3A—C13A—C14A116.8 (11)
O3—C13—C14'112.2 (8)O4"—C13"—O3"119.9 (14)
O4—C13—C14'118.1 (9)O4"—C13"—C14"125.0 (16)
C14—C13—C14'20.3 (7)O3"—C13"—C14"114.0 (16)
C13—C14—H14A109.5C13A—C14A—H14G109.5
C13—C14—H14B109.5C13A—C14A—H14H109.5
H14A—C14—H14B109.5H14G—C14A—H14H109.5
C13—C14—H14C109.5C13A—C14A—H14I109.5
H14A—C14—H14C109.5H14G—C14A—H14I109.5
H14B—C14—H14C109.5H14H—C14A—H14I109.5
C13—C14'—H14D109.5C13"—C14"—H14J109.5
C13—C14'—H14E109.5C13"—C14"—H14K109.5
H14D—C14'—H14E109.5H14J—C14"—H14K109.5
C13—C14'—H14F109.5C13"—C14"—H14L109.5
H14D—C14'—H14F109.5H14J—C14"—H14L109.5
H14E—C14'—H14F109.5H14K—C14"—H14L109.5
O5—C15—O6121.8 (5)O5A—C15A—O6A121.3 (5)
O5—C15—C3A122.7 (5)O5A—C15A—C3C122.4 (5)
O6—C15—C3A115.4 (5)O6A—C15A—C3C116.3 (5)
C3—C17—C18114.2 (5)C18A—C17A—C3B113.5 (5)
C3—C17—C19110.5 (4)C18A—C17A—C19A108.6 (5)
C18—C17—C19108.5 (6)C3B—C17A—C19A110.6 (4)
C3—C17—H17107.8C18A—C17A—H17A108.0
C18—C17—H17107.8C3B—C17A—H17A108.0
C19—C17—H17107.8C19A—C17A—H17A108.0
C17—C18—H18A109.5C17A—C18A—H18D109.5
C17—C18—H18B109.5C17A—C18A—H18E109.5
H18A—C18—H18B109.5H18D—C18A—H18E109.5
C17—C18—H18C109.5C17A—C18A—H18F109.5
H18A—C18—H18C109.5H18D—C18A—H18F109.5
H18B—C18—H18C109.5H18E—C18A—H18F109.5
C17—C19—H19A109.5C17A—C19A—H19D109.5
C17—C19—H19B109.5C17A—C19A—H19E109.5
H19A—C19—H19B109.5H19D—C19A—H19E109.5
C17—C19—H19C109.5C17A—C19A—H19F109.5
H19A—C19—H19C109.5H19D—C19A—H19F109.5
H19B—C19—H19C109.5H19E—C19A—H19F109.5
C10C—O1A—O2A113.8 (4)
C10—O1—O2—C710.9 (5)C1A—C2A—C3B—C3C26.5 (5)
C10B—C1—C2—C33.8 (6)C17A—C3B—C3C—C4A77.4 (6)
C1—C2—C3—C17158.9 (4)C2A—C3B—C3C—C4A155.2 (4)
C1—C2—C3—C3A28.4 (5)C17A—C3B—C3C—C15A48.8 (6)
C17—C3—C3A—C477.6 (6)C2A—C3B—C3C—C15A78.6 (5)
C2—C3—C3A—C4155.7 (4)C17A—C3B—C3C—C10E167.5 (5)
C17—C3—C3A—C1549.4 (7)C2A—C3B—C3C—C10E40.2 (5)
C2—C3—C3A—C1577.3 (5)C15A—C3C—C4A—C5B63.1 (5)
C17—C3—C3A—C10B167.7 (5)C10E—C3C—C4A—C5B60.5 (5)
C2—C3—C3A—C10B41.0 (5)C3B—C3C—C4A—C5B172.0 (4)
C15—C3A—C4—C562.5 (6)C3C—C4A—C5B—C5C53.5 (6)
C10B—C3A—C4—C560.2 (5)C4A—C5B—C5C—C12A162.7 (5)
C3—C3A—C4—C5171.8 (4)C4A—C5B—C5C—C6A82.1 (6)
C3A—C4—C5—C5A53.1 (6)C4A—C5B—C5C—C10D40.2 (6)
C4—C5—C5A—C684.2 (6)C12A—C5C—C6A—C7A78.7 (6)
C4—C5—C5A—C12161.9 (5)C5B—C5C—C6A—C7A168.1 (5)
C4—C5—C5A—C10A40.0 (6)C10D—C5C—C6A—C7A45.1 (7)
C12—C5A—C6—C776.6 (6)O1A—O2A—C7A—C8A52.1 (5)
C5—C5A—C6—C7171.6 (5)O1A—O2A—C7A—C6A76.7 (5)
C10A—C5A—C6—C747.3 (7)C5C—C6A—C7A—O2A89.1 (6)
O1—O2—C7—C858.8 (5)C5C—C6A—C7A—C8A36.5 (7)
O1—O2—C7—C671.0 (5)O2A—C7A—C8A—C9A51.0 (6)
C5A—C6—C7—O292.1 (6)C6A—C7A—C8A—C9A75.4 (7)
C5A—C6—C7—C832.3 (8)O2A—C7A—C8A—C11A130.5 (5)
O2—C7—C8—C953.4 (6)C6A—C7A—C8A—C11A103.2 (6)
C6—C7—C8—C972.5 (6)C7A—C8A—C9A—C10C1.3 (7)
O2—C7—C8—C11128.9 (5)C11A—C8A—C9A—C10C177.1 (6)
C6—C7—C8—C11105.2 (6)O2A—O1A—C10C—C9A47.6 (6)
C11—C8—C9—C10176.6 (5)O2A—O1A—C10C—C10D81.8 (5)
C7—C8—C9—C100.9 (7)C8A—C9A—C10C—O1A51.0 (7)
C6—C5A—C10A—C10B85.2 (6)C8A—C9A—C10C—C10D76.0 (6)
C12—C5A—C10A—C10B154.2 (4)O1A—C10C—C10D—C10E41.8 (6)
C5—C5A—C10A—C10B37.5 (6)C9A—C10C—C10D—C10E167.4 (5)
C6—C5A—C10A—C1039.0 (7)O1A—C10C—C10D—C5C86.2 (6)
C12—C5A—C10A—C1081.7 (5)C9A—C10C—C10D—C5C39.4 (7)
C5—C5A—C10A—C10161.6 (4)C12A—C5C—C10D—C10E155.1 (4)
C2—C1—C10B—C10A153.8 (4)C5B—C5C—C10D—C10E37.5 (6)
C2—C1—C10B—C3A22.9 (5)C6A—C5C—C10D—C10E84.2 (5)
C10—C10A—C10B—C153.1 (6)C12A—C5C—C10D—C10C78.6 (5)
C5A—C10A—C10B—C1178.6 (4)C5B—C5C—C10D—C10C163.8 (4)
C10—C10A—C10B—C3A179.5 (4)C6A—C5C—C10D—C10C42.1 (6)
C5A—C10A—C10B—C3A52.2 (6)C10C—C10D—C10E—C1A51.2 (6)
C4—C3A—C10B—C1163.0 (4)C5C—C10D—C10E—C1A178.8 (4)
C15—C3A—C10B—C175.2 (6)C10C—C10D—C10E—C3C178.0 (4)
C3—C3A—C10B—C140.0 (5)C5C—C10D—C10E—C3C52.0 (6)
C4—C3A—C10B—C10A63.8 (6)C2A—C1A—C10E—C10D155.3 (4)
C15—C3A—C10B—C10A57.9 (6)C2A—C1A—C10E—C3C24.5 (5)
C3—C3A—C10B—C10A173.2 (5)C4A—C3C—C10E—C10D63.8 (6)
O2—O1—C10—C941.4 (6)C15A—C3C—C10E—C10D58.1 (6)
O2—O1—C10—C10A87.5 (5)C3B—C3C—C10E—C10D172.7 (4)
C8—C9—C10—O149.3 (6)C4A—C3C—C10E—C1A163.7 (4)
C8—C9—C10—C10A77.7 (6)C15A—C3C—C10E—C1A74.4 (5)
C10B—C10A—C10—O144.8 (6)C3B—C3C—C10E—C1A40.2 (5)
C5A—C10A—C10—O181.8 (6)C13A—O3A—C12A—O3"0.6 (11)
C10B—C10A—C10—C9170.8 (5)C13A—O3A—C12A—C5C103.2 (9)
C5A—C10A—C10—C944.2 (7)C13"—O3"—C12A—O3A34.6 (10)
C13—O3—C12—C5A144.2 (6)C13"—O3"—C12A—C5C123.2 (11)
C6—C5A—C12—O3175.9 (4)C5B—C5C—C12A—O3A56.5 (6)
C5—C5A—C12—O368.8 (5)C6A—C5C—C12A—O3A172.8 (5)
C10A—C5A—C12—O352.7 (6)C10D—C5C—C12A—O3A65.0 (6)
C12—O3—C13—O4'29.3 (14)C5B—C5C—C12A—O3"88.6 (7)
C12—O3—C13—O416.1 (12)C6A—C5C—C12A—O3"155.1 (6)
C12—O3—C13—C14173.9 (10)C10D—C5C—C12A—O3"32.9 (7)
C12—O3—C13—C14'164.1 (10)C12A—O3A—C13A—O4A0.2 (16)
C4—C3A—C15—O5139.8 (6)C12A—O3A—C13A—C14A177.1 (9)
C10B—C3A—C15—O520.9 (8)C12A—O3"—C13"—O4"7 (2)
C3—C3A—C15—O589.6 (7)C12A—O3"—C13"—C14"161.5 (14)
C4—C3A—C15—O644.8 (7)C4A—C3C—C15A—O5A141.8 (5)
C10B—C3A—C15—O6163.7 (5)C10E—C3C—C15A—O5A22.2 (7)
C3—C3A—C15—O685.9 (6)C3B—C3C—C15A—O5A87.7 (6)
C2—C3—C17—C18177.3 (5)C4A—C3C—C15A—O6A41.2 (6)
C3A—C3—C17—C1861.7 (7)C10E—C3C—C15A—O6A160.8 (5)
C2—C3—C17—C1954.7 (7)C3B—C3C—C15A—O6A89.3 (5)
C3A—C3—C17—C19175.7 (6)C2A—C3B—C17A—C18A174.7 (5)
C10C—O1A—O2A—C7A2.6 (5)C3C—C3B—C17A—C18A62.5 (7)
C10E—C1A—C2A—C3B1.5 (5)C2A—C3B—C17A—C19A52.4 (6)
C1A—C2A—C3B—C17A157.3 (4)C3C—C3B—C17A—C19A175.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O5A0.841.902.714 (5)162
O6A—H6A···O50.841.882.690 (5)161
C1A—H1A2···O5A0.992.592.972 (9)103
C5—H5B···O30.992.392.893 (10)110
C5B—H5B1···O4Ai0.992.373.257 (14)149
C5B—H5B2···O3A0.992.222.751 (13)112
C10—H10···O2ii1.002.343.259 (9)152
C10A—H10A···O31.002.392.894 (6)111
C10A—H10A···O51.002.503.134 (9)121
C10B—H10B···O11.002.412.763 (9)100
C10C—H10C···O2Aiii1.002.463.350 (8)147
C10D—H10D···O3A1.002.563.016 (12)107
C10D—H10D···O5A1.002.513.151 (8)122
C12—H12B···O40.992.282.691 (17)103
C12A—H12D···O4A0.992.212.623 (14)103
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1; (iii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC22H32O6
Mr392.48
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)11.9171 (12), 7.3523 (4), 23.679 (2)
β (°) 92.775 (8)
V3)2072.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.22
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12732, 3948, 2516
Rint0.085
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.137, 0.90
No. of reflections3948
No. of parameters507
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O5A0.841.902.714 (5)162.1
O6A—H6A···O50.841.882.690 (5)160.9
C1A—H1A2···O5A0.992.592.972 (9)103
C5—H5B···O30.992.392.893 (10)110
C5B—H5B1···O4Ai0.992.373.257 (14)149
C5B—H5B2···O3A0.992.222.751 (13)112
C10—H10···O2ii1.002.343.259 (9)152
C10A—H10A···O31.002.392.894 (6)111
C10A—H10A···O51.002.503.134 (9)121
C10B—H10B···O11.002.412.763 (9)100
C10C—H10C···O2Aiii1.002.463.350 (8)147
C10D—H10D···O3A1.002.563.016 (12)107
C10D—H10D···O5A1.002.513.151 (8)122
C12—H12B···O40.992.282.691 (17)103
C12A—H12D···O4A0.992.212.623 (14)103
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1; (iii) x+1, y+1/2, z.
 

Acknowledgements

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JB and LMP-R thank the Programa de Cooperación Científica Inter­nacional CONACYT/CONICYT (grant 2008–118).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAraya, J. E., Neira, I., da Silva, S., Mortara, R. A., Manque, P., Cordero, E., Sagua, H., Loyola, A., Bórquez, J., Morales, G. & González, J. (2003). Mem. Inst. Oswaldo Cruz Rio de Janeiro, 98, 413–418.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrito, I., Bórquez, J., Loyola, L. A., Cárdenas, A. & López-Rodríguez, M. (2008). Acta Cryst. E64, o1209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationLoyola, L. A., Bórquez, J., Morales, G., San-Martín, A., Darias, J., Flores, N. & Giménez, A. (2004). Phytochemistry, 65, 1931–1935.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoyola, L. A., Morales, G., Perales, A. & Rodríguez, B. (1990). Tetrahedron, 46, 5413–5420.  CSD CrossRef CAS Web of Science Google Scholar
First citationMunizaga, C. & Gunkel, H. (1958). Notas etnobotánicas del pueblo de Socaire. Publicación No. 5. Universidad de Chile.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds