metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[{2-[(2-hy­dr­oxy­eth­yl)imino­meth­yl]-6-meth­­oxy­phenolato}copper(II)]-μ-thio­cyanato]

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan, Henan 467000, People's Republic of China
*Correspondence e-mail: pdsuchemistry@163.com

(Received 17 August 2010; accepted 23 August 2010; online 28 August 2010)

In the title thio­cyanate-bridged polynuclear copper(II) complex, [Cu(C10H12NO3)(NCS)]n, the Cu atom is five-coordinated in a square-pyramidal geometry, with one phenolato O, one imino N and one hy­droxy O atom of a Schiff base ligand and one thio­cyanato N atom defining the basal plane, and with one thio­cyanato S atom occupying the apical position. In the crystal structure, pairs of adjacent complex mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds into dimers. The dimers are further linked via Cu⋯S inter­actions, forming two-dimensional layers parallel to the bc plane.

Related literature

For the biological properties of Schiff bases, see: Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Sinha et al. (2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]); Sondhi et al. (2006[Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758-3765.]); Singh et al. (2006[Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147-153.]). For metal complexes with Schiff bases, see: Assey et al. (2010[Assey, G., Butcher, R. J., Gultneh, Y. & Yisgedu, T. (2010). Acta Cryst. E66, m711-m712.]); Thiam et al. (2010[Thiam, I. E., Retailleau, P., Navaza, A. & Gaye, M. (2010). Acta Cryst. E66, m136.]); Montazerozohori et al. (2009[Montazerozohori, M., Habibi, M. H., Amirnasr, M., Ariyoshi, K. & Suzuki, T. (2009). Acta Cryst. E65, m617.]); Eltayeb et al. (2009[Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, m1692-m1693.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H12NO3)(NCS)]

  • Mr = 315.83

  • Monoclinic, P 21 /c

  • a = 10.123 (2) Å

  • b = 11.812 (2) Å

  • c = 10.264 (2) Å

  • β = 94.122 (2)°

  • V = 1224.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.662, Tmax = 0.696

  • 6414 measured reflections

  • 2602 independent reflections

  • 1875 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.097

  • S = 1.04

  • 2602 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.902 (2)
Cu1—N1 1.910 (3)
Cu1—N2 1.933 (3)
Cu1—O2 2.035 (3)
Cu1—S1i 2.983 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1ii 0.85 (1) 1.96 (2) 2.770 (4) 160 (5)
O2—H2⋯O3ii 0.85 (1) 2.41 (4) 3.020 (4) 129 (4)
Symmetry code: (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are a kind of versatile compounds, which possess excellent biological properties (Bhandari et al., 2008; Sinha et al., 2008; Sondhi et al., 2006; Singh et al., 2006). The metal complexes derived from Schiff bases have been extensively studied (Assey et al., 2010; Thiam et al., 2010; Montazerozohori et al., 2009; Eltayeb et al., 2009). In this paper, a new thiocyanato-bridged polynuclear copper(II) complex with the Schiff base 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol is reported.

The complex is a thiocyanato-bridged polynuclear copper(II) complex, as shown in Fig. 1. The Cu atom in the complex is five-coordinate in a square pyramidal geometry, with one phenolate O, one imine N, and one hydroxy O atoms of a Schiff base ligand, and with one thiocyanate N atom, occupying the basal plane, and with one thiocyanate S atom occupying the apical position. The Cu···S' (S' at x, 1/2 - y, 1/2 + z) distance is 2.983 (3) Å. The Cu atom displaced 0.141 (2) Å from the plane defined by the four basal donor atoms. The slight distortion of the square pyramidal coordination can be observed from the coordinate bond lengths and angles (Table 1).

In the crystal structure, the adjacent complex molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2), to form a dimer. The dimers are further linked via Cu···S interactions, forming a two-dimensional layers parallel to the bc plane (Fig. 2).

Related literature top

For the biological properties of Schiff bases, see: Bhandari et al. (2008); Sinha et al. (2008); Sondhi et al. (2006); Singh et al. (2006). For metal complexes with Schiff bases, see: Assey et al. (2010); Thiam et al. (2010); Montazerozohori et al. (2009); Eltayeb et al. (2009).

Experimental top

3-Methoxysalicylaldehyde (152.1 mg, 1.0 mmol), 2-aminoethanol (61.1 mg, 1.0 mmol), ammonium thiocyanate (76.0 mg, 1.0 mmol), and copper acetate monohydrate (199.2 mg, 1.0 mmol) were dissolved in methanol (80 ml). The mixture was stirred for two hours at room temperature. The resulting solution was left in air for a few days, yielding blue block-like crystals.

Refinement top

H2 was located in a difference Fourier map and refined isotropically, with O—H distance restrained to 0.85 (1) Å, and with Uiso(H) fixed at 0.08 Å2. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(C10).

Structure description top

Schiff bases are a kind of versatile compounds, which possess excellent biological properties (Bhandari et al., 2008; Sinha et al., 2008; Sondhi et al., 2006; Singh et al., 2006). The metal complexes derived from Schiff bases have been extensively studied (Assey et al., 2010; Thiam et al., 2010; Montazerozohori et al., 2009; Eltayeb et al., 2009). In this paper, a new thiocyanato-bridged polynuclear copper(II) complex with the Schiff base 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol is reported.

The complex is a thiocyanato-bridged polynuclear copper(II) complex, as shown in Fig. 1. The Cu atom in the complex is five-coordinate in a square pyramidal geometry, with one phenolate O, one imine N, and one hydroxy O atoms of a Schiff base ligand, and with one thiocyanate N atom, occupying the basal plane, and with one thiocyanate S atom occupying the apical position. The Cu···S' (S' at x, 1/2 - y, 1/2 + z) distance is 2.983 (3) Å. The Cu atom displaced 0.141 (2) Å from the plane defined by the four basal donor atoms. The slight distortion of the square pyramidal coordination can be observed from the coordinate bond lengths and angles (Table 1).

In the crystal structure, the adjacent complex molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2), to form a dimer. The dimers are further linked via Cu···S interactions, forming a two-dimensional layers parallel to the bc plane (Fig. 2).

For the biological properties of Schiff bases, see: Bhandari et al. (2008); Sinha et al. (2008); Sondhi et al. (2006); Singh et al. (2006). For metal complexes with Schiff bases, see: Assey et al. (2010); Thiam et al. (2010); Montazerozohori et al. (2009); Eltayeb et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title complex. Intermolecular hydrogen bonds are shown as dashed lines. H atoms unrelated to the hydrogen bonding have been omitted for clarity.
catena-Poly[[{2-[(2-hydroxyethyl)iminomethyl]-6- methoxyphenolato}copper(II)]-µ-thiocyanato] top
Crystal data top
[Cu(C10H12NO3)(NCS)]F(000) = 644
Mr = 315.83Dx = 1.714 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.123 (2) ÅCell parameters from 1160 reflections
b = 11.812 (2) Åθ = 2.5–24.5°
c = 10.264 (2) ŵ = 1.96 mm1
β = 94.122 (2)°T = 298 K
V = 1224.1 (4) Å3Block, blue
Z = 40.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2602 independent reflections
Radiation source: fine-focus sealed tube1875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.662, Tmax = 0.696k = 159
6414 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.2873P]
where P = (Fo2 + 2Fc2)/3
2602 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
[Cu(C10H12NO3)(NCS)]V = 1224.1 (4) Å3
Mr = 315.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.123 (2) ŵ = 1.96 mm1
b = 11.812 (2) ÅT = 298 K
c = 10.264 (2) Å0.23 × 0.20 × 0.20 mm
β = 94.122 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2602 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1875 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.696Rint = 0.043
6414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.36 e Å3
2602 reflectionsΔρmin = 0.39 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.53293 (4)0.44688 (4)0.14711 (4)0.03113 (16)
N10.5018 (3)0.5378 (2)0.2957 (3)0.0287 (7)
N20.5887 (3)0.3555 (3)0.0048 (3)0.0347 (8)
O10.3542 (2)0.3978 (2)0.1187 (2)0.0313 (6)
O20.6958 (2)0.5474 (2)0.1426 (3)0.0369 (7)
O30.1241 (2)0.3292 (2)0.0317 (3)0.0502 (8)
S10.69266 (9)0.20646 (9)0.17233 (10)0.0367 (3)
C10.2666 (3)0.5001 (3)0.2971 (4)0.0299 (9)
C20.2552 (3)0.4302 (3)0.1865 (4)0.0282 (8)
C30.1256 (4)0.3941 (3)0.1410 (4)0.0356 (9)
C40.0163 (4)0.4253 (4)0.2056 (4)0.0467 (11)
H40.06760.40130.17460.056*
C50.0312 (4)0.4923 (4)0.3164 (5)0.0512 (12)
H50.04280.51200.36020.061*
C60.1528 (4)0.5294 (4)0.3616 (4)0.0423 (11)
H60.16130.57470.43580.051*
C70.3894 (4)0.5518 (3)0.3442 (3)0.0308 (9)
H70.38740.59950.41610.037*
C80.6186 (4)0.6025 (3)0.3450 (4)0.0353 (10)
H8A0.67770.55500.39970.042*
H8B0.59220.66650.39640.042*
C90.6868 (4)0.6430 (3)0.2283 (4)0.0394 (10)
H9A0.63620.70340.18440.047*
H9B0.77440.67140.25510.047*
C100.0026 (4)0.2961 (4)0.0268 (5)0.0643 (15)
H10A0.04770.25090.03380.096*
H10B0.00910.25280.10430.096*
H10C0.05420.36240.04920.096*
C110.6318 (3)0.2926 (3)0.0683 (4)0.0265 (8)
H20.701 (5)0.568 (4)0.0643 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0286 (2)0.0349 (3)0.0305 (3)0.0015 (2)0.00595 (18)0.0093 (2)
N10.0324 (16)0.0280 (19)0.0260 (17)0.0028 (13)0.0036 (13)0.0012 (14)
N20.0380 (17)0.038 (2)0.0291 (19)0.0019 (15)0.0067 (14)0.0066 (16)
O10.0285 (13)0.0328 (15)0.0335 (16)0.0030 (11)0.0085 (11)0.0096 (12)
O20.0373 (14)0.0396 (18)0.0348 (16)0.0047 (12)0.0100 (13)0.0066 (15)
O30.0379 (15)0.060 (2)0.052 (2)0.0168 (14)0.0020 (13)0.0150 (17)
S10.0390 (5)0.0337 (6)0.0376 (6)0.0032 (4)0.0050 (4)0.0110 (5)
C10.0325 (19)0.030 (2)0.028 (2)0.0055 (16)0.0064 (16)0.0026 (18)
C20.0301 (18)0.024 (2)0.032 (2)0.0017 (16)0.0092 (16)0.0061 (17)
C30.038 (2)0.033 (2)0.035 (2)0.0047 (18)0.0054 (18)0.005 (2)
C40.031 (2)0.060 (3)0.050 (3)0.004 (2)0.0109 (19)0.008 (2)
C50.039 (2)0.067 (3)0.051 (3)0.008 (2)0.026 (2)0.008 (3)
C60.045 (2)0.048 (3)0.036 (2)0.011 (2)0.0183 (19)0.002 (2)
C70.043 (2)0.028 (2)0.022 (2)0.0052 (17)0.0034 (16)0.0042 (18)
C80.037 (2)0.034 (2)0.035 (2)0.0026 (17)0.0045 (17)0.0041 (19)
C90.038 (2)0.037 (3)0.042 (3)0.0071 (18)0.0020 (18)0.000 (2)
C100.050 (3)0.067 (3)0.075 (4)0.029 (2)0.008 (2)0.005 (3)
C110.0287 (18)0.028 (2)0.022 (2)0.0040 (16)0.0017 (15)0.0055 (18)
Geometric parameters (Å, º) top
Cu1—O11.902 (2)C2—C31.426 (5)
Cu1—N11.910 (3)C3—C41.380 (5)
Cu1—N21.933 (3)C4—C51.385 (6)
Cu1—O22.035 (3)C4—H40.9300
Cu1—S1i2.983 (3)C5—C61.357 (6)
N1—C71.285 (4)C5—H50.9300
N1—C81.467 (4)C6—H60.9300
N2—C111.164 (4)C7—H70.9300
O1—C21.317 (4)C8—C91.502 (5)
O2—C91.439 (5)C8—H8A0.9700
O2—H20.846 (10)C8—H8B0.9700
O3—C31.357 (5)C9—H9A0.9700
O3—C101.431 (4)C9—H9B0.9700
S1—C111.627 (4)C10—H10A0.9600
C1—C21.401 (5)C10—H10B0.9600
C1—C61.413 (5)C10—H10C0.9600
C1—C71.438 (5)
O1—Cu1—N194.82 (11)C5—C4—H4119.9
O1—Cu1—N292.31 (11)C6—C5—C4120.5 (4)
N1—Cu1—N2172.47 (12)C6—C5—H5119.7
O1—Cu1—O2159.63 (11)C4—C5—H5119.7
N1—Cu1—O282.55 (12)C5—C6—C1120.7 (4)
N2—Cu1—O291.59 (12)C5—C6—H6119.6
O1—Cu1—S1i112.18 (12)C1—C6—H6119.6
O2—Cu1—S1i87.96 (12)N1—C7—C1125.7 (3)
N1—Cu1—S1i87.62 (12)N1—C7—H7117.1
N2—Cu1—S1i87.45 (12)C1—C7—H7117.1
C7—N1—C8120.9 (3)N1—C8—C9107.2 (3)
C7—N1—Cu1125.7 (3)N1—C8—H8A110.3
C8—N1—Cu1113.2 (2)C9—C8—H8A110.3
C11—N2—Cu1171.1 (3)N1—C8—H8B110.3
C2—O1—Cu1125.6 (2)C9—C8—H8B110.3
C9—O2—Cu1110.9 (2)H8A—C8—H8B108.5
C9—O2—H2111 (3)O2—C9—C8106.9 (3)
Cu1—O2—H2107 (3)O2—C9—H9A110.3
C3—O3—C10117.2 (3)C8—C9—H9A110.3
C2—C1—C6120.1 (3)O2—C9—H9B110.3
C2—C1—C7122.8 (3)C8—C9—H9B110.3
C6—C1—C7116.9 (4)H9A—C9—H9B108.6
O1—C2—C1125.3 (3)O3—C10—H10A109.5
O1—C2—C3117.2 (3)O3—C10—H10B109.5
C1—C2—C3117.5 (3)H10A—C10—H10B109.5
O3—C3—C4125.9 (4)O3—C10—H10C109.5
O3—C3—C2113.3 (3)H10A—C10—H10C109.5
C4—C3—C2120.9 (4)H10B—C10—H10C109.5
C3—C4—C5120.2 (4)N2—C11—S1179.0 (4)
C3—C4—H4119.9
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.85 (1)1.96 (2)2.770 (4)160 (5)
O2—H2···O3ii0.85 (1)2.41 (4)3.020 (4)129 (4)
Symmetry code: (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H12NO3)(NCS)]
Mr315.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.123 (2), 11.812 (2), 10.264 (2)
β (°) 94.122 (2)
V3)1224.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.662, 0.696
No. of measured, independent and
observed [I > 2σ(I)] reflections
6414, 2602, 1875
Rint0.043
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.097, 1.04
No. of reflections2602
No. of parameters167
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.39

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.902 (2)Cu1—O22.035 (3)
Cu1—N11.910 (3)Cu1—S1i2.983 (3)
Cu1—N21.933 (3)
O1—Cu1—N194.82 (11)N2—Cu1—O291.59 (12)
O1—Cu1—N292.31 (11)O1—Cu1—S1i112.18 (12)
N1—Cu1—N2172.47 (12)O2—Cu1—S1i87.96 (12)
O1—Cu1—O2159.63 (11)N1—Cu1—S1i87.62 (12)
N1—Cu1—O282.55 (12)N2—Cu1—S1i87.45 (12)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.846 (10)1.96 (2)2.770 (4)160 (5)
O2—H2···O3ii0.846 (10)2.41 (4)3.020 (4)129 (4)
Symmetry code: (ii) x+1, y+1, z.
 

Acknowledgements

We thank the Top-Class Foundation and the Applied Chemistry Key Laboratory Foundation of Pingdingshan University for support.

References

First citationAssey, G., Butcher, R. J., Gultneh, Y. & Yisgedu, T. (2010). Acta Cryst. E66, m711–m712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, m1692–m1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMontazerozohori, M., Habibi, M. H., Amirnasr, M., Ariyoshi, K. & Suzuki, T. (2009). Acta Cryst. E65, m617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153.  Web of Science CrossRef PubMed Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThiam, I. E., Retailleau, P., Navaza, A. & Gaye, M. (2010). Acta Cryst. E66, m136.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds