metal-organic compounds
catena-Poly[[{2-[(2-hydroxyethyl)iminomethyl]-6-methoxyphenolato}copper(II)]-μ-thiocyanato]
aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan, Henan 467000, People's Republic of China
*Correspondence e-mail: pdsuchemistry@163.com
In the title thiocyanate-bridged polynuclear copper(II) complex, [Cu(C10H12NO3)(NCS)]n, the Cu atom is five-coordinated in a square-pyramidal geometry, with one phenolato O, one imino N and one hydroxy O atom of a Schiff base ligand and one thiocyanato N atom defining the basal plane, and with one thiocyanato S atom occupying the apical position. In the pairs of adjacent complex molecules are linked through intermolecular O—H⋯O hydrogen bonds into dimers. The dimers are further linked via Cu⋯S interactions, forming two-dimensional layers parallel to the bc plane.
Related literature
For the biological properties of et al. (2008); Sinha et al. (2008); Sondhi et al. (2006); Singh et al. (2006). For metal complexes with see: Assey et al. (2010); Thiam et al. (2010); Montazerozohori et al. (2009); Eltayeb et al. (2009).
see: BhandariExperimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810034021/om2356sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810034021/om2356Isup2.hkl
3-Methoxysalicylaldehyde (152.1 mg, 1.0 mmol), 2-aminoethanol (61.1 mg, 1.0 mmol), ammonium thiocyanate (76.0 mg, 1.0 mmol), and copper acetate monohydrate (199.2 mg, 1.0 mmol) were dissolved in methanol (80 ml). The mixture was stirred for two hours at room temperature. The resulting solution was left in air for a few days, yielding blue block-like crystals.
H2 was located in a difference Fourier map and refined isotropically, with O—H distance restrained to 0.85 (1) Å, and with Uiso(H) fixed at 0.08 Å2. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(C10).
Schiff bases are a kind of versatile compounds, which possess excellent biological properties (Bhandari et al., 2008; Sinha et al., 2008; Sondhi et al., 2006; Singh et al., 2006). The metal complexes derived from
have been extensively studied (Assey et al., 2010; Thiam et al., 2010; Montazerozohori et al., 2009; Eltayeb et al., 2009). In this paper, a new thiocyanato-bridged polynuclear copper(II) complex with the Schiff base 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol is reported.The complex is a thiocyanato-bridged polynuclear copper(II) complex, as shown in Fig. 1. The Cu atom in the complex is five-coordinate in a square pyramidal geometry, with one phenolate O, one imine N, and one hydroxy O atoms of a Schiff base ligand, and with one thiocyanate N atom, occupying the basal plane, and with one thiocyanate S atom occupying the apical position. The Cu···S' (S' at x, 1/2 - y, 1/2 + z) distance is 2.983 (3) Å. The Cu atom displaced 0.141 (2) Å from the plane defined by the four basal donor atoms. The slight distortion of the square pyramidal coordination can be observed from the coordinate bond lengths and angles (Table 1).
In the
the adjacent complex molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2), to form a dimer. The dimers are further linked via Cu···S interactions, forming a two-dimensional layers parallel to the bc plane (Fig. 2).For the biological properties of
see: Bhandari et al. (2008); Sinha et al. (2008); Sondhi et al. (2006); Singh et al. (2006). For metal complexes with see: Assey et al. (2010); Thiam et al. (2010); Montazerozohori et al. (2009); Eltayeb et al. (2009).Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C10H12NO3)(NCS)] | F(000) = 644 |
Mr = 315.83 | Dx = 1.714 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.123 (2) Å | Cell parameters from 1160 reflections |
b = 11.812 (2) Å | θ = 2.5–24.5° |
c = 10.264 (2) Å | µ = 1.96 mm−1 |
β = 94.122 (2)° | T = 298 K |
V = 1224.1 (4) Å3 | Block, blue |
Z = 4 | 0.23 × 0.20 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 2602 independent reflections |
Radiation source: fine-focus sealed tube | 1875 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 27.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.662, Tmax = 0.696 | k = −15→9 |
6414 measured reflections | l = −10→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0374P)2 + 0.2873P] where P = (Fo2 + 2Fc2)/3 |
2602 reflections | (Δ/σ)max < 0.001 |
167 parameters | Δρmax = 0.36 e Å−3 |
1 restraint | Δρmin = −0.39 e Å−3 |
[Cu(C10H12NO3)(NCS)] | V = 1224.1 (4) Å3 |
Mr = 315.83 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.123 (2) Å | µ = 1.96 mm−1 |
b = 11.812 (2) Å | T = 298 K |
c = 10.264 (2) Å | 0.23 × 0.20 × 0.20 mm |
β = 94.122 (2)° |
Bruker SMART CCD area-detector diffractometer | 2602 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1875 reflections with I > 2σ(I) |
Tmin = 0.662, Tmax = 0.696 | Rint = 0.043 |
6414 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 1 restraint |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.36 e Å−3 |
2602 reflections | Δρmin = −0.39 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.53293 (4) | 0.44688 (4) | 0.14711 (4) | 0.03113 (16) | |
N1 | 0.5018 (3) | 0.5378 (2) | 0.2957 (3) | 0.0287 (7) | |
N2 | 0.5887 (3) | 0.3555 (3) | 0.0048 (3) | 0.0347 (8) | |
O1 | 0.3542 (2) | 0.3978 (2) | 0.1187 (2) | 0.0313 (6) | |
O2 | 0.6958 (2) | 0.5474 (2) | 0.1426 (3) | 0.0369 (7) | |
O3 | 0.1241 (2) | 0.3292 (2) | 0.0317 (3) | 0.0502 (8) | |
S1 | 0.69266 (9) | 0.20646 (9) | −0.17233 (10) | 0.0367 (3) | |
C1 | 0.2666 (3) | 0.5001 (3) | 0.2971 (4) | 0.0299 (9) | |
C2 | 0.2552 (3) | 0.4302 (3) | 0.1865 (4) | 0.0282 (8) | |
C3 | 0.1256 (4) | 0.3941 (3) | 0.1410 (4) | 0.0356 (9) | |
C4 | 0.0163 (4) | 0.4253 (4) | 0.2056 (4) | 0.0467 (11) | |
H4 | −0.0676 | 0.4013 | 0.1746 | 0.056* | |
C5 | 0.0312 (4) | 0.4923 (4) | 0.3164 (5) | 0.0512 (12) | |
H5 | −0.0428 | 0.5120 | 0.3602 | 0.061* | |
C6 | 0.1528 (4) | 0.5294 (4) | 0.3616 (4) | 0.0423 (11) | |
H6 | 0.1613 | 0.5747 | 0.4358 | 0.051* | |
C7 | 0.3894 (4) | 0.5518 (3) | 0.3442 (3) | 0.0308 (9) | |
H7 | 0.3874 | 0.5995 | 0.4161 | 0.037* | |
C8 | 0.6186 (4) | 0.6025 (3) | 0.3450 (4) | 0.0353 (10) | |
H8A | 0.6777 | 0.5550 | 0.3997 | 0.042* | |
H8B | 0.5922 | 0.6665 | 0.3964 | 0.042* | |
C9 | 0.6868 (4) | 0.6430 (3) | 0.2283 (4) | 0.0394 (10) | |
H9A | 0.6362 | 0.7034 | 0.1844 | 0.047* | |
H9B | 0.7744 | 0.6714 | 0.2551 | 0.047* | |
C10 | −0.0026 (4) | 0.2961 (4) | −0.0268 (5) | 0.0643 (15) | |
H10A | −0.0477 | 0.2509 | 0.0338 | 0.096* | |
H10B | 0.0091 | 0.2528 | −0.1043 | 0.096* | |
H10C | −0.0542 | 0.3624 | −0.0492 | 0.096* | |
C11 | 0.6318 (3) | 0.2926 (3) | −0.0683 (4) | 0.0265 (8) | |
H2 | 0.701 (5) | 0.568 (4) | 0.0643 (18) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0286 (2) | 0.0349 (3) | 0.0305 (3) | −0.0015 (2) | 0.00595 (18) | −0.0093 (2) |
N1 | 0.0324 (16) | 0.0280 (19) | 0.0260 (17) | 0.0028 (13) | 0.0036 (13) | −0.0012 (14) |
N2 | 0.0380 (17) | 0.038 (2) | 0.0291 (19) | 0.0019 (15) | 0.0067 (14) | −0.0066 (16) |
O1 | 0.0285 (13) | 0.0328 (15) | 0.0335 (16) | −0.0030 (11) | 0.0085 (11) | −0.0096 (12) |
O2 | 0.0373 (14) | 0.0396 (18) | 0.0348 (16) | −0.0047 (12) | 0.0100 (13) | −0.0066 (15) |
O3 | 0.0379 (15) | 0.060 (2) | 0.052 (2) | −0.0168 (14) | 0.0020 (13) | −0.0150 (17) |
S1 | 0.0390 (5) | 0.0337 (6) | 0.0376 (6) | 0.0032 (4) | 0.0050 (4) | −0.0110 (5) |
C1 | 0.0325 (19) | 0.030 (2) | 0.028 (2) | 0.0055 (16) | 0.0064 (16) | 0.0026 (18) |
C2 | 0.0301 (18) | 0.024 (2) | 0.032 (2) | −0.0017 (16) | 0.0092 (16) | 0.0061 (17) |
C3 | 0.038 (2) | 0.033 (2) | 0.035 (2) | −0.0047 (18) | 0.0054 (18) | 0.005 (2) |
C4 | 0.031 (2) | 0.060 (3) | 0.050 (3) | −0.004 (2) | 0.0109 (19) | 0.008 (2) |
C5 | 0.039 (2) | 0.067 (3) | 0.051 (3) | 0.008 (2) | 0.026 (2) | 0.008 (3) |
C6 | 0.045 (2) | 0.048 (3) | 0.036 (2) | 0.011 (2) | 0.0183 (19) | 0.002 (2) |
C7 | 0.043 (2) | 0.028 (2) | 0.022 (2) | 0.0052 (17) | 0.0034 (16) | −0.0042 (18) |
C8 | 0.037 (2) | 0.034 (2) | 0.035 (2) | −0.0026 (17) | −0.0045 (17) | −0.0041 (19) |
C9 | 0.038 (2) | 0.037 (3) | 0.042 (3) | −0.0071 (18) | −0.0020 (18) | 0.000 (2) |
C10 | 0.050 (3) | 0.067 (3) | 0.075 (4) | −0.029 (2) | −0.008 (2) | −0.005 (3) |
C11 | 0.0287 (18) | 0.028 (2) | 0.022 (2) | −0.0040 (16) | −0.0017 (15) | 0.0055 (18) |
Cu1—O1 | 1.902 (2) | C2—C3 | 1.426 (5) |
Cu1—N1 | 1.910 (3) | C3—C4 | 1.380 (5) |
Cu1—N2 | 1.933 (3) | C4—C5 | 1.385 (6) |
Cu1—O2 | 2.035 (3) | C4—H4 | 0.9300 |
Cu1—S1i | 2.983 (3) | C5—C6 | 1.357 (6) |
N1—C7 | 1.285 (4) | C5—H5 | 0.9300 |
N1—C8 | 1.467 (4) | C6—H6 | 0.9300 |
N2—C11 | 1.164 (4) | C7—H7 | 0.9300 |
O1—C2 | 1.317 (4) | C8—C9 | 1.502 (5) |
O2—C9 | 1.439 (5) | C8—H8A | 0.9700 |
O2—H2 | 0.846 (10) | C8—H8B | 0.9700 |
O3—C3 | 1.357 (5) | C9—H9A | 0.9700 |
O3—C10 | 1.431 (4) | C9—H9B | 0.9700 |
S1—C11 | 1.627 (4) | C10—H10A | 0.9600 |
C1—C2 | 1.401 (5) | C10—H10B | 0.9600 |
C1—C6 | 1.413 (5) | C10—H10C | 0.9600 |
C1—C7 | 1.438 (5) | ||
O1—Cu1—N1 | 94.82 (11) | C5—C4—H4 | 119.9 |
O1—Cu1—N2 | 92.31 (11) | C6—C5—C4 | 120.5 (4) |
N1—Cu1—N2 | 172.47 (12) | C6—C5—H5 | 119.7 |
O1—Cu1—O2 | 159.63 (11) | C4—C5—H5 | 119.7 |
N1—Cu1—O2 | 82.55 (12) | C5—C6—C1 | 120.7 (4) |
N2—Cu1—O2 | 91.59 (12) | C5—C6—H6 | 119.6 |
O1—Cu1—S1i | 112.18 (12) | C1—C6—H6 | 119.6 |
O2—Cu1—S1i | 87.96 (12) | N1—C7—C1 | 125.7 (3) |
N1—Cu1—S1i | 87.62 (12) | N1—C7—H7 | 117.1 |
N2—Cu1—S1i | 87.45 (12) | C1—C7—H7 | 117.1 |
C7—N1—C8 | 120.9 (3) | N1—C8—C9 | 107.2 (3) |
C7—N1—Cu1 | 125.7 (3) | N1—C8—H8A | 110.3 |
C8—N1—Cu1 | 113.2 (2) | C9—C8—H8A | 110.3 |
C11—N2—Cu1 | 171.1 (3) | N1—C8—H8B | 110.3 |
C2—O1—Cu1 | 125.6 (2) | C9—C8—H8B | 110.3 |
C9—O2—Cu1 | 110.9 (2) | H8A—C8—H8B | 108.5 |
C9—O2—H2 | 111 (3) | O2—C9—C8 | 106.9 (3) |
Cu1—O2—H2 | 107 (3) | O2—C9—H9A | 110.3 |
C3—O3—C10 | 117.2 (3) | C8—C9—H9A | 110.3 |
C2—C1—C6 | 120.1 (3) | O2—C9—H9B | 110.3 |
C2—C1—C7 | 122.8 (3) | C8—C9—H9B | 110.3 |
C6—C1—C7 | 116.9 (4) | H9A—C9—H9B | 108.6 |
O1—C2—C1 | 125.3 (3) | O3—C10—H10A | 109.5 |
O1—C2—C3 | 117.2 (3) | O3—C10—H10B | 109.5 |
C1—C2—C3 | 117.5 (3) | H10A—C10—H10B | 109.5 |
O3—C3—C4 | 125.9 (4) | O3—C10—H10C | 109.5 |
O3—C3—C2 | 113.3 (3) | H10A—C10—H10C | 109.5 |
C4—C3—C2 | 120.9 (4) | H10B—C10—H10C | 109.5 |
C3—C4—C5 | 120.2 (4) | N2—C11—S1 | 179.0 (4) |
C3—C4—H4 | 119.9 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1ii | 0.85 (1) | 1.96 (2) | 2.770 (4) | 160 (5) |
O2—H2···O3ii | 0.85 (1) | 2.41 (4) | 3.020 (4) | 129 (4) |
Symmetry code: (ii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C10H12NO3)(NCS)] |
Mr | 315.83 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 10.123 (2), 11.812 (2), 10.264 (2) |
β (°) | 94.122 (2) |
V (Å3) | 1224.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.96 |
Crystal size (mm) | 0.23 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.662, 0.696 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6414, 2602, 1875 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.097, 1.04 |
No. of reflections | 2602 |
No. of parameters | 167 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.39 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O1 | 1.902 (2) | Cu1—O2 | 2.035 (3) |
Cu1—N1 | 1.910 (3) | Cu1—S1i | 2.983 (3) |
Cu1—N2 | 1.933 (3) | ||
O1—Cu1—N1 | 94.82 (11) | N2—Cu1—O2 | 91.59 (12) |
O1—Cu1—N2 | 92.31 (11) | O1—Cu1—S1i | 112.18 (12) |
N1—Cu1—N2 | 172.47 (12) | O2—Cu1—S1i | 87.96 (12) |
O1—Cu1—O2 | 159.63 (11) | N1—Cu1—S1i | 87.62 (12) |
N1—Cu1—O2 | 82.55 (12) | N2—Cu1—S1i | 87.45 (12) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1ii | 0.846 (10) | 1.96 (2) | 2.770 (4) | 160 (5) |
O2—H2···O3ii | 0.846 (10) | 2.41 (4) | 3.020 (4) | 129 (4) |
Symmetry code: (ii) −x+1, −y+1, −z. |
Acknowledgements
We thank the Top-Class Foundation and the Applied Chemistry Key Laboratory Foundation of Pingdingshan University for support.
References
Assey, G., Butcher, R. J., Gultneh, Y. & Yisgedu, T. (2010). Acta Cryst. E66, m711–m712. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, m1692–m1693. Web of Science CSD CrossRef IUCr Journals Google Scholar
Montazerozohori, M., Habibi, M. H., Amirnasr, M., Ariyoshi, K. & Suzuki, T. (2009). Acta Cryst. E65, m617. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153. Web of Science CrossRef PubMed Google Scholar
Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165. Web of Science CrossRef PubMed CAS Google Scholar
Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765. Web of Science CrossRef PubMed CAS Google Scholar
Thiam, I. E., Retailleau, P., Navaza, A. & Gaye, M. (2010). Acta Cryst. E66, m136. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases are a kind of versatile compounds, which possess excellent biological properties (Bhandari et al., 2008; Sinha et al., 2008; Sondhi et al., 2006; Singh et al., 2006). The metal complexes derived from Schiff bases have been extensively studied (Assey et al., 2010; Thiam et al., 2010; Montazerozohori et al., 2009; Eltayeb et al., 2009). In this paper, a new thiocyanato-bridged polynuclear copper(II) complex with the Schiff base 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol is reported.
The complex is a thiocyanato-bridged polynuclear copper(II) complex, as shown in Fig. 1. The Cu atom in the complex is five-coordinate in a square pyramidal geometry, with one phenolate O, one imine N, and one hydroxy O atoms of a Schiff base ligand, and with one thiocyanate N atom, occupying the basal plane, and with one thiocyanate S atom occupying the apical position. The Cu···S' (S' at x, 1/2 - y, 1/2 + z) distance is 2.983 (3) Å. The Cu atom displaced 0.141 (2) Å from the plane defined by the four basal donor atoms. The slight distortion of the square pyramidal coordination can be observed from the coordinate bond lengths and angles (Table 1).
In the crystal structure, the adjacent complex molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2), to form a dimer. The dimers are further linked via Cu···S interactions, forming a two-dimensional layers parallel to the bc plane (Fig. 2).