organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di­phenyl­phosphor­yl)(2-nitro­phen­yl)methanol

aKey Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun 336000, People's Republic of China
*Correspondence e-mail: yyhx2005@163.com

(Received 13 July 2010; accepted 9 August 2010; online 18 August 2010)

In the title compound, C19H16NO4P, the dihedral angle between the mean planes of the phenyl rings bonded to the P atom is 75.4 (1)°. In the crystal, mol­ecules are linked into chains running along the a axis by inter­molecular O—H⋯O hydrogen bonds. Mol­ecules are further connected into a three-dimensional array by weak C—H⋯O hydrogen bonds.

Related literature

For applications of the analogous compound (diphenyl­phosphino­yl)phenyl­methanol in the rhodium-catalysed hydro­formyl­ation of alkenes, see: Clark et al. (2002[Clark, H. J., Wang, R. & Alper, H. (2002). J. Org. Chem. 67, 6224-6225.]). For related structures, see: Liu et al. (2007[Liu, W.-Y., Huo, P., Gao, Y.-X., Liu, P. & Zhao, Y.-F. (2007). Acta Cryst. E63, o1008-o1009.]); Liu & Huo (2008[Liu, W.-Y. & Huo, P. (2008). Acta Cryst. E64, o233.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16NO4P

  • Mr = 353.30

  • Orthorhombic, P 21 21 21

  • a = 5.9179 (12) Å

  • b = 13.917 (3) Å

  • c = 20.405 (4) Å

  • V = 1680.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.35 × 0.22 × 0.13 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.533, Tmax = 1.000

  • 14520 measured reflections

  • 3311 independent reflections

  • 3065 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.05

  • 3311 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1377 Friedel pairs

  • Flack parameter: 0.19 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.86 2.6483 (16) 161
C4—H4A⋯O3ii 0.93 2.52 3.207 (2) 131
C19—H19A⋯O2iii 0.93 2.50 3.404 (2) 164
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is an analog of (diphenylphosphinoyl)phenylmethanol, which was employed as a ligand in the rhodium-catalyzed hydroformylation of alkenes, with good conversions and regioselectivities (Clark et al., 2002).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are in agreement with those reported for similar compounds (Liu et al., 2007; Liu et al., 2008). The dihedral angle between the mean-planes of the phenyl rings (C8—C13) and (C14—C19) bonded to P-atoms is 53.0 (1)°. The strong O—H···O and weak C—H···O intermolecular hydrogen bonds play a significant role in stabilizing the crystal structure; see Table 1 for geometric parameters and symmetry operations. A strong O—H···O hydrogen bond involving the hydroxyl group link the molecules into a chain running along the a axis. Molecules are further connected into a three-dimensional array by non-classical and rather weak C—H···O intermolecular hydrogen-bonding interactions.

Related literature top

For applications of the analogous compound (diphenylphosphinoyl)phenylmethanol in the rhodium-catalysed hydroformylation of alkenes, see: Clark et al. (2002). For related structures, see: Liu et al. (2007); Liu & Huo (2008).

Experimental top

To a solution of 2-nitrobenzaldehyde (0.30 g, 2.0 mmol) and diphenylphosphine oxide (0.40 g, 2.0 mmol) in tetrahydrofuran (10 ml) at 273 K was added dropwise triethylamine (0.03 ml, 2 mmol). The cooling bath was removed and the mixture warmed to ambient temperature for 2 h. The solvent was concentrated under vacuum and the crude product was purified by recrystallization in methanol to give the title compound as a white solid in 82% yield. Single crystals of (I) were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.98 Å (methine), O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(c) and 1.5Ueq(O).

Structure description top

The title compound, (I), is an analog of (diphenylphosphinoyl)phenylmethanol, which was employed as a ligand in the rhodium-catalyzed hydroformylation of alkenes, with good conversions and regioselectivities (Clark et al., 2002).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are in agreement with those reported for similar compounds (Liu et al., 2007; Liu et al., 2008). The dihedral angle between the mean-planes of the phenyl rings (C8—C13) and (C14—C19) bonded to P-atoms is 53.0 (1)°. The strong O—H···O and weak C—H···O intermolecular hydrogen bonds play a significant role in stabilizing the crystal structure; see Table 1 for geometric parameters and symmetry operations. A strong O—H···O hydrogen bond involving the hydroxyl group link the molecules into a chain running along the a axis. Molecules are further connected into a three-dimensional array by non-classical and rather weak C—H···O intermolecular hydrogen-bonding interactions.

For applications of the analogous compound (diphenylphosphinoyl)phenylmethanol in the rhodium-catalysed hydroformylation of alkenes, see: Clark et al. (2002). For related structures, see: Liu et al. (2007); Liu & Huo (2008).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. Part of the packing of the title compound. Intermolecular hydrogen bonds are represented by dashed lines. H atoms not involved in hydrogen bonding have been omitted.
(Diphenylphosphoryl)(2-nitrophenyl)methanol top
Crystal data top
C19H16NO4PF(000) = 736
Mr = 353.30Dx = 1.396 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2260 reflections
a = 5.9179 (12) Åθ = 3.3–27.5°
b = 13.917 (3) ŵ = 0.19 mm1
c = 20.405 (4) ÅT = 293 K
V = 1680.6 (6) Å3Plate, colorless
Z = 40.35 × 0.22 × 0.13 mm
Data collection top
Bruker APEX area-detector
diffractometer
3311 independent reflections
Radiation source: fine-focus sealed tube3065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.533, Tmax = 1.000k = 1617
14520 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.0539P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3311 reflectionsΔρmax = 0.18 e Å3
226 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1373 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: please supply
Crystal data top
C19H16NO4PV = 1680.6 (6) Å3
Mr = 353.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9179 (12) ŵ = 0.19 mm1
b = 13.917 (3) ÅT = 293 K
c = 20.405 (4) Å0.35 × 0.22 × 0.13 mm
Data collection top
Bruker APEX area-detector
diffractometer
3311 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3065 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 1.000Rint = 0.028
14520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.18 e Å3
S = 1.05Δρmin = 0.20 e Å3
3311 reflectionsAbsolute structure: Flack (1983), 1373 Friedel pairs
226 parametersAbsolute structure parameter: please supply
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.36544 (6)0.05040 (3)0.12304 (2)0.02988 (11)
O10.13285 (17)0.06076 (8)0.15090 (6)0.0399 (3)
O20.75302 (16)0.03926 (10)0.14345 (6)0.0448 (3)
H2A0.85410.00080.15170.067*
O30.3080 (3)0.04117 (11)0.29316 (8)0.0683 (4)
O40.0305 (2)0.01286 (11)0.29317 (8)0.0624 (4)
C10.5574 (2)0.01474 (11)0.17954 (8)0.0323 (3)
H1A0.59670.02570.21720.039*
C20.4346 (3)0.10461 (11)0.20185 (8)0.0328 (3)
C30.4930 (3)0.19195 (13)0.17376 (10)0.0461 (4)
H3A0.61650.19480.14560.055*
C40.3715 (4)0.27538 (13)0.18661 (12)0.0604 (6)
H4A0.41720.33320.16800.072*
C50.1858 (4)0.27310 (14)0.22626 (12)0.0622 (6)
H5A0.10400.32900.23410.075*
C60.1201 (4)0.18790 (13)0.25448 (10)0.0524 (5)
H6A0.00760.18560.28100.063*
C70.2453 (3)0.10560 (12)0.24313 (8)0.0360 (4)
C80.4845 (3)0.16772 (11)0.10671 (8)0.0320 (3)
C90.3434 (3)0.24491 (12)0.12017 (10)0.0455 (4)
H9A0.20100.23370.13790.055*
C100.4114 (4)0.33817 (13)0.10765 (11)0.0552 (5)
H10A0.31580.38920.11770.066*
C110.6187 (4)0.35558 (13)0.08061 (10)0.0512 (5)
H11A0.66290.41830.07130.061*
C120.7628 (3)0.27996 (13)0.06705 (10)0.0472 (5)
H12A0.90370.29210.04870.057*
C130.6988 (3)0.18611 (12)0.08065 (9)0.0408 (4)
H13A0.79790.13570.07250.049*
C140.3674 (3)0.02135 (11)0.04912 (8)0.0349 (3)
C150.5420 (3)0.01949 (15)0.00353 (10)0.0496 (5)
H15A0.66430.02140.01000.060*
C160.5353 (4)0.07759 (16)0.05106 (11)0.0575 (5)
H16A0.65210.07530.08150.069*
C170.3564 (4)0.13884 (15)0.06060 (11)0.0591 (5)
H17A0.35260.17840.09730.071*
C180.1833 (4)0.14165 (17)0.01602 (12)0.0643 (6)
H18A0.06240.18330.02250.077*
C190.1878 (3)0.08300 (14)0.03839 (11)0.0515 (5)
H19A0.06890.08490.06820.062*
N10.1687 (3)0.01963 (11)0.27860 (7)0.0446 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02187 (17)0.03298 (19)0.0348 (2)0.00254 (14)0.00264 (15)0.00331 (17)
O10.0241 (5)0.0443 (6)0.0512 (7)0.0008 (5)0.0076 (5)0.0058 (5)
O20.0226 (5)0.0599 (8)0.0520 (8)0.0028 (5)0.0049 (5)0.0046 (6)
O30.0721 (9)0.0642 (9)0.0686 (10)0.0235 (8)0.0197 (8)0.0319 (9)
O40.0511 (8)0.0733 (9)0.0628 (10)0.0023 (7)0.0212 (7)0.0041 (8)
C10.0243 (7)0.0376 (8)0.0349 (8)0.0013 (6)0.0013 (6)0.0010 (7)
C20.0309 (7)0.0336 (8)0.0338 (8)0.0009 (6)0.0053 (6)0.0038 (7)
C30.0444 (9)0.0395 (9)0.0545 (11)0.0069 (8)0.0028 (9)0.0016 (8)
C40.0753 (14)0.0295 (8)0.0763 (15)0.0073 (10)0.0113 (13)0.0023 (9)
C50.0727 (14)0.0372 (10)0.0766 (16)0.0154 (10)0.0069 (12)0.0133 (10)
C60.0526 (10)0.0496 (10)0.0549 (12)0.0129 (9)0.0043 (10)0.0149 (9)
C70.0380 (8)0.0343 (8)0.0355 (9)0.0040 (7)0.0001 (7)0.0050 (7)
C80.0307 (7)0.0333 (8)0.0320 (8)0.0040 (6)0.0008 (6)0.0027 (6)
C90.0440 (8)0.0400 (8)0.0525 (11)0.0002 (7)0.0113 (9)0.0016 (8)
C100.0632 (12)0.0354 (9)0.0670 (14)0.0054 (8)0.0124 (10)0.0033 (9)
C110.0618 (11)0.0381 (9)0.0537 (11)0.0095 (9)0.0003 (10)0.0091 (8)
C120.0411 (9)0.0485 (10)0.0520 (12)0.0127 (8)0.0048 (8)0.0100 (9)
C130.0319 (8)0.0401 (9)0.0504 (11)0.0016 (7)0.0052 (7)0.0049 (8)
C140.0337 (7)0.0370 (8)0.0340 (8)0.0019 (7)0.0047 (7)0.0027 (7)
C150.0442 (9)0.0607 (11)0.0438 (10)0.0113 (9)0.0031 (8)0.0067 (9)
C160.0590 (12)0.0719 (14)0.0416 (11)0.0029 (10)0.0068 (9)0.0070 (10)
C170.0732 (13)0.0576 (11)0.0465 (11)0.0026 (11)0.0087 (11)0.0119 (9)
C180.0615 (13)0.0644 (13)0.0670 (15)0.0209 (11)0.0051 (11)0.0163 (11)
C190.0440 (10)0.0567 (11)0.0536 (12)0.0134 (8)0.0012 (8)0.0056 (9)
N10.0501 (9)0.0478 (8)0.0359 (8)0.0031 (7)0.0117 (7)0.0011 (6)
Geometric parameters (Å, º) top
P1—O11.4961 (11)C8—C131.398 (2)
P1—C141.8091 (17)C9—C101.383 (2)
P1—C81.8093 (15)C9—H9A0.9300
P1—C11.8550 (16)C10—C111.367 (3)
O2—C11.4140 (18)C10—H10A0.9300
O2—H2A0.8200C11—C121.382 (3)
O3—N11.2180 (19)C11—H11A0.9300
O4—N11.219 (2)C12—C131.388 (2)
C1—C21.516 (2)C12—H12A0.9300
C1—H1A0.9800C13—H13A0.9300
C2—C31.387 (2)C14—C191.384 (2)
C2—C71.402 (2)C14—C151.390 (2)
C3—C41.391 (3)C15—C161.377 (3)
C3—H3A0.9300C15—H15A0.9300
C4—C51.365 (3)C16—C171.373 (3)
C4—H4A0.9300C16—H16A0.9300
C5—C61.374 (3)C17—C181.370 (3)
C5—H5A0.9300C17—H17A0.9300
C6—C71.384 (2)C18—C191.378 (3)
C6—H6A0.9300C18—H18A0.9300
C7—N11.470 (2)C19—H19A0.9300
C8—C91.388 (2)
O1—P1—C14112.08 (7)C10—C9—H9A119.5
O1—P1—C8109.96 (7)C8—C9—H9A119.5
C14—P1—C8109.99 (7)C11—C10—C9120.14 (18)
O1—P1—C1111.99 (7)C11—C10—H10A119.9
C14—P1—C1104.15 (7)C9—C10—H10A119.9
C8—P1—C1108.49 (7)C10—C11—C12119.96 (17)
C1—O2—H2A109.5C10—C11—H11A120.0
O2—C1—C2110.46 (13)C12—C11—H11A120.0
O2—C1—P1107.20 (11)C11—C12—C13120.53 (17)
C2—C1—P1107.24 (10)C11—C12—H12A119.7
O2—C1—H1A110.6C13—C12—H12A119.7
C2—C1—H1A110.6C12—C13—C8119.72 (16)
P1—C1—H1A110.6C12—C13—H13A120.1
C3—C2—C7116.01 (15)C8—C13—H13A120.1
C3—C2—C1118.65 (15)C19—C14—C15118.46 (16)
C7—C2—C1124.84 (14)C19—C14—P1117.98 (14)
C2—C3—C4121.67 (18)C15—C14—P1123.54 (12)
C2—C3—H3A119.2C16—C15—C14120.60 (17)
C4—C3—H3A119.2C16—C15—H15A119.7
C5—C4—C3120.57 (18)C14—C15—H15A119.7
C5—C4—H4A119.7C17—C16—C15120.1 (2)
C3—C4—H4A119.7C17—C16—H16A120.0
C4—C5—C6119.74 (18)C15—C16—H16A120.0
C4—C5—H5A120.1C18—C17—C16120.00 (19)
C6—C5—H5A120.1C18—C17—H17A120.0
C5—C6—C7119.51 (18)C16—C17—H17A120.0
C5—C6—H6A120.2C17—C18—C19120.23 (19)
C7—C6—H6A120.2C17—C18—H18A119.9
C6—C7—C2122.46 (16)C19—C18—H18A119.9
C6—C7—N1115.23 (15)C18—C19—C14120.63 (19)
C2—C7—N1122.30 (14)C18—C19—H19A119.7
C9—C8—C13118.62 (15)C14—C19—H19A119.7
C9—C8—P1115.32 (12)O3—N1—O4122.76 (16)
C13—C8—P1126.04 (13)O3—N1—C7118.48 (14)
C10—C9—C8121.00 (16)O4—N1—C7118.75 (16)
O1—P1—C1—O2167.18 (10)C13—C8—C9—C100.6 (3)
C14—P1—C1—O245.86 (12)P1—C8—C9—C10177.73 (17)
C8—P1—C1—O271.28 (12)C8—C9—C10—C111.1 (3)
O1—P1—C1—C248.55 (13)C9—C10—C11—C121.4 (3)
C14—P1—C1—C272.77 (12)C10—C11—C12—C130.0 (3)
C8—P1—C1—C2170.09 (11)C11—C12—C13—C81.7 (3)
O2—C1—C2—C314.0 (2)C9—C8—C13—C121.9 (3)
P1—C1—C2—C3102.53 (15)P1—C8—C13—C12176.16 (14)
O2—C1—C2—C7174.47 (14)O1—P1—C14—C1921.10 (16)
P1—C1—C2—C769.03 (19)C8—P1—C14—C19143.75 (14)
C7—C2—C3—C40.7 (3)C1—P1—C14—C19100.16 (15)
C1—C2—C3—C4172.97 (17)O1—P1—C14—C15160.53 (15)
C2—C3—C4—C51.8 (3)C8—P1—C14—C1537.87 (17)
C3—C4—C5—C60.9 (3)C1—P1—C14—C1578.22 (16)
C4—C5—C6—C71.0 (3)C19—C14—C15—C160.2 (3)
C5—C6—C7—C22.2 (3)P1—C14—C15—C16178.53 (16)
C5—C6—C7—N1176.57 (18)C14—C15—C16—C170.7 (3)
C3—C2—C7—C61.3 (3)C15—C16—C17—C180.5 (4)
C1—C2—C7—C6170.47 (17)C16—C17—C18—C190.1 (4)
C3—C2—C7—N1177.34 (16)C17—C18—C19—C140.7 (3)
C1—C2—C7—N110.9 (3)C15—C14—C19—C180.5 (3)
O1—P1—C8—C91.93 (16)P1—C14—C19—C18177.97 (17)
C14—P1—C8—C9121.97 (14)C6—C7—N1—O3150.69 (18)
C1—P1—C8—C9124.70 (14)C2—C7—N1—O328.0 (2)
O1—P1—C8—C13179.93 (14)C6—C7—N1—O428.1 (2)
C14—P1—C8—C1356.18 (17)C2—C7—N1—O4153.19 (17)
C1—P1—C8—C1357.15 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.862.6483 (16)161
C4—H4A···O3ii0.932.523.207 (2)131
C19—H19A···O2iii0.932.503.404 (2)164
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H16NO4P
Mr353.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.9179 (12), 13.917 (3), 20.405 (4)
V3)1680.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.35 × 0.22 × 0.13
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.533, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14520, 3311, 3065
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.05
No. of reflections3311
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20
Absolute structureFlack (1983), 1373 Friedel pairs
Absolute structure parameterplease supply

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.862.6483 (16)161.2
C4—H4A···O3ii0.932.523.207 (2)131.4
C19—H19A···O2iii0.932.503.404 (2)163.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

The authors thank the Technical Project of the Department of Education of Jiangxi Province of China (Nos. GJJ08528 and GJJ09638) for supporting this work. We also thank the Hunan Provincial University Key Laboratory of QSAR/QSPR for providing technical assistance.

References

First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, H. J., Wang, R. & Alper, H. (2002). J. Org. Chem. 67, 6224–6225.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, W.-Y. & Huo, P. (2008). Acta Cryst. E64, o233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, W.-Y., Huo, P., Gao, Y.-X., Liu, P. & Zhao, Y.-F. (2007). Acta Cryst. E63, o1008–o1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds